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Abstract

Although Streptococcus agalactiae periprosthetic joint infection (PJI) is not as pre-

valent as staphylococcal PJI, invasive S. agalactiae infection is not uncommon. Here,

RNA‐seq was used to perform transcriptomic analysis of S. agalactiae PJI using fluid

derived from sonication of explanted arthroplasties of subjects with S. agalactiae PJI,

with results compared to those of S. agalactiae strain NEM316 grown in vitro. A total

of 227 genes with outlier expression were found (164 upregulated and 63 down-

regulated) between PJI sonicate fluid and in vitro conditions. Functional enrichment

analysis showed genes involved in mobilome and inorganic ion transport and me-

tabolism to be most enriched. Genes involved in nickel, copper, and zinc transport,

were upregulated. Among known virulence factors, cyl operon genes, encoding

β‐hemolysin/cytolysin, were consistently highly expressed in PJI versus in vitro. The

data presented provide insight into S. agalactiae PJI pathogenesis and may be a

resource for identification of novel PJI therapeutics or vaccines against invasive

S. agalactiae infections.
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1 | INTRODUCTION

Periprosthetic joint infection (PJI) causes significant morbidity and

mortality, and healthcare cost burden (Bozic et al., 2010, 2009; Brochin

et al., 2018; Kurtz et al., 2012; Lum et al., 2018; Natsuhara et al., 2019).

Staphylococcus aureus and Staphylococcus epidermidis are the most fre-

quent causes of PJI, causing ∼65% of cases (Zimmerli et al., 2004).

However, other bacteria, including streptococci, enterococci, and Gram‐

negative bacilli, also contribute to PJI; conceivably, each could be con-

sidered as causing a distinct disease state.
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Streptococcus agalactiae, a component of the gastrointestinal

microbiota also found in the genitourinary tract of some adults, is an

important pathogen in newborns and pregnant women. Recently, the

incidence of invasive S. agalactiae infections has been increasing in

nonpregnant adults, particularly among those with comorbidities and

older individuals (Edwards & Baker, 2005). While there is a difference

in serotype distribution of S. agalactiae causing neonatal and adult

diseases (Schuchat, 1998), other characteristics of the bacterium that

might affect these two populations have not been elucidated.

Bone and joint infections, including osteomyelitis, spondylodiscitis,

and native and periprosthetic joint infection, are common manifesta-

tions of S. agalactiae infections in adults (Corvec et al., 2011; Farley &

Strasbaugh, 2001; Oppegaard et al., 2016). S. agalactiae is responsible

for <10% of PJIs, most frequently “delayed” or “late‐onset” PJIs (Sendi

et al., 2011; Tande & Patel, 2014). Infection is presumed to be hema-

togenous in most cases, with the gastrointestinal tract, genitourinary

tract, and possibly skin being common sources (Tande & Patel, 2014;

Triesenberg et al., 1992; Zeller, Lavigne, Leclerc et al., 2009). There are

conflicting reports on the outcomes of S. agalactiae PJI. While some

studies report remission rates of S. agalactiae PJI to be higher than

those of staphylococcal PJI (Fiaux et al., 2016), others suggest that

streptococcal PJIs as a whole have high treatment failure rates (Akgün

et al., 2017), with S. agalactiae having worse outcomes than other

Streptococcus species (Mahieu et al., 2019; Zeller, Lavigne, Biau

et al., 2009); reasons behind this are unknown.

Understanding transcript profiles of bacteria under physiological or

pathological conditions may help identify genomic elements that con-

tribute to disease processes (Croucher & Thomson, 2010; Wang

et al., 2009). Massive parallel sequencing can be used to analyze tran-

scriptomes via complementary DNA (cDNA) sequencing—so‐called,

RNA‐seq (Kukurba & Montgomery, 2015; Wang et al., 2009), providing

all transcriptomic data in an unbiased manner and at a higher resolution

than microarray or individual gene or gene panel analysis (Croucher &

Thomson, 2010).

