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Abstract: Protein kinases (PKs) are involved in many intracellular signal transduction pathways
through phosphorylation cascades and have become intensely investigated pharmaceutical targets
over the past two decades. Inhibition of PKs using small-molecular inhibitors is a premier strategy for
the treatment of diseases in different therapeutic areas that are caused by uncontrolled PK-mediated
phosphorylation and aberrant signaling. Most PK inhibitors (PKIs) are directed against the ATP
cofactor binding site that is largely conserved across the human kinome comprising 518 wild-type
PKs (and many mutant forms). Hence, these PKIs often have varying degrees of multi-PK activity
(promiscuity) that is also influenced by factors such as single-site mutations in the cofactor binding
region, compound binding kinetics, and residence times. The promiscuity of PKIs is often—but not
always—critically important for therapeutic efficacy through polypharmacology. Various in vitro and
in vivo studies have also indicated that PKIs have the potential of interacting with additional targets
other than PKs, and different secondary cellular targets of individual PKIs have been identified on a
case-by-case basis. Given the strong interest in PKs as drug targets, a wealth of PKIs from medicinal
chemistry and their activity data from many assays and biological screens have become publicly
available over the years. On the basis of these data, for the first time, we conducted a systematic
search for non-PK targets of PKIs across the human kinome. Starting from a pool of more than
155,000 curated human PKIs, our large-scale analysis confirmed secondary targets from diverse
protein classes for 447 PKIs on the basis of high-confidence activity data. These PKIs were active
against 390 human PKs, covering all kinase groups of the kinome and 210 non-PK targets, which
included other popular pharmaceutical targets as well as currently unclassified proteins. The target
distribution and promiscuity of the 447 PKIs were determined, and different interaction profiles with
PK and non-PK targets were identified. As a part of our study, the collection of PKIs with activity
against non-PK targets and the associated information are made freely available.

Keywords: protein kinases; human kinome; kinase inhibitors; activity data; multi-target activity;
non-kinase targets

1. Introduction

In pharmaceutical research, protein kinases (PKs) are among the most intensely investi-
gated drug targets [1,2]. PKs catalyze the adenosine triphosphate (ATP)-cofactor-dependent
phosphorylation of tyrosine, serine, or threonine residues in proteins (including PKs) that
participate in intracellular signal transduction [1]. Tyrosine PKs and serine/threonine
PKs represent the two major PK groups. The active and cofactor binding sites of PKs
are located in their catalytic domain, whose activity is controlled by interactions with the
associated regulatory domain. PK-mediated signaling generally depends on the formation
of phosphorylation cascades involving PKs and other proteins. These signaling pathways
often originate from membrane receptor-associated PKs that transduce extracellular signals
into cells. Aberrant or deregulated signaling events are responsible for many different
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diseases. Uncontrolled PK activity can be treated with small-molecular PK inhibitors (PKIs),
synthetic compounds that have become prime drug candidates [1,2]. The majority of PKIs
bind non-covalently to the ATP cofactor binding site that is largely conserved across hu-
man PKs or proximal to this site [1,3]. If changes in the ATP binding site occur, they are
typically limited to replacements of one or a few residues. ATP-site-directed PKIs are either
ATP-competitive, representing a “classical” type of PKIs, or induce local structural changes
by binding adjacent to the ATP site, which stabilizes an inactive conformational state of
PKs [1,3].

The first human (tyrosine) PKs were discovered in 1980 [4], followed by intense
searches for other PKs. Only 15 years later, the PK superfamily was introduced [5]. Then,
in 2002, in the course of the human genome project, 518 PKs comprising the kinome were
identified [6]. Accompanying advances in PK biology, in the mid-1980s, the first small-
molecular PKIs were identified and used to investigate PK functions, thereby establishing
PKs as pharmaceutical targets [7]. These investigations were complemented by extensive
structural studies of PKs and their complexes with PKIs, yielding a wealth of X-ray struc-
tures [8] that uncovered different binding modes of PKIs [3] and substantially aided in their
optimization [9].

