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Purpose: To establish a deep learning model (DLM) for blink analysis, and investigate
whether blink video frame sampling rate influences the accuracy of analysis.

Methods: This case-controlled study recruited 50 dry eye disease (DED) participants
and 50 normal subjects. Blink videos recorded by a Keratograph 5M, symptomquestion-
naires, and ocular surface assessmentswere collected. After processing the blink images
as datasets, further training and evaluation of DLM was performed. Blink videos of 30
frames per second (FPS) under white light, eight FPS extracted from white light videos,
and eight FPS under infrared light were processed by DLM to generate blink profiles,
allowing comparison of blink parameters, and their associationwithDED symptoms and
signs.

Results: The blink parameters based on 30 FPS video presented higher sensitivity and
accuracy than thosebasedoneight FPS. The average relative interpalpebral height (IPH),
the frequency and proportion of incomplete blinking (IB) were much higher in DED
participants than in normal controls (P < 0.001). The IB frequency was closely associ-
ated with DED symptoms and signs (|R| ≥ 0.195, P ≤ 0.048), as was IB proportion and
the average IPH (R ≥ 0.202, P ≤ 0.042).

Conclusions: DLM is a powerful tool for analyzing blink videos with high accuracy and
sensitivity, and a frame rate ≥ 30 FPS is recommended. The IB frequency is indicative of
DED.

Translational Relevance: The system of DLM-based blink analysis is of great potential
for the assessment of IB and diagnosis of DED.
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Introduction

Blinks, defined as rapid eyelid closing and opening
movements, serve to spread and distribute the tear
film components over the ocular surface to maintain
its homeostasis.1 When a complete blink occurs, the
central upper and lower eyelidmargins overlap, causing
the fusion and mixing of the upper and lower tear
menisci, and then the tear film is distributed to the
whole ocular surface with the upward movement
of the upper eyelid.2 Blinking is triggered mainly
by contraction of the orbicularis oculi, and is a
complicated process regulated by diverse endogenous
and exogenous stimuli including age, demographics,
fatigue, cognition, mood, visual activities and neuro-
logical conditions.1,3–6 Any disturbance to the neural or
muscular activity of the eyelid causes abnormal blinks,
which can lead to ocular surface diseases such as dry
eye disease (DED).

Previous reports found that increased incomplete
blinking (IB) and reduced blink rate may induce tear
film instability and cause evaporative DED.7–9 IB has
been associated with meibomian gland dysfunction via
the purported association between orbicularis oculi
muscle movements and lipid secretion from the meibo-
mian glands during blinking.10 Diagnostic thresholds
for IB have not been clearly defined in the literature,
although it has been reported that around 18% of
blinks involve the descending eyelid covering less than
two thirds of the cornea, in normal subjects.11 McMon-
nies et al.12 hypothesized that IB fails to connect the
tear menisci of the upper and inferior eyelids, and
to redistribute the tear film over the entire ocular
surface. The area without timely coverage by the tear
film would encounter extended exposure and evapo-
ration, resulting in tear hyperosmolarity and epithelial
insult.12 Incomplete blinking has increasingly become
recognized as a potential trigger for DED,13–15 so it
is relevant and important to establish an efficient and
accurate technique for analyzing the blink.

High-speed cameras or devices such as Lipiview
(Johnson & Johnson Vision, Jacksonville, FL, USA)
are necessary for blink analysis,16,17 because a blink
is normally accomplished within 100 ms.18 However,
analysis of high-speed videography is time-consuming
and computationally intensive, especially if thousands
of shots are involved. Current systems like Lipiview,
which can generate a blink profile from a 20-second
video, is too short for an accurate analysis and too
costly to be implemented widely.4,19 The effect of
imaging frame rate on the analysis of blink pattern has
not previously been reported. This is relevant because
the recording frame rate varies across different devices.

The purpose of the current study was thus to estab-
lish an efficient, precise, and low-cost system for blink
recording and analysis and to study the influence of
sampling with different frame rates on the results of
blink analysis.

Deep learning is a form of artificial intelligence,
using an array of new techniques to identify data-
intensive patterns from audiovisual materials, that has
made breakthroughs in biology and medicine.20,21 It
is used in ophthalmology to screen retinal images
and identify diabetic retinopathy, glaucoma, and age-
related macular degeneration with high sensitivity and
specificity.22,23 For the first time, we have trained and
validated a deep learning model (DLM) to analyze
blink videos in DED participants, to demonstrate the
impact of video frame rates on the quality of blink
analysis, and to evaluate the association between blink
parameters and DED symptoms and signs.