Here, a transcriptome study based on RNA‐seq analysis of in vivo

S. agalactiae RNA from samples derived from sonication of explanted

arthroplasties is presented. S. agalactiae PJI RNA‐seq data were

compared to previously generated RNA‐seq data from S. agalactiae

strain NEM316 grown in vitro (Rosinski‐Chupin et al., 2015), to ex-

plore PJI‐specific gene expression profiles.

2 | MATERIALS AND METHODS

2.1 | Materials

Sonicate fluid samples collected between April 2005 and August

2016 from six patients who underwent hip or knee arthroplasty re-

vision for S. agalactiae PJI were studied. A publicly available RNA‐seq

transcriptome data set from S. agalactiae NEM316 (a serotype III

[ST‐23] reference strain from the blood of a neonate with early‐onset

S. agalactiae disease [Glaser et al., 2002]) grown to mid‐exponential

phase inTodd Hewitt medium (three replicates), was used to compare

gene expression patterns with RNA‐seq data from sonicate fluid

samples (BioProject accession number PRJEB8097: https://www.

ncbi.nlm.nih.gov/bioproject/PRJEB8097 [BioSample accessions

SAMEA3180396, SAMEA3180402, SAMEA3180416]). The six S.

agalactiae isolates cultured from sonicate fluid were also used for

pan‐genome construction.

2.2 | Sample handling

Explanted prostheses were transported to the clinical microbiology

laboratory in solid jars. Implant processing was performed according

to an established clinical protocol that includes vortexing and soni-

cation in Ringer's solution (Trampuz et al., 2007). Sonicate fluid

samples were concentrated 100‐fold by centrifugation and im-

mediately stored at −80°C without RNA an stabilizer until RNA was

extracted and sequenced.

2.3 | Bacterial whole genome sequencing
and pan‐genome construction

S. agalactiae was identified per standard protocols in the Mayo Clinic

Clinical Microbiology Laboratory. S. agalactiae isolates were desig-

nated 1–6 corresponding to their associated subject number.

Genomic DNA was extracted from the six isolates cultured from PJI

subjects using the Zymo Research Quick‐DNA Fungal/Bacterial

Miniprep Kit (Zymo Research) and quantified using a Qubit 2.0

Fluorometer (Thermo Fisher Scientific). Sequencing libraries were

prepared using a Nextera® XT PE Kit (Illumina Inc.). Sequencing was

performed on an Illumina HiSeq 4000 with a 2 × 150‐base pair setting

and 60 sample libraries multiplexed per flow cell.

Bacterial genomes were assembled from raw reads using a de

novo assembler SKESA v2.4.0 (Souvorov et al., 2018) and annotated

by Prokka v1.14.5 using the S. agalactiae 2603V/R genome as the

reference genome for purposes of gene annotation (Seemann, 2014).

A pan‐genome was constructed with Roary v3.13.0 using annotated

fragmented de novo assemblies to identify core and accessory genes

(Page et al., 2015). This pan‐genome served as a common reference

for transcript quantification and outlier analysis between the

RNA‐seq data from sonicate fluid and NEM316.

2.4 | Phylogeny and virulence gene profiling

A phylogeny based on 1000 common gene families across the six

isolates plus S. agalactiae strains NEM316 and 2603V/R was

constructed using the CodonTree method at the Phylogenetic Tree

Building Service from PATRIC Bioinformatics Resource Center

(Davis et al., 2019). Phylogeny was midpoint rooted. Virulence

gene content was profiled using the database of virulence factors

of pathogenic bacteria (VFDB; Liu et al., 2019) through the inter-

face at PATRIC.
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2.5 | Serotyping, multilocus sequence typing,
and pilus typing

Artemis was used to annotate and extract capsular locus sequences from

S. agalactiae isolate whole genome sequences (Rutherford et al., 2000).

Extracted capsular locus sequences from each isolate were used to as-

sign serotype, based on the highest identity using a BLAST query. The

sequence type of each S. agalactiae isolate was determined by comparing

allelic profiles of housekeeping genes adhP, pheS, atr, glnA, sdhA, glcK, and

tkt (Jones et al., 2003) to the PubMLST S. agalactiae database

(https://pubmlst.org/organisms/streptococcus‐agalactiae) with Seq-

Sphere+ software version 6.0.2 (Ridom GmbH). Pilus type was as-

signed by comparing allelic profiles of pilus genes (PI‐1,

sag0645–0650; PI‐2a, sag1404–1408; PI‐2b, sag2190–2194) with

a sequence query to the database.