PKIs were considered as candidate compounds in different therapeutic areas such
as cancer [10,11], immunology and inflammation [12], diseases of the central nervous
system [13], or metabolic diseases [14]. In 2001, the first PKI (imatinib) was approved as
a drug in oncology for the treatment of leukemia [15,16], which further intensified and
accelerated PK drug discovery, especially in oncology [16]. Currently, 80 PKIs are marketed
as drugs for cancer treatment and other therapeutic applications [17,18]. The high interest
in PKIs as drug candidates has also led to a wealth of compound data. For instance, more
than 150,000 PKIs with high-confidence activity data and target annotations have become
publicly available covering more than 80% of the human kinome [19,20]. Hence, these
compounds and their associated activity data provide a substantial knowledge base for
the characterization of PKIs and their target distribution. Although increasing numbers
of allosteric PKIs are reported that bind to different sites in the catalytic PK domain and
elicit conformational effects by non-covalent or covalent mechanisms, they are still very
rare compared to ATP-site-directed PKIs [21].

When PKIs were first developed as drug candidates during the late 1980s and 1990s,
molecular biology-driven reductionist approaches governed drug discovery [22]. Accord-
ing to the reductionist approach, biological systems were decomposed into their molecular
components, the individual targets implicated in diseases were cloned and expressed, and
target-based assays were developed to search for compounds that specifically inhibited or
modulated a given target [22]. Given the strong focus on individual targets, many candi-
date compounds identified using reductionist approaches were originally thought to be
target-specific or -selective, which also applied to imatinib and other PKIs first developed
for cancer therapy [16]. During the early days of PK drug discovery, when kinome screens
and chemoproteomic assays were not yet available, new candidate inhibitors were only
tested in a few assays for other PKs. However, in many instances, it was subsequently dis-
covered that PKIs inhibited multiple PKs and that their clinical efficacy in cancer treatment
depended on simultaneous interference with multiple signaling pathways [11,16].

Corresponding findings were also reported for other targets and active compounds. Be-
ginning in the late 1990s, increasing evidence was accumulating, through high-throughput
screening and target profiling campaigns, that subsets of drugs interacted with multiple
targets and that multi-target (MT) engagement was often decisive for their therapeutic
efficacy. At the same time, the presence of overlapping or interdependent pharmacological
networks was increasingly recognized [23] as pharmacology continued to evolve into a
molecular science. Taken together, the notion of frequent MT activity of drugs on the one
hand and network pharmacology on the other gave rise to the concept of “polypharmacol-
ogy”, formally introduced in 2006 [24], referring to the use of compounds with MT activity
for the treatment of complex multi-factorial diseases and the ensuing pharmacological
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effects [24–26]. Importantly, these MT activities resulted from “multi-specific” ligand–target
interactions that must be clearly distinguished from non-specific effects.

The first generation of PKIs developed for cancer treatment became a paradigm for
polypharmacology in drug discovery [11]. Polypharmacology further evolved over the
next decade and became an established drug discovery strategy [24–28], complementing
or even replacing the development of target-specific compounds in different therapeutic
areas. However, polypharmacology was not always desirable and had a downside because
the MT activity of drugs was also responsible for adverse (side) effects by engaging targets
other than those intended [25,26]. Adverse-effect risk assessment represents a critical issue
in drug development. In the case of life-threatening diseases, adverse effects might be
tolerated. In other situations, such as long-term treatment of chronic diseases, adverse
effects must inevitably be minimized, calling for target-specific drug candidates.

Since most PKIs are directed against the largely conserved ATP site, multi-kinase
activity of PKIs might be anticipated. Therefore, the view of PKI activity changed after the
polypharmacological nature of first-generation clinical PKIs was discovered. Accordingly,
PKIs were generally expected to be active against several PKs. However, this view was
subsequently not supported by large-scale kinome profiling assays of PKIs and chemopro-
teomic studies [29–31], which confirmed the presence of many target-specific or -selective
PKIs in addition to promiscuous inhibitors. For example, Klaeger et al. determined the
cellular targets of 243 clinical PKIs, revealing a variety of activity profiles ranging from
kinase-specific to highly promiscuous compounds [31]. Hence, the multi-kinase activity
of PKIs cannot be generally assumed, and subtle changes in ATP binding, varying PK
plasticity and dynamics, and/or differences in compound binding kinetics likely cause
distinct selectivity vs. promiscuity profiles of many PKIs [1,32].