Methods

Subjects and Data Acquisition

This prospective case-controlled clinical study
followed the tenets of the Declaration of Helsinki
and was approved by the institutional research ethics
committee of the Eye Hospital of Wenzhou Medical
University (2019-216-k-193). Written consent to
participate in the study was obtained from every
participant.

Fifty DED and 50 healthy participants more than
18 years old were recruited from Lucheng district,
Wenzhou City, Zhejiang Province. Diagnostic crite-
ria of DED were based on the Diagnostic Method-
ology report of the Tear Film and Ocular Surface
Society’s second Dry Eye Workshop, TFOS DEWS
II: (1) Ocular Surface Disease Index (OSDI) score ≥
13 or 5-Item Dry Eye Questionnaire (DEQ-5) score
≥ 6; (2) at least one of the following markers, includ-
ing noninvasive tear film breakup time (NIBUT) < 10
seconds, osmolarity ≥ 308 mOsm/L in either eye or
interocular difference > 8 mOsm/L, ocular staining >

5 corneal spots or > 9 conjunctival spots, and lid wiper
epitheliopathy ≥ 2 mm length and ≥ 25% width.24 For
the purpose of defining a sensitive threshold value for
IB, participants with mild-to-moderate DED (OSDI ≥
13, corneal staining < 7, or NIBUT between five and
10 seconds) were enrolled. Exclusion criteria included
irregular lid margins, ptosis, lagophthalmos, blephar-
itis, previous eye infection, active ocular allergies,
Sjogren syndrome, severe meibomian gland dysfunc-
tion, glaucoma, retinal pathologies, contact lens wear
history, ocular surgery history, use of eyedrops (except



Impact of Incomplete Blinking in Dry Eye Disease TVST | March 2022 | Vol. 11 | No. 3 | Article 38 | 3

for preservative-free artificial tears more than four
hours before examination), systemic medication, and
pregnancy.

All the examinations were conducted by the same
doctor (W.H.), following an identical procedure and
order, as follows, with a five-minute break between
tests. OSDI and DEQ-5 questionnaires were assessed
first. Then a one-minute blink video was collected
from the right eye of every participant using the
Keratograph 5M (K5M; Oculus Optikgeräte GmbH,
Wetzlar, Germany). The participants were unaware of
the nature of the recording until it finished. Recording
conditions were set as follows: Placido white 40, inner
ring 50, fixation 20 in illumination, 0.5 magnification,
high frame rate (30 frames per second [FPS]) and B/W
(bright white light of 300 lux) mode. The room illumi-
nation was 100 lux, controlled by an adjustable light-
emitting diode. Another one-minute blink video under
infrared light within the K5M tear meniscus mode was
also recorded on the right eye; however, the frame rate
under this illumination was fixed at eight FPS. Other
ocular surface evaluations except tear film osmolarity
were performed only on the right eye of participant
after recording. Tear meniscus height (TMH) and first
NIBUT were performed using the K5M. TMH was
measured from an infrared image taken at magnifica-
tion ×1. An average of three measurements of tear
meniscus directly below the pupil area on the lower
eyelid were recorded for analysis. The automated first
NIBUTmeasurement corresponds to the time until the
first distortion appeared on the tear film reflection of
the Placido disc, after participants blinked twice, and
three measurements were averaged. After a five-minute
break to allow any reflex tearing to subside, tear film
osmolarity was evaluated with a clinical osmometer
(TearLabCorporation, SanDiego, CA,USA). A 50 nL
tear sample was collected from the outer one third of
the lower lid tear meniscus of each eye in turn. Ocular
surface staining was assessed under slit lamp biomi-
croscopy with 2% sodium fluorescein and 1% lissamine
green, respectively. According to the Oxford Grading
System, staining was graded from 0–5 for five areas
of the cornea and six conjunctival areas.25 Finally, the
proportion of lost meibomian glands of upper and
lower lids of right eyes was graded, according to Pult’s
meiboscale, from infrared meibography images from
the K5M.26 And patients scored higher than three were
excluded as severe meibomian gland dysfunction.