2.6 | RNA isolation and sequencing

RNA from sonicate fluid was isolated using the miRNeasy Serum/

Plasma Kit (QIAGEN) and subjected to genomic DNA and bacterial

ribosomal RNA (rRNA) removal using RNase‐free DNase I (QIAGEN)

and the Ribo‐Zero rRNA Removal Kit (Bacteria; Illumina). Following

purification using an RNeasy MinElute Cleanup Kit (QIAGEN), rRNA‐

depleted RNA was eluted in 30 µl RNAse‐free water. RNA quantity

and integrity were evaluated using a Qubit 2.0 Fluorometer coupled

with a Qubit RNA High‐Sensitive Assay Kit (Thermo Fisher Scientific),

and an Agilent 4200 TapeStation system (Agilent).

Next‐generation sequencing cDNA libraries were constructed

using the Ovation SoLo RNA‐seq System (NuGEN Technologies) from

1 ng of input RNA, as previously described (Masters et al., 2018). Ex-

ternal RNA Control Consortium RNA Spike‐In Mix 1 (Thermo Fisher

Scientific) was used as a control to measure variability in the library

generation process. Following cDNA synthesis and amplification, a

SoLo AnyDeplete probe mix (NuGEN Technologies) was added to the

libraries to deplete human rRNA sequences. The resulting cDNA li-

braries were sequenced on an Illumina HiSeq 4000 with 10 samples

multiplexed per lane, producing 100‐base pair, paired‐end reads.

2.7 | RNA‐seq analysis

Raw sequencing reads were analyzed to identify microbial RNA, as

previously described (Thoendel et al., 2016), with minor modifica-

tions. RNA‐seq adapter sequences were trimmed with Atropos 1.1.19

(Didion et al., 2017), and human reads removed using BioBloom tools

2.1.1 (Chu et al., 2014). Taxonomy was assigned with Livermore

Metagenomics Analysis Toolkit 1.2.6 using k‐mer identifiers and the

kML+H.noprune.4‐14.2025.db database (Ames et al., 2013).

RNA‐seq reads were pseudoaligned to the pan‐genome con-

structed as described above (Tettelin et al., 2005) and transcript

abundances were quantified using Kallisto version 0.42.4 (Bray

et al., 2016) and converted to transcripts per million (TPM). For the

external NEM316 data, data from the three replicates were aggregated

by calculating the mean TPM. Outlier expression analysis was per-

formed by calculating a modified z‐score for each gene gij in a sample I

with j genes present in the core genome such that: z = [log2(gij) −median

(log2(gi)]/[1.4826 ×MAD(log2(gi)], with a pseudocount added, if neces-

sary. For this study, any gene with |z|>3 was considered an outlier.

2.8 | Homology modeling of protein structure

To predict protein homology, protein structures of selected genes

were generated from amino acid sequences derived from RNA‐seq

data using a web‐based bioinformatics server, Phyre2 (Kelley

et al., 2015). Predicted structural models were retrieved for selected

sequences, queried and templated in Phyre2, with a representation of

structures drawn using Chimera (Pettersen et al., 2004).

2.9 | Statistical analysis

GraphPad Prism (ver. 8.0; GraphPad Software) was used to perform a

Fisher's exact test to access functional enrichment of differentially

expressed genes belonging to the specific clusters of orthologous

genes (COGs) category.

3 | RESULTS

3.1 | Description of subjects

Six subjects with S. agalactiae PJI (mean age: 62 years, range: 42–73

years) who underwent surgery at Mayo Clinic from 2006 to 2016

were studied, four (67%) of whom were male. All had local pain at the

involved site, with fevers and/or chills. Two had undergone hip and

four knee arthroplasty. The age of implanted material at the time of

surgery ranged from 29 days to 5.4 years, including two cases of

“early” (less than 3 months after placement), 1 of “delayed” (3 months

to 1–2 years after placement) and 3 of “late” (more than 1–2 years

after implantation) infection (Tande & Patel, 2014). S. agalactiae was

isolated from sonicate fluid culture from all subjects (Table 1). There

was no obvious coinfection.