While it is not unusual that active compounds bind to closely related targets, MT
activity might also involve distantly related or unrelated targets. Although activity against
secondary targets is often responsible for adverse effects, it also provides the basis for drug
repurposing, that is, finding new therapeutic applications for approved drugs [33]. Activity
of PKIs against non-PK targets has also been observed on a case-by-case basis [31,34].
For example, PKIs have been shown to bind to bromodomains [35], and dual PK and
bromodomain inhibitors have been generated for polypharmacology [36]. Bromodomain-
containing proteins bind to acetylated lysine residues in chromatic histone tails and are
involved in the regulation of gene transcription. In addition, PKIs also inhibit functionally
distinct metabolic enzymes such as indolamin-2,3-dioxygenase or NRH:quinone oxidore-
ductase 2 [34]. Furthermore, while G-protein-coupled receptor (GPCR) associated PKs se-
lectively phosphorylate the intracellular domain of GPCRs during signal transduction [37],
PKIs were also found to bind to aminergic GPCRs [38,39].

Given the wealth of PKIs and activity data that have become publicly available, we
carried out a systematic analysis of non-PK targets of PKIs on the basis of curated activity
data, as reported in the following. The data-driven analysis provides a comprehensive
account of secondary PKI targets implicated in polypharmacology and identifies PKIs with
activity against different combinations of PKs and other non-PK targets.

2. Materials and Methods
2.1. Targets, Compounds, and Activity Data

A set of 155,579 human PKIs was obtained from a recently conducted large-scale
analysis of human and mouse PKIs from public sources [21]. These human PKIs were
active against a total of 440 PKs, representing ~85% of the human kinome. For these PKIs,
activity data were curated from ChEMBL [40] (version 31) and BindingDB [41] (accessed
on 20 October 2022). PKs were aggregated on the basis of their UniProt IDs [42]. Only PKIs
with available IC50, Ki, and/or Kd potency measurements and standard activity relationship
“=” were considered. Potency values were recorded in negative decadic logarithmic form.
Preliminary measurements such as “% inhibition” that typically result from single-point
(concentration) screening experiments were not considered to ensure reliability of the target
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annotations. In addition, (assay-dependent) IC50 and (assay-independent) Ki or Kd values
(equilibrium constants) cannot not be directly compared and were separately considered.
This is particularly relevant for IC50 values from PKI assays conducted with varying ATP
concentrations that do not correspond to physiological conditions.

As a threshold for minimal PKI activity, a value of 10 µM was applied (corresponding
to a negative decadic logarithmic (pPot) value of 5). Notably, for PKIs, activity at 10 µM
concentration against PKs is considered rather weak from a medicinal chemistry viewpoint.
However, this threshold was applied, exclusively based on high-confidence measurements,
to ensure consistency with non-PK targets, where micromolar activities should be con-
sidered in MT activity analysis. The consideration of weak PK activities has additional
implications, as further discussed below.

PKIs were aggregated based on non-stereo-sensitive canonical SMILES [43] represen-
tations after standardization, including neutralization, elimination of salts, and removal
of stereochemical information. If multiple potency annotations of the same type were
available for a PKI, they were averaged if all values fell into the same order of magnitude,
while PKIs with inconsistent or contradictory annotations were removed [21].