Data Preprocessing

To establish a training dataset for DLM, each frame
of the blink videos was extracted by Adobe Premiere
6.0. The model was used to identify the location of

Figure1. Imageprocessing fromanoriginal image toa labeledone.
(A) An original image extracted from the blink video. (B) A manually
labeled image filling the exposed interpalpebral zone with white
color and remaining area with black.

Figure2. Anexampleof image resizing. (A)A340*256pixels image.
(B) A 512*512 resized image for training based on A.

the eyelid in every frame and distinguish the exposed
area of palpebral fissure automatically, and its identi-
fication accuracy was based on manual annotations
for all cases. The interpalpebral zone was annotated
by a single investigator (W.L.) using ImageJ software
(National Institutes of Health, Laboratory of Optical
and Computational Instrumentation, University of
Wisconsin-Madison, Madison, WI, USA). The origi-
nal image and its manual annotation were resized to
512*512 pixels using a nearest neighbor Interpolation
scheme in the Python ImageLibrary (version 6.2.0) and
then packed as a single set for model training (Figs. 1
and 2). A total of 1019 image sets were collected and
randomly divided into three disjoint subsets at a ratio
of 8:1:1 for training, validation, and testing purposes,
respectively. The infrared light recording model in
K5M is fixed to a low frame rate of eight FPS, so
we selected B/W mode with a higher rate of 30 FPS,
and eight FPS videos were extracted from 30 FPS ones
using a python script to enable comparison of white
and infrared conditions at an equivalent frame rate.

Computerized Segmentation Model

A U-Net model based on convolutional neural
network was used in this study. The first step in the
machine learning was the down-sample path which
continuously reduces the pixels of the original image
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Figure 3. Flow chart of the proposed U-Netmodel for segmenting the exposed palpebral fissure. The down-sample and up-sample proce-
dures were repeated five times.

and extracts the features for segmentation. Then an
up-sampled path was devised based on the features
identified in the former procedure to up-sample the
low-resolution map back to the resolution of the origi-
nal input image. The final step involved combining
the features from the previous procedures for accurate
localization of the eyelids (Fig. 3). This model was
implemented using python language (version 3.7.4)
and Keras library (version 2.1.6) on a PC equipped
with GeForce RTX 2080 Ti.

Model Training

To train the U-Net model, the dice similarity
coefficient (DSC) was used as a loss function and
given by

DSC = 2
∑

� aibi∑
� a2i + ∑

� b2i
(1)

where ai and bi denote the results of pixel i obtained
by a given segmentation method and manual annota-
tion, respectively. � is the image domain. The U-Net
was optimized bymaximizingDSC using the stochastic
gradient descent algorithm with an initial learning rate
of 0.01 and a momentum of 0.9. The learning rate was
reduced by a factor of 0.1 every 20 epochs. The batch
size and epoch were assigned to 4 and 100, respec-
tively, for the network training. An early stopping
scheme was activated if the DSC did not improve for
adjacent 20 epochs. During the training, the images
were augmented on-the-fly using the imgaug library
(version 0.4.0) to improve the performance of the U-
Net leveraging different operations, including random
flipping along the vertical axes, translation by −10%
to 10% per axis, rotation from −20 to 20 in degrees,
and scaling from 0.9 to 1.1. The training codes and
dataset are available on request. Once we obtained the
trainedmodel, we can use it to process an unseen frame
image from blink videos in a very short time (about one
second).

Table 1. The Performance of the U-Net on the Testing Images in Terms of theMean± Standard Deviation of DSC,
IOU, BAC, and SEN

Dataset DSC IOU BAC SEN

30 FPS B/W 0.9251 ± 0.1671 0.8868 ± 0.1703 0.9587 ± 0.0819 0.9938 ± 0.0063
8 FPS infrared 0.9469 ± 0.0604 0.9046 ± 0.0958 0.9748 ± 0.0185 0.9772 ± 0.0294

A DSC > 90% was considered reflective of a reliable model.
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Figure 4. Screenshots from analyzed videos showing how blinks
were detected. The interpalpebral zone was assigned a green color
and the IPH denoted by the blue line. The blue line altered during the
course of a blink (A, B and C), decreasing to zero if the eye closed
completely.