3.2 | Genomic description of S. agalactiae isolates

Whole‐genome sequencing of the cultured isolates showed the isolates

to have diverse characteristics. Three isolates displayed serotypeV, two

serotype Ia, and one serotype II (Table 1). There was also diversity in

isolate multilocus sequence types (Table 1), with one isolate (IDRL‐

7656/subject 2) displaying a novel sequence type due to a novel allele

for adhP in the region used for typing. A phylogenetic analysis of the

isolates, which included NEM316 (serotype III) and 2603V/R (serotype

V) as references, recapitulated the diversity findings, with the serotype
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V isolates clustering together, and other isolates showing differences

from one another (Figure A1). When screening for virulence genes

against the VFDB database (Liu et al., 2019), it was shown that while

the isolates had similar complements of virulence genes, they exhibited

expected variation in the architecture of the capsular polysaccharide

(CPS) genes corresponding to their respective serotypes. Fibrinogen‐

binding surface protein genes fbsA and fbsB were found in IDRL‐7656

and IDRL‐8557. While the presence of pilus‐associated genes showed

slight differences between the isolates, all genes belonging to cyl op-

eron were detected in all isolates (Table S1, https://doi.org/10.5281/

zenodo.5717630).

3.3 | S. agalactiae expression profiles by outlier
expression analysis

Total read counts of transcripts from sonicate fluids ranged from 31,291

to 522,023. Since Samples 1 and 4 had low read counts of non‐rRNA

transcripts, they were excluded from expression analysis studies

(Table A1). Read counts of non‐rRNA transcripts from S. agalactiae strain

NEM316 RNA‐seq are shown inTable A2. The S. agalactiae pan‐genome

constructed from the associated PJI isolates, comprised of 2738 genes, of

which 1683 were identified as core genes, was used to quantify bacterial

transcripts from PJI and the in vitro NEM316 strain. There were 227

genes identified as strong outliers (in vitro |z| > 3, where z is a modified

z score—see Section 2) in expression between PJI (in vivo) and in vitro

conditions. Of these, 164 were upregulated (in vitro z<−3), and 63

downregulated (in vitro z>3) in sonicate fluid compared to in vitro. Genes

with detected outlier expression are listed inTable S2 (https://doi.org/10.

5281/zenodo.5717630) and whole core gene lists are shown inTable S3

(https://doi.org/10.5281/zenodo.5717630), identified by the matching

locus tag in S. agalactiae 2603V/R used as an annotation reference.

nik operon genes (sag1514‐1518), cop operon genes (sag0384‐

0386), and lmb‐phtD operon genes (sag1233‐1234), encoding known

or predicted metal transport systems, were highly expressed in

sonicate fluid. sag1514‐1518 comprise an operon putatively involved

in intake of nickel/cobalt via nikA–E (ATP‐binding cassette [ABC]

transporter), which are homologous with genes involved in a nickel/

cobalt uptake system in S. aureus, cntA‐D, and cntF, which has been

shown to contribute to S. aureus virulence (Remy et al., 2013). The

function of these genes in S. agalactiae disease has not, however,

been demonstrated. The predicted structure of the SAG1518 protein

is homologous to the structure of NikA from Brucella suis (protein

data bank ID: 4OER), with 93% coverage and 41% identity based on

Phyre2 prediction (Kelley et al., 2015) and Chimera (Pettersen

et al., 2004) alignment of the two structures (Table A3, Figure A2).

sag0384‐0386 (copR, copA, and copZ) belonging to cop operon

were highly expressed in sonicate fluid versus in vitro (z = −5.152,

−16.313, and −1.386, respectively). sag1264 encoding transcriptional

repressor CopY was not detected in the in vitro strain.

sag1234 encoding laminin‐binding protein (Lmb) and sag1233

encoding streptococcal histidine triad family protein (PhtD or Sht),

were highly expressed in sonicate fluid. The Lmb protein of S.