Analogously to PKs, to identify human non-PK targets of PKIs, the SMILES repre-
sentations of the curated PKI data set were used to systematically query ChEMBL and
BindingDB for additional non-PK activity data. For consistency, the same versions of
ChEMBL and BindingDB as above were used. For ChEMBL, target identifiers were re-
quired to belong to the SINGLE PROTEIN target type and “Homo sapiens” organism. Only
records from direct binding assays (relationship type D) at the highest level of confidence
(score 9) were considered in the presence of standard activity relationship “=” and IC50, Ki,
and/or Kd potency measurement reported in nM (standard unit “nM”). Additionally, PKIs
containing multiple annotations against the same target with inconclusive or contradictory
annotations such as “inactive” or “inconclusive” were discarded. Corresponding criteria
were applied to query BindingDB; that is, only human single-protein chain targets were
considered, and IC50, Ki, and/or Kd with standard relation “=” were required as potency
measurements. For non-PK targets from both databases, a minimal potency of 10 µM was
required to ensure consistency with the analysis of PK activities, as stated above.

To eliminate possible false-positive activity annotations, potential pan assay inter-
ference compounds [44] and compounds violating Eli Lilly Medicinal Chemistry rules
for chemical integrity [45] were removed. In addition, compounds with reported activity
against anti-targets or other undesired targets such as hERG, cytochrome P450 isoforms, or
albumin were omitted.

Non-PK activity annotations of PKIs were also converted into negative decadic loga-
rithmic values (pIC50, pKi, and pKd), which were subsequently averaged if replicates of the
same measurement type were reported. Averaged values with standard deviation larger
than 1 were discarded. For data aggregation, interactions with assay-independent pKi and
pKd measurement were prioritized over pIC50 values, and the highest reported value was
used as the final activity annotation.

For PKIs, a PK promiscuity degree (PK_PD) was calculated as the number of PKs
against which a given PKI was active. Analogously, a non-PK promiscuity degree (Non-
PK_PD) was calculated as the number of non-PK targets a of PKI.

2.2. Protein Classification

Non-PK targets were classified using ChEMBL protein classification levels 1 and 2.
Level 1 comprises the classes enzyme, membrane receptor, epigenetic regulator, ion channel,
transcription factor, transporter, secreted protein, cytosolic other protein, “other”, and “un-
classified”. Enzymes and membrane receptors were further divided according to level 2 into
different target types (for example, reductase, protease, hydrolase, or transferase enzymes).
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2.3. Kinome Tree Mapping and PKI-Based Target Network

Human PKs sharing inhibitors with non-PK targets were mapped onto a phylogenetic
tree representation of the human kinome using KinMap [46].

To assess PKI-based target relationships, a PKI-based target network was generated,
in which PKs and non-PK targets were represented as nodes that were connected by an
edge if two targets shared at least two PKIs. Nodes were scaled in size according to their
degree, that is, the number of edges (relationships with other targets).

3. Results and Discussion
3.1. Data Curation

As detailed above, systematic analysis of PKI targets was based on a recently gen-
erated collection of ~155,000 human PKIs for which high-confidence activity data were
available, and additional confidence criteria were applied. Stringent activity data analysis
was carried out to ensure that the analysis of PKI targets was exclusively based on most
reliable measurements in order to avoid false-positive target annotations. The application
of stringent data confidence criteria might also lead to some false negatives (that is, true
targets for which only preliminary assay results were available). However, such incidences
are generally less likely than false positives and can be tolerated. By contrast, false posi-
tives represent the major source of errors in promiscuity assessment and should strictly
be avoided.

3.2. Protein Kinase Inhibitors with Non-Kinase Targets

On the basis of our large-scale analysis, we identified a total 447 PKIs with activity
against non-PK targets. These 447 PKIs were active with at least 10 µM potency against
a total of 390 human PKs and 210 non-PK targets. Hence, for only ~0.3% of PKIs with
available high-confidence activity data, additional non-PK targets were identified, reflecting
the need for a comprehensive data-driven assessment. However, the total number of PKIs
with non-PKI targets uncovered by our data analysis was larger than we initially anticipated,
providing a sound basis for further analysis.