Figure 5. Blink profiles generated by the deep learning model from a white light 30 FPS videos and the extracted 8 FPS ones. The red line
represents the base IPH and red stars mark the blinks in the video. The X-axis represents the video frames and Y-axis represents the ratio of
IPH to the total height of the image (512 pixels). (A and C) The 30 FPS and eight FPS blink profiles from a DED patient. (B and D) The 30 FPS
and eight FPS blink profiles from a normal control.

Performance Assessment

We validated the performance of the U-Net on
the testing images using the DSC, intersection over
union (IOU), balanced accuracy (BAC), and sensitiv-
ity (SEN).

IOU =
∑

� aibi∑
�

(
a2i + b2i − aibi

) (2)

BAC = 1
2
(SEN + SPE ) (3)

SEN = T p
T p+ Fn

(4)

where Tp, Tn, Fp, and Fn denote true-positive, true-
negative, false-positive, and false-negative, respectively.
These performance metrics take values ranging from 0
to 1, with a larger value denoting better performance
(Table 1). The DSC of a model over 90% was consid-
ered reliable.

Finally a blink profile based on the relative inter-
palpebral height (IPH) was generated with the estab-
lished DLM. If the minimal IPH during any one blink
within the one minute was larger than 30% of the
maximal IPH, it was determined as an incomplete
blinking (Fig. 4). Blink parameters including blink
frequency, IB frequency, and IB proportion were calcu-
lated from the profile (Fig. 5), and the average relative
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IPH was calculated as the mean of the minimal IPH
across all blinks.

Statistical Analysis

Statistical analysis was performed with SPSS
version 19.0 (SPSS, Inc., Chicago, IL, USA). Data
normality was tested by the Kolmogorov-Smirnov
test (P > 0.05). For normally distributed data, a
paired t-test was performed to compare the blink
parameters between the 30 FPS, extracted eight FPS
and eight FPS infrared videos, and independent
t-test for comparison between DED participants and
normal controls. For discrete data including ocular
surface staining, meiboscale score and OSDI/DEQ-5,
Mann-Whitney U testing was performed. Pearson
rank correlation analysis was conducted to assess the
relationship between blink values and DED param-
eters for normally distributed data, and Spearman’s
rank correlation for non-normally distributed data.
All tests were two-tailed and a P value < 0.05 was
considered statistically significant.

Results

A total of 100 eyes from 100 subjects (50 female
and 50 male; mean age, 35 ± 10 years) were recruited.
Participants with DED presented higher OSDI and
DEQ-5 scores than the normal controls, with a differ-
ence of 13.75 ± 2.65 (P < 0.001) and 4.39 ± 0.71 (P <

0.001), respectively. TMH (0.22 ± 0.09 mm vs. 0.28 ±
0.13 mm, P = 0.008) and NIBUT (9.96 ± 5.61 seconds
vs. 12.54 ± 6.05 seconds, P = 0.029) were significantly
lower in participants with DED, while conjunctival
lissamine green staining (CLGS) score (median 0.5 vs.
0.25,P< 0.001) wasmuch higher. No significant differ-
ences were found in bulbar hyperemia, tear osmolar-
ity, corneal staining or meiboscale grading between
the two groups. Demographic information and clinical
outcomes are presented in Supplementary Table S1.

The blink profiles generated by DLM varied across
the 3 video settings. The average IPH was much lower
in the 30 FPS video than in the 8 FPS extracted or
infrared videos (P < 0.001) (Fig. 6A, Table 2). The

Figure 6. The comparison of the blink parameters between 30 FPS video and eight FPS (extracted or infrared) ones by DLM analysis.
(A) The average relative IPH wasmuch lower in the 30 FPS video (P< 0.001). (B) The frequency of blinks was very similar in the three groups.
(C, D) IB frequency and proportion of were significantly lower in the 30 FPS video (P < 0.001).
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Table 2. The Comparison of the Blink Parameters Between 30 FPS Video and Eight FPS (Extracted or Infrared)
Videos by DLM Analysis

Blink Parameters 30 FPS Videos 8 FPS Videos (Extracted) 8 FPS Videos (Infrared)

Average relative IPH (%) 16.96 ± 13.77% 30.83 ± 14.99%** 30.02 ± 17.22%**

Frequency of blinks (min−1) 16 (9.25–25) 16 (9.25–25) 16 (9–25.75)
IB frequency (min−1) 2 (0.25–6) 7 (3–12)** 6 (2–12)**