agalactiae, also known as an adhesin that binds a human extracellular

matrix component called laminin, is involved in zinc uptake (Moulin

et al., 2016). Two Lmb homologs, AdcA (SAG0535) and AdcAII

(SAG1938), redundant binding proteins that combine with the AdcCB

translocon (SAG0155 and SAG0156) form a zinc‐ABC transporter,

with their expression controlled by zinc‐dependent regulator AdcR

(SAG0154) (Moulin et al., 2016). In this study, sag0535 and

sag0154‐0156 were highly expressed in sonicate fluid compared to

the in vitro strain, and sag1938 was not detected in the in vitro strain.

3.4 | Functional enrichment

Functional enrichment analysis of outlier genes revealed genes in-

volved in mobilome and those in inorganic ion transport and meta-

bolism to be most enriched in sonicate fluid (Figure 1). The most

interesting genes in the outlier analysis, nik, lmb‐phtD, and cop op-

erons, belonged to the inorganic ion transport and metabolism

functional category. The pathogenic roles of the genes belonging to

the mobilome, if any, are unknown.

Genes labeled as being involved in energy production and con-

version based on the database of COGs (https://www.ncbi.nlm.nih.gov/

research/cog) showed decreased expression in PJI versus in vitro, with

the most downregulated genes in this category encoding F0F1 ATP

synthase subunit C, alpha, gamma, and epsilon (sag0857, sag0861,

sag0862, and sag0864, respectively).

3.5 | Genes associated with S. agalactiae adhesion
and biofilm formation

3.5.1 | Adhesion factors, pilus islands, and sortases

Expression of genes encoding adhesion factors important in S. aga-

lactiae biofilm formation was analyzed (Table S4, https://doi.org/10.

5281/zenodo.5717630); lmb and cspA were upregulated outliers, and

gap downregulated in sonicate fluid compared to in vitro (Figure 2a).

All isolates that caused PJI had PI‐2a, and four (including three of four

isolates subjected to outlier expression analysis) had PI‐1, with

sag1408 encoding PI‐2a a downregulated outlier in sonicate fluid

compared to in vitro. The gene encoding sortase, involved in cell wall

anchoring of pilus polymers (Nobbs et al., 2008)—srtA (sag0961)—was

weakly more expressed in sonicate fluid compared to in vitro

(Table S4, https://doi.org/10.5281/zenodo.5717630, Figure 2a).

3.6 | Other virulence factors

cylA, B, D, E, F, G, I, J, K, X, Z, and acpC, encoding β‐hemolysin/cytolysin

were all upregulated in sonicate fluid compared to in vitro (Figure 2b).

Among genes involved in immune evasion, neuC‐D, cpsB, D, E, and cpsK

were downregulated in sonicate fluid compared to in vitro (Table S4,

https://doi.org/10.5281/zenodo.5717630, Figure 2b).
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4 | DISCUSSION

S. agalactiae is a leading pathogen of invasive disease in neonates and

pregnant women and also in nonpregnant adults, especially those of

older age or with underlying conditions. Since S. agalactiae infections

in newborns and pregnant women are known to start from bacterial

colonization of the vagina, adhesion factors and other virulence

factors associated with biofilm formation on the vaginal mucosa have

been studied as contributors to colonization (Cook et al., 2018; Sheen

et al., 2011). PJI is initiated through introduction of microorganisms

F IGURE 1 Functional enrichment of outlier
Streptococcus agalactiae genes in periprosthetic
joint infection sonicate fluid compared to
NEM316 grown in vitro. Genes with |z| > 3 were
considered outliers. The ratio of enrichment was
calculated as the % of genes of a given functional
category in the increased or decreased expressed
RNA‐seq data set/% of genes assigned to the
functional category in the S. agalactiae genome.
Ribosomal protein, rRNA, and tRNA genes were
removed. *Significant enrichment amongst genes
increased; †significant enrichment amongst genes
decreased in sonicate fluid, with p < 0.05 (Fisher's
exact test). rRNA, ribosomal RNA; tRNA,
transfer RNA