3.3. Promiscuity Assessment

For the 447 PKIs, the numbers of PK and non-PK targets (PK_PD and Non-PK_PD
values) were determined. Figure 1a shows the results for PK targets. More than half
of these PKIs (256, corresponding to 57.3%) were reported to be active against a single
PK, while 99 (22.1%) were active against two to four PKs. Moreover, 76 PKIs (17%) were
annotated with 10 or more PKs. These PK numbers were on average higher than observed
for the original collection of ~155,000 human PKIs [20]. Hence, while the very different
sample sizes of the original set and the PKIs with non-PK targets precluded a more detailed
statistical comparison, there was a notable enrichment of PKIs with above-average PK
promiscuity among the 447 PKIs. Figure 1b shows the corresponding results for non-PK
targets. Here, a partly different picture emerged. The majority of PKIs (350, 78.3%) were
only reported to be active against a single non-PK target, while 86 (19.2%) were annotated
with two to four non-PK targets. However, only 11 of the 447 PKIs were active against
larger numbers of targets. Thus, PKIs with single non-PK targets clearly dominated the
distribution. Figure 2 shows exemplary PKIs with varying promiscuity against PKs and
other targets.
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3.4. Distribution of Non-Protein Kinase Targets

Non-PK targets were grouped into different target classes. Figure 3 shows the dis-
tribution of PKI targets across these classes. Non-PK targets belonging to nine ChEMBL
classes were detected. Thus, the 447 PKIs were active against a wide variety of non-PKI
targets. With 42% of all targets, enzymes were prevalent among non-PK targets, followed
by membrane receptors (20.8%) and unclassified proteins (often originating from human
genome analysis and being little characterized functionally thus far).
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according to the ChEMBL target classification scheme for non-PK targets of the 447 PKIs. Enzyme
and membrane receptor targets were further divided into different target types (level 2).

Enzyme targets belonged to nine different types. Reductases (28%) and hydrolases
(23%) were most frequently observed, followed by proteases (14%). By contrast, nearly all
(98%) of the membrane receptor targets belonged to the seven transmembrane type 1 (7tm1)
categories, which comprised a variety of (class A) GPCR families. Among others, these
included popular pharmaceutical targets such as serotonin, acetylcholine, opioid, or adren-
ergic receptors.

3.5. Inhibitor–Target Interactions

A PKI-based target network was generated to globally analyze and visualize the
distribution of PKI interactions with PK and non-PK targets. In the network shown in
Figure 4, targets were connected if they shared at least two PKIs. This network contained
342 unique PKs and 69 unique non-PK targets connected by a total of 1120 edges. The
network representation highlighted the prevalence of PKIs with activity against single-PK
and non-PKI targets and also revealed the presence of several non-PKI targets sharing PKIs
with many different PKs, resulting in large blue nodes in the center of the network.
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Target names and the number of connected PKs are reported in the table insert at the bottom.

3.6. Kinase Targets

Next, the distribution of PK targets of PKIs shared with non-PK targets was determined.
In Figure 5, the 390 PK targets of the 447 PKIs were mapped on a phylogenetic tree
representation of the human kinome. The PK targets were widely distributed across the
kinome involving all PK groups. PKs sharing PKIs with largest numbers of non-PK targets
preferentially belonged to the tyrosine PK (TK) group. In addition, individual PKs sharing
large numbers of PKIs with non-PK targets were also found in the tyrosine PK-like (TKL)
group as well as the CMGC and CAMK groups of serine/threonine PKs.

The TK group is the most intensely studied PK group, followed by the CMGC/CAMK
groups. This might explain why most PK targets of PKIs shared with non-PK targets
wereidentified for these groups, as also reported in Table 1.



Biomolecules 2024, 14, 258 9 of 14Biomolecules 2024, 14, x FOR PEER REVIEW 9 of 14 
 

 
Figure 5. Phylogenetic tree mapping of protein kinases sharing inhibitors with non-kinase targets. 
PKs are represented as nodes that are scaled in size and color coded according to the number of 
non-PK targets of shared PKIs. 