IB proportion (%) 21.19 ± 22.99% 47.60 ± 24.26%** 45.22 ± 29.17%**

**P < 0.001 when the blink parameters of eight FPS videos (extracted or infrared) compared with those of 30 FPS video.

frequency of blinks was nearly the same in the 3
settings, however the frequency and proportion of IB
were significantly lower in the 30 FPS video (P< 0.001)
(Fig. 6B–D, Table 2). These results demonstrated that
the sensitivity to detect the IPH and the IBwas better in
higher FPS video, while the illumination mode, either
B/W or infrared, with the same FPS, presented little
difference.

When comparing the blink parameters of the DED
participants and normal subjects, the 30 FPS video
shows that the average relative IPH was 22.35% ±
15.27% in the DED group and 12.64% ± 10.29% in the

normal control group, with a significant mean differ-
ence of 9.70% ± 2.55% (P < 0.001); Although the
frequency of blinks was similar in the two groups, the
frequency and proportion of IB were much higher in
the DED group, with a difference of 2.79% ± 0.83%
and 18.00% ± 4.27%, respectively (P < 0.001). The
eight FPS extracted or infrared videos captured less
difference in the average relative IPH, IB frequency and
proportion (Fig. 7).

Among the 4 blink parameters using the 30 FPS
model, the IB frequency demonstrated the strongest
correlation with the DED parameters including TMH,

Figure 7. The comparison of the blink parameters between DED participants and normal subjects. (A-D) The 30 FPS video shows that the
average relative IPH, the frequency and proportion of IB were much higher in the DED group (P < 0.001), although the frequency of blinks
was similar. The eight FPS extracted or infrared videos captured less difference in the blink parameters.
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Figure 8. The correlations between the frequency of incomplete blinking and DED parameters using the 30 FPS video. The IB frequency
demonstrated significant correlations with a number of DED parameters including the TMH, NIBUT, tear osmolarity, conjunctival redness,
CLGS, and OSDI (|R| ≥ 0.195, P ≤ 0.048).

Table 3. The Correlations Between DED Parameters and IB Parameters (IB Frequency, IB Proportion, and Average
Relative IPH) Derived From Video Recorded at 30 FPS

30 FPS IB Frequency R, P IB Proportion R, P IPH R, P

TMH −0.195, 0.048 NS NS
NIBUT −0.230, 0.021 NS NS
Tear osmolarity 0.311, 0.016 NS NS
CLGS 0.364, <0.001 0.301, 0.002 0.288, 0.004
OSDI 0.304, 0.002 0.205, 0.038 0.258, 0.009
DEQ-5 NS 0.214, 0.030 0.202, 0.042

NIBUT, tear osmolarity, CLGS, and OSDI (|R| ≥
0.195, P ≤ 0.048) (Fig. 8, Table 3). The average relative
IPH and IB proportion were both significantly associ-
ated with CLGS, OSDI and DEQ-5 score (R ≥ 0.202,
P ≤ 0.042) (Table 3). Among the DED parameters,
CLGS and OSDI exhibited stronger correlation to
blink parameters including IB frequency, IB propor-
tion and average relative IPH (R ≥ 0.205, P ≤ 0.038),
while the blink results determined from the 8 FPS
extracted or infrared videos were less well correlated
with the DED parameters (Supplementary Fig. S1).

Discussion

In this study, we used DLM to analyze blink videos
and found that compared with eight FPS videos,

30 FPS ones offer higher accuracy in detecting IB,
which is a sensitive indicator of DED.13 Blink analy-
sis plays an important role in facilitating the diagnosis
and treatment of DED,17,27–29 and DLM is an efficient
tool to analyze the blink video and produce accurate
results. DLM can detect the lowest IPH of blinks and
generate a blink profile, which demonstrates valuable
information in regard to the whole blink process. In
addition, DLM achieved relatively lower accuracy on
the 30 FPS images than on the 8 FPS images (P <

0.05). This may be due to the fact that (1) the 30 FPS
videos had the potential to capture more frame images
to depict the movement of the eyelids and thereafter
there are more palpebral fissures with small areas in
the captured images. This can largely reduce the perfor-
mance of DLM, as verified by previous studies.30–32 (2)
The 30FPS images often containmoremotion artifacts
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in a blink cycle, thus making eyelid boundaries very
fuzzy and hindering the performance of DLM.