F IGURE 2 (a) Expression levels of genes
involved in bacterial adhesion in sonicate fluid
of four periprosthetic joint infection (PJI)
subjects compared to NEM316 in vitro.
*Upregulated outliers in sonicate fluid;
†downregulated outliers in sonicate fluid.
(b) Expression levels of invasin and immune
evasin genes in sonicate fluid of four PJI
subjects compared to NEM316 in vitro.
*Upregulated outliers in sonicate fluid;
†downregulated outliers in sonicate fluid
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at surgery, spread of infection from adjacent sites, or hematogenous

seeding (Tande & Patel, 2014). Since bacteremia accompanies

S. agalactiae PJI in up to 50% of cases, hematogenous spread is

thought to be an important source (Everts et al., 2004). To establish

infection, bacteria theoretically first colonize the gastrointestinal

tract, genitourinary tract, and/or skin, where they form biofilms, and

then spread hematogenously, adhere to prostheses, and again form

biofilms on prosthesis surfaces. Studies on this complex pathological

process are, however, limited.

In this study, the most enriched functional gene category in PJI

sonicate fluid was the inorganic ion transport and metabolism category,

of which genes involved in nickel, zinc, and copper transport were highly

expressed. Metals play a role in life processes of microorganisms, with

organisms having developed processes for their uptake. Pathogenic

bacteria encounter metal restriction when placed in the metal‐poor en-

vironment of their host (Hammer & Skaar, 2012). “Nutritional immunity”

set up by hosts to prevent bacterial growth presumably extends to many,

if not all “essential” micronutrients, with mechanisms having been de-

scribed for sequestering zinc, iron, and manganese (Grim et al., 2017;

Kehl‐Fie & Skaar, 2010). The synovial space and surrounding tissues in

which PJI occurs are limited spatially and in terms of nutrients (Jackson &

Gu, 2009). The action of micrometallic molecules on surrounding human

tissues, prostheses, and causative bacteria is an interesting topic; this

study provides insight into this process. Although means of metal ac-

quisition are well‐known for iron, manganese, and zinc (Corbin

et al., 2008), others metals in trace amounts may be important under

specific conditions (Remy et al., 2013). Nickel is a cofactor of bacterial

enzymes potentially involved in a myriad of cellular processes

(Mulrooney & Hausinger, 2003). For Helicobacter pylori, for example,

nickel, a cofactor of urease, is essential for survival and successful co-

lonization of human gastric mucosa (Molnar et al., 2010). Recently, a

nickel/cobalt uptake system (CntA–D and F/NikA–E) in S. aureus has

been shown to contribute to virulence of this species (Remy et al., 2013).

In a murine bacteremia model, mortality was lower in S. aureus cnt mu-

tant infection compared to wild‐type strain infection. Bladder and kidney

colonization in a urinary tract infection model were reduced with the cnt

mutant versus the wild‐type strain (Remy et al., 2013). In this study,

sag1514–1518 (nikA–E), genes putatively involved in nickel uptake, were

highly expressed in sonicate fluid. Although the roles of these genes have

not been demonstrated in S. agalactiae, gene orthology suggests that

they may function similarly to the S. aureus CntA‐D and F system and

play a role in PJI pathogenesis. The findings in S. agalactiae are novel and

reported here for the first time. In addition, a transcriptome study re-

vealed that cnt genes were upregulated in S. aureus PJI sonicate fluid

compared to corresponding isolates grown in vitro (Le Masters

et al., 2021). The finding of upregulation of nik and cnt genes shown in S.

aureus and S. agalactiae PJI, respectively, suggests a potential role of

nickel/cobalt uptake systems in the pathogenesis of PJI.

Copper is an essential metal element in bacterial cells. However,

excessive copper is hazardous to cells due to free‐radical damage

(Ladomersky & Petris, 2015). Keeping a balance of copper at human

pathogen interfaces is needed for bacterial survival and pathogenesis.

copA encoding the copper‐transporter ATPase CopA mediates

control of copper efflux in several human pathogens (Johnson

et al., 2015; Ladomersky et al., 2017; Macomber & Imlay, 2009;

White et al., 2009). A recent study showed the role of this me-

chanism on survival, growth, and virulence of S. agalactiae in the

mammalian host (Sullivan et al., 2021). Although copper levels in

sonicate fluid were not determined in this study, they are known to

be elevated in inflamed tissue (Djoko et al., 2015). As copper levels in

infected tissues are increased, this may be related to increased ex-

pression of cop operon genes, which regulate copper efflux for

virulence and survival of bacteria, in sonicate fluid.