In addition, Table 1 reports PKs with largest numbers of PKIs shared with non-PK 
targets. For the vascular endothelial growth factor receptor 2 and epidermal growth factor 
receptor erbB1 PKs (both belonging to the TK group), more than 50 shared PKIs were 
identified. Furthermore, a total of 13 PKs and 38 PKs from different groups shared at least 
30 and 20 PKIs with non-PK targets, respectively. Moreover, 162 PKs shared 10 or more 
PKIs with other targets. Thus, while the majority of shared PKIs was annotated with sin-
glePK and non-PK targets, as discussed above, a large number of PKs shared multiple 
PKIs with different non-PK targets, hence revealing a variety of PKI target combinations.  

Table 1. Top 10 protein kinase targets with largest numbers of inhibitors shared with other targets. 

ChEMBL Target ID Name Group PKIs Non-PK Targets 
279 Vascular endothelial growth factor receptor 2 TK 53 31 
203 Epidermal growth factor receptor erbB1 TK 51 55 
1913 Platelet-derived growth factor receptor beta TK 46 35 
5014 Serine/threonine-protein kinase RIPK2 TKL 45 46 
4630 Serine/threonine-protein kinase Chk1 GAMK 42 11 
1862 Tyrosine-protein kinase ABL TK 41 32 
2973 Rho-associated protein kinase 2 AGC 40 21 
2185 Serine/threonine-protein kinase Aurora-B AUR 38 35 
2041 Tyrosine-protein kinase receptor RET TK 36 36 
4439 TGF-beta receptor type I TKL 35 17 

  

Figure 5. Phylogenetic tree mapping of protein kinases sharing inhibitors with non-kinase targets.
PKs are represented as nodes that are scaled in size and color coded according to the number of
non-PK targets of shared PKIs.

Table 1. Top 10 protein kinase targets with largest numbers of inhibitors shared with other targets.

ChEMBL Target ID Name Group PKIs Non-PK Targets

279 Vascular endothelial growth factor receptor 2 TK 53 31

203 Epidermal growth factor receptor erbB1 TK 51 55

1913 Platelet-derived growth factor receptor beta TK 46 35

5014 Serine/threonine-protein kinase RIPK2 TKL 45 46

4630 Serine/threonine-protein kinase Chk1 GAMK 42 11

1862 Tyrosine-protein kinase ABL TK 41 32

2973 Rho-associated protein kinase 2 AGC 40 21

2185 Serine/threonine-protein kinase Aurora-B AUR 38 35

2041 Tyrosine-protein kinase receptor RET TK 36 36

4439 TGF-beta receptor type I TKL 35 17

In addition, Table 1 reports PKs with largest numbers of PKIs shared with non-PK
targets. For the vascular endothelial growth factor receptor 2 and epidermal growth factor
receptor erbB1 PKs (both belonging to the TK group), more than 50 shared PKIs were
identified. Furthermore, a total of 13 PKs and 38 PKs from different groups shared at
least 30 and 20 PKIs with non-PK targets, respectively. Moreover, 162 PKs shared 10 or
more PKIs with other targets. Thus, while the majority of shared PKIs was annotated with
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singlePK and non-PK targets, as discussed above, a large number of PKs shared multiple
PKIs with different non-PK targets, hence revealing a variety of PKI target combinations.

3.7. Most Frequent Non-Protein Kinase Targets

In light of these findings, the non-PK targets with largest numbers of active PKIs were
determined and found to include a variety of functionally unrelated targets. Table 2 reports
the top 10 non-PK targets that shared 15–32 inhibitors with different PKs. The largest
number of PKIs was identified for acetylcholinesterase (32 PKIs), followed by an as of yet
uncharacterized protein (FLJ45252, 30 PKIs), and basic fibroblast growth factor and histone
deacetylase 6 (each with 21 PKIs). Accordingly, preferred non-PK targets of PKIs included
popular pharmaceutical targets such as acetylcholinesterase for therapeutic intervention
of diseases of the central nervous system; basic fibroblast growth factor, which is a target
considered in a variety of therapeutic areas such as oncology or metabolic diseases; and
histone deacetylase and bromodomain protein isoforms, both of which are key epigenetic
regulators. However, they also included currently unclassified targets. PKIs with activity
against well-established pharmaceutical non-PK targets merit immediate consideration for
polypharmacology. In addition, PKIs with additional activity against novel targets might
aid in exploring their functions.