In the study by Wang et al.,13 the blink video was
recorded at 8 FPS under infrared light, which meant
only two or three frames were recorded during a single
blink.13 This led to a risk that the lowest IPH in blinks
might be missed and inaccurate blinking results could
be produced. In this study, we illustrated that 8 FPS
(extracted and infrared) videos produce significantly
higher levels of IPH, as well as higher frequency and
proportion of incomplete blinking compared to that
derived from 30 FPS videos from the same partici-
pants. It was possible that some complete blinks were
misjudged as incomplete, when the lowest IPH was
lost in 8 FPS videos. Therefore a higher frame rate is
recommended formore reliable blink analysis. Lipiview
provides a higher recording rate of 60 FPS; however,
the flashing light used to detect the lipid layer thick-
ness would seem likely to interfere the blink process
and the recording time is limited to 20 seconds. The
Keratograph 5M provides a maximal frame rate of 30
FPS; nevertheless the B/W recording condition, with
an illuminance of 300 lux, is likely less interfering than
the strobe light and the recording time is unlimited.
Although infrared light, which is not visible to the
patient, may a better choice to promote the capture
of truly spontaneous blinking, more time is required
with this light source to identify the eyelid movements,
which is the reason for a low recording frame rate.33
Further research is warranted to determine the lowest
luminance of white light that permits accurate blink
data to be obtained from a recording frame rate of 30
FPS, perhaps further optimizing recording conditions.

The current results found that the frequency of
incomplete blinking was associated with DED in most
of the diagnostic tests compared to normal subjects,
suggesting that IB may be a key metric to consider
in DED diagnosis and treatment. It is consistent
with previous results that revealed IB as an indica-
tor of abnormal tear film parameters and DED.13,17
IB proportion and average IPH also correlate with
DED parameters, which can be used as evidence of
accurate blink analysis. Our results demonstrated that
TMH, first NIBUT, tear osmolarity, CLGS and OSDI
were statistically associated with the IB frequency,
in mild-to-moderate DED participants. When the IB
frequency increases, the tear film becomes unstable and
tear evaporation increases, resulting in tear hyperos-
molarity, which then primes oxidative injury in ocular
surface, NLRP3 inflammation activation and subse-
quent inflammatory cytokines (interleukin [IL]-1, IL-
18) release.34 Mitogen-activated protein kinases are
also activated, which drives the secretion of tumor
necrosis factor-alpha, and IL-6.35 This inflamma-

tory environment prompts further immune responses,
which lead to the breakdown of the corneal and
conjunctival epithelial barrier,36 resulting in manifest
CLGS. Interestingly the corneal fluorescein staining
did not show a difference between the DED and
normal participants, possibly because the DED partic-
ipants enrolled in the study were of mild-to-moderate
DED severity, and conjunctival and lid wiper epithelial
breakdown is recognized to precede that of the corneal
epithelium.37,38

Although IB is now recognized as a promising
indicator of DED, clinical assessment of IB is restricted
because it is nonautomatic. The current study estab-
lished a reliable and automatic blink analysis system,
using DLM to analyze 30 FPS blink videos. It is a
practical system for clinical application since it can
analyze a one-minute blink video with the widely-used
Keratograph 5M, in around 100 seconds. Although
videos of > 30 FPS were not tested in the current
study, the significant differences in blink parame-
ters between mild-to-moderate DED participants and
normal subjects indicated that a 30 FPS video appears
sufficient to detect blink abnormities in early stages of
DED. IB frequency is indicative of DED, and exposure
≥30% IPH is the suggested threshold value for defining
IB in 30 FPS videos, based on its ability to discrimi-
nate mild to moderate DED participants and normal
subjects. Whether this cutoff varies according to video
frame rate is unknown and would require further
controlled studies to establish optimal thresholds.

Conclusions

IB frequency is confirmed to correlate with DED
symptoms and signs. A blink analysis model that uses
DLM to generate a blink profile was developed in
the current study, and it is of great potential to be
implanted in K5M and provide a novel method in the
assessment of IB and diagnosis of DED. And blink
videos of 30 FPS provide more accurate and sensitive
information than those of eight FPS.
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