Among the virulence factors studied, lmb and cspA were highly

expressed in PJI compared to in vitro. Lmb is an adhesin that binds to

laminin in human tissue; it also promotes bacterial invasion in human

brain microvascular endothelial cells (Spellerberg et al., 1999;

Tenenbaum et al., 2007). Lmb is also involved in zinc uptake, showing

homology with the zinc‐binding protein AdcA of other streptococcal

species (Bayle et al., 2011; Linke et al., 2009). Zinc is also a trace

element that serves as a cofactor for a number of essential prokaryotic

enzymes and transcriptional regulators. Pathogenic bacteria must

adapt zinc transport mechanisms to accommodate these differences to

both avoid toxicity and meet their requirements for this metal. In a

zinc‐deficient environment, zinc acquisition in streptococci is mostly

performed by an ABC transporter, which is composed of one or sev-

eral metal‐binding proteins (AdcA, Lbp, or Lmb), an integral membrane

component (AdcB), and an ATPase (AdcC) (Moulin et al., 2016). In

contrast, in the presence of adequate intracellular zinc concentrations,

the AdcR repressor regulator inhibits expression of adcABC and lmb. In

this study, these zinc uptake genes, adcABC, and lmb were highly ex-

pressed in sonicate fluid compared to in vitro, suggesting a potential

role of increased zinc uptake in the pathogenesis of S. agalactiae PJI.

Although biofilm formation by S. agalactiae may be associated

with PI‐2a pilus production (Rinaudo et al., 2010), expression of PI‐2a

pilus genes was downregulated in sonicate fluid compared to in vitro

in this study. While some studies have suggested that nonpilus ad-

hesion regulated by covR may be a contributor to bacterial adherence

and biofilm formation (Park et al., 2012), covR (sag0416) expression

was only weakly higher in sonicate fluid compared to in vitro con-

ditions in this study. This suggests that biofilms formed on ar-

throplasty surfaces may be affected by the expression of nonpilus

rather than pilus adhesins, or other mechanisms.

β‐Hemolysin/cytolysin (β‐HC, also CylE), is a surface‐associated,

pluripotent toxin crucial for S. agalactiae pathogenesis; it promotes

S. agalactiae invasion of lung epithelial and endothelial cells and

the blood–brain barrier (Rajagopal, 2009). Hemolytic activity is

associated with S. agalactiae colonization and pathogenesis, with

hemolysin‐deficient S. agalactiae mutants being attenuated for

virulence in a S. agalactiae arthritis murine model; while more joint

inflammation and damage were observed with hyperhemolytic

mutant‐infected animals than in those infected with the parental

strain, nonhaemolytic mutant‐infected mice had mild and transient

arthritis (Puliti et al., 2000). The cyl operon (cylX‐K) is necessary for

the synthesis of granadaene, the ornithine rhamnolipid pigment in

S. agalactiae, which is hemolytic and cytotoxic to human amniotic
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epithelial cells and innate immune cells (Armistead et al., 2020;

Forquin et al., 2007; Gottschalk et al., 2006; Rosa‐Fraile et al., 2014;

Whidbey et al., 2013). In this study, all 12 genes belonging to cyl

operon were highly expressed in PJI compared to in vitro, suggesting

that they could contribute to the pathogenesis of PJI.

S. agalactiae is encapsulated by a sialic acid CPS. Since sialic acid

is also present on glycans of eukaryotic cells, the host may not re-

cognize S. agalactiae as nonself (Rajagopal, 2009). Accordingly, CPS

prevents complement factor C3 deposition and phagocytosis of S.

agalactiae (Rajagopal, 2009). The genes required for CPS synthesis

are part of a single cps locus, harboring a variable serotype‐

determining region (cpsG–cpsK) flanked by other CPS genes

(cpsA–cpsF and neuB–neuA) conserved among different serotypes

(Cieslewicz et al., 2005). In this study, expression of cpsB, D, E, G, and

K, neuC, and D was downregulated in PJI compared to in vitro, al-

though not among outliers. Contrary to a recent study that reported

that cps genes are conditionally essential for the survival of S. aga-

lactiae in human blood (Hooven et al., 2017), the role of cps genes in

PJI might be less significant.