Table 2. Top 10 non-protein kinase targets with largest numbers of protein kinase inhibitors.

ChEMBL Target ID Name Class PKIs PK Targets

220 Acetylcholinesterase Enzyme 32 45

4105933 Uncharacterized protein FLJ45252 Unclassified 30 353

3107 Basic fibroblast growth factor Secreted protein 21 26

5465 Histone deacetylase 6 Epigenetic regulator 21 3

3959 Quinone reductase 2 Enzyme 18 291

1947 Thyroid hormone receptor beta-1 Transcription factor 18 2

3879831 Ferrochelatase, mitochondrial Enzyme 18 296

1741176 X-box-binding protein 1 Unclassified 17 7

1795185 Bromodomain testis-specific protein Epigenetic regulator 15 179

5378 P_selectin Adhesion 15 33

Another important finding reported in Table 2 was that the PKIs with activity against
preferred non-PK targets were active against largely varying numbers of PKs. For exam-
ple, these included PKIs with apparent PK selectivity (such as the 32 PKIs shared with
acetylcholinesterase and activity against 45 PKs or 18 PKIs shared with thyroid hormone
receptor beta-1 and activity against only two PKs) but also highly promiscuous PKIs (such
as 30 PKIs shared with FLJ45252 and activity against 353 PKs or 18 PKIs shared with
quinone reductase 2 and activity against 291 PKs). Thus, some non-PK targets interacted
with PKIs having high PK promiscuity, whereas others interacted with inhibitors of only a
few PKs. These observations also have immediate relevance for potential use of PKIs in
polypharmacology.

3.8. Drugs with Protein Kinase Activity and Largest Numbers of Non-Protein Kinase Targets

Next, compounds formally qualifying as PKIs according to the micromolar potency
threshold with activity against largest numbers of non-PK targets were identified, as
reported in Table 3.
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Table 3. Top 10 protein kinase inhibitors with largest numbers of other targets.

Compound Name ChEMBL Compound ID Non-PK Targets PKs

Aripiprazole 1112 19 1

-- 461571 16 1

Celecoxib 118 13 1

Paroxetine 490 9 1

Crenolanib 2105728 9 44

Alisertib 483158 7 11

Flavone 275638 6 1

AZD-5438 488436 5 17

Sorafenib 1336 5 59

Erlotinib 553 4 44

The top 10 PKIs with most non-PK targets in Table 3 contained eight drugs. The four
compounds with largest numbers (nine to 19 non-PK targets) included three drugs and
were each only annotated with a single PK. These drugs were the promiscuous aripipra-
zole (with 19 non-PK targets), primarily acting as partial agonist of dopamine D2 and
serotonin 5HT1A receptors and used as an anti-psychotic for the treatment acute manic
bipolar disorders; celecoxib (13 non-PK targets), a cyclooxygenase 2 inhibitor used as an
anti-inflammatory; and paroxetine (nine non-PK targets), a serotonin reuptake inhibitor
marketed as an anti-depressant. The other top-ranked drugs and clinical compounds were
for the most part original PKIs. For example, these chemical entities included crenolanib
(with also nine non-PK targets), an investigational drug for cancer treatment, which was
annotated with 44 PKIs that were similar to other PKIs used in oncology, such as sorafenib
(with five non-PK and 59 PK targets) or erlotinib (four non-PK and 44 PK targets). All
of these drugs with largest numbers of non-PK targets and, in part, large numbers of PK
targets act through polypharmacology. However, depending on the therapeutic application
(for example, diseases of the central nervous system vs. oncology), the balance between
non-PK and PK targets significantly varied.

Furthermore, the comparison in Table 3 also highlights an important aspect inherent in
the analysis, that is, differences between primary and secondary targets among compounds
with activity against PK and non-PK targets. According to our analysis criteria, all drugs in
Table 3 have at least micromolar PK activity and hence qualify as PKIs. However, different
from the drugs with multi-PK activity and PKs as primary targets, the first three drugs
discussed above are primarily active against other targets and have weak secondary activity
against a PK. Hence, one would not classify these drugs as typical PKIs but as drugs with
secondary micromolar PK activity. However, in our analysis, only 40 compounds/drugs
were identified that were active with nanomolar potency against a primary non-PK target
and with micromolar potency against a PK.

3.9. Potency Level Dependence of Protein Kinase Inhibitor–Target Interactions

Finally, we explored how PKI–target interaction might change over increasing com-
pound potency levels. Therefore, interactions between the 447 PKIs and their PK and
non-PK targets were monitored by applying different potency thresholds. The results are
reported in Table 4.

Table 4. Protein kinase inhibitor–target interactions at different potency levels.

pPot ≥ 5 pPot ≥ 6 pPot ≥ 7 pPot ≥ 8

Unique PK targets 390 366 275 146

Unique non-PK targets 210 134 84 37
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Notably, ATP-site-directed PKIs used for cancer treatment are typically required to
have low nanomolar potency [1,2], but this requirement does not necessarily extend to
polypharmacological use of PKIs in other therapeutic areas, especially involving non-PK
targets. At the minimally required potency of 10 µM, 447 active compounds qualified as
PKIs with additional targets. These compounds were active against 390 PKs and 210 non-
PK targets, as reported above. For increasing potency, the number of PK and non-PK
targets generally declined. However, the number of non-PK targets was already reduced
from 210 to 134 at 1 µM potency and further declined to 84 and 37 targets at high and low
nanomolar potency, respectively. By contrast, at 1 µM potency, only a small reduction in
the number of PK targets was observed, and at low nanomolar potency, 146 PKs remained.
Thus, PKI interactions with non-PK targets were often of lower potency than with PK
targets. Notably, non-PK targets such as cell surface proteins mediating cellular contacts
often function on the basis of fast ligand on- and off-rates and transient interactions and
thus have typically intrinsically lower affinity for small molecules. Hence, absolute potency
values cannot be compared for PKs and non-PK targets, and lower potency for secondary
targets might still be relevant for polypharmacology.

4. Conclusions

Over the past three decades, PKIs have become major focal points of drug discovery
in different therapeutic areas and a paradigm for the dependence of drug efficacy on
polypharmacology. Given that MT activity is a prerequisite for polypharmacology, PKIs
binding to the largely conserved ATP site have received much attention because these
compounds were generally expected to have multi-PK activity. However, kinome profiling
assays and chemoproteomics in cells have shown that many ATP-site-directed PKIs have PK
selectivity or even specificity. Other studies have provided evidence that PKIs also interact
with non-PK targets. Such insights are relevant for polypharmacology, especially taking
into consideration that PKI promiscuity is not only desirable for polypharmacology but also
responsible for adverse effects of drugs. While potential activity of PKIs against non-PK
targets is of interest from more than one point of view, a systematic assessment of secondary
targets of PKIs has not been reported thus far. In this work, we carried out a large-scale,
activity data-driven analysis of PK and non-PK targets of PKIs. Care was taken to focus
the analysis on high-confidence data to ensure reliability of target assessment. Starting
from a large pool of PKIs, a total of 447 PKIs with activity against PK and non-PK targets
were identified. These PKIs were active across the human kinome and against a variety of
non-PK targets from different classes. PKI–target interactions were systematically analyzed,
highly variable activity profiles were detected for these PKIs, and preferred targets were
identified. Overall, PKIs with activity against non-PK targets displayed a much wider
target distribution than anticipated. In light of these findings, PKIs with activity against
PK/non-PK target combinations of interest can be selected for follow-up investigations.
Therefore, as a part of our study, the 447 compounds with activity against PKs and non-PK
targets and the associated target information have been made freely available.
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