There are several limitations to this study. Ideally, in vitro tran-

scriptomic analysis of each isolate under conditions corresponding to

each sample in vivo would have been helpful to understand the po-

tential pathogenic role of the genes analyzed. NEM316 and the

conditions under which it was grown in vitro may not be re-

presentative of the whole S. agalactiae population or the PJI isolates

studied. That said, NEM316 is a human strain from invasive disease

and biofilm‐producing, which is also relevant to PJI. In this study,

functional validation of novel genes identified was not performed.

Finally, gene expression may have been affected at least in part by

the specimen processing used. The lack of an RNA stabilizer is also a

limitation.

In conclusion, the data generated provides a glimpse into the

transcriptomic landscape of S. agalactiae in the environment around

prosthetic joints. Using outlier expression and functional enrichment

analysis, the nik operon was upregulated in PJI, suggesting a role of

nickel transport in PJI pathogenesis. Among known virulence factors,

β‐HC was consistently upregulated in PJI. The findings presented con-

tribute to understanding of S. agalactiae PJI pathogenesis and provide

molecular targets for the identification of novel PJI therapeutics or

future vaccines against invasive infections caused by S. agalactiae.
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TABLE A1 RNA counts from sonicate fluid of Streptococcus agalactiae PJI subjects (in vivo)

S. no.
No. of predicted
genes

No. of protein‐
coding genes

Total reads counts of
quantified transcripts

Read counts of
non‐rRNA transcripts

% Non‐rRNA
reads DEG analysis

1 2031 1957 56,989 3483 6.1 Not included

2 2240 2166 175,647 88,497 50.4 Included

3 2062 1983 324,455 283,023 87.2 Included

4 2145 2074 522,023 483,179 92.6 Included

5 2095 2020 31,291 1849 5.9 Not included

6 2080 2008 459,667 252,168 54.9 Included

Abbreviations: DEG, differentially expressed gene; PJI, periprosthetic joint infection; rRNA, ribosomal RNA.

APPENDIX

TABLE A2 RNA counts from Streptococcus agalactiae strain NEM316 RNA‐seq (in vitro)

S. no. Read counts of non‐rRNA transcripts

1 1,530,792

2 1,708,503

3 1,224,999

Abbreviation: rRNA, ribosomal RNA.

TABLE A3 Confidence, coverage, and identity values of predicted nickel transport genes matched to each template in the Phyre2 model

Old locus tag Gene name
Template
PDB code PDB title

Aligned
residues

Alignment
coverage (%)

Confidence
(%)

Identity
(%)

sag1514 nikE, cntF 4FWI Crystal structure of the nucleotide‐binding
domain of a dipeptide ABC transporter

1–215 94 100 29

sag1515 nikD, cntD 4FWI Crystal structure of the nucleotide‐binding
domain of a dipeptide ABC transporter

3–252 95 100 32

sag1516 nikC, cntC 4YMU Crystal structure of an amino acid ABC

transporter complex with arginines
and ATPs

56–262 76 99.9 13

sag1517 nikB, cntB 4YMU Crystal structure of an amino acid ABC

transporter complex with arginines
and ATPs

82–309 72 99.9 15

sag1518 nikA, cntA 4OER Crystal structure of NikA from Brucella suis,
unliganded form

32–533 93 100 41

Abbreviation: PDB, protein data bank.
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F IGURE A1 Phylogenic tree of the cultured isolates and Streptococcus agalactiae NEM316 and 2603V/R

F IGURE A2 Protein structure homology model of sag1514–1518 (a–e, respectively) produced by Phyre2. The predicted protein from
sag1514–1518 is shown in blue with the template protein (Table A3) shown in yellow
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