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A B S T R A C T   

Glioma stem cells (GSCs) remodel their tumor microenvironment to sustain a supportive niche. Identification and 
stratification of stemness related characteristics in patients with glioma might aid in the diagnosis and treatment 
of the disease. In this study, we calculated the mRNA stemness index in bulk and single-cell RNA-sequencing 
datasets using machine learning methods and investigated the correlation between stemness and clinicopatho-
logical characteristics. A glioma stemness-associated score (GSScore) was constructed using multivariate Cox 
regression analysis. We also generated a GSC cell line derived from a patient diagnosed with glioma and used 
glioma cell lines to validate the performance of the GSScore in predicting chemotherapeutic responses. Differ-
entially expressed genes (DEGs) between GSCs with high and low GSScores were used to cluster lower-grade 
glioma (LGG) samples into three stemness subtypes. Differences in clinicopathological characteristics, 
including survival, copy number variations, mutations, tumor microenvironment, and immune and chemo-
therapeutic responses, among the three LGG stemness-associated subtypes were identified. Using machine 
learning methods, we further identified genes as subtype predictors and validated their performance using the 
CGGA datasets. In the current study, we identified a GSScore that correlated with LGG chemotherapeutic 
response. Through the score, we also identified a novel classification of the LGG subtype and associated subtype 
predictors, which might facilitate the development of precision therapy.   

1. Introduction 

Gliomas are the most common primary malignancy of the central 
nervous system. They are commonly derived from neuroglial stem or 
progenitor cells and have an incidence rate of 6.6 per 100,000 person 
[1]. The 2016 World Health Organization (WHO) glioma classification 
incorporated molecular biomarkers and histological features into an 
integrated diagnosis to better define glioma entities[2]. Lower-grade 
gliomas (LGGs) present highly variable clinical outcomes, with a me-
dian overall survival (OS) of 78.1 months[3,4]. Mutations in IDH, TP53, 
ATRX and 1p/19q codeletion are implicated in the prognosis of LGG. 
Current treatment methods include maximal surgical resection, con-
current chemoradiotherapy, adjuvant temozolomide (TMZ) therapy, 
and tumor treating fields, if available[5]. The identification of 

diagnostic and prognostic markers and risk factors is a trend in glioma 
research and may pave the way toward precision medicine[3,6,7]. 

Cancer stem cells (CSCs) possess self-renewal and differentiation 
abilities[8]. These cells are more likely to be preserved as small pop-
ulations and generate differentiated progeny that constitute the tumor 
mass. Moreover, CSCs are more resistant to existing anticancer thera-
pies, which is consistent with their role in relapse after therapy[9]. 
Glioma stem cells (GSCs) are a subpopulation of glioma cells with CSC 
characteristics, such as self-renewal, radio-chemoresistance, and drug 
resistance[10,11]. Functionally identified GSC markers include CD133, 
CD44, SSEA1, L1CAM, CD49f, A2B5, PDGFRA, and EGFR[11]. Recently, 
new therapeutic strategies targeting GSCs have been studied in depth, 
including tumor treating fields, antiangiogenesis therapy, and immu-
notherapy[4,12]. Inflammatory corpuscles, macrophages, and 
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cytokines, which comprise the tumor microenvironment (TME), play a 
crucial role in tumor initiation and progression[13]. GSCs typically 
reside in TME niches exposed to harsh conditions, such as hypoxia, 
acidic stress, and/or nutrient restriction. Conversely, GSCs engage in 
complex crosstalk with and aggressively remodel their TME to sustain a 
supportive niche[14]. The common presence of both hypoxic conditions 
and GSCs in perinecrotic cells suggests a correlation between the glioma 
microenvironment and cell stemness[15]. 

In this study, we intended to derive a new characterization of LGG 
stemness with better concentration on malignant cells, explore the 
relationship of LGG stemness with TME, and identify gene markers able 
to characterize stemness. Therefore, we used bulk and single-cell RNA- 
sequencing to evaluate the mRNA stemness index (mRNAsi)[8,16] of 
patients with LGG and its correlation with clinicopathological charac-
teristics. We then calculated glioma stemness-associated scores 
(GSScores) using multivariate Cox regression analysis and divided The 
Cancer Genome Atlas (TCGA) LGG samples into three subtypes. The 
subtypes showed significantly different prognoses and immune cell in-
filtrations. We further used machine learning methods to identify genes 
important for stemness clustering (Supplementary Fig. S1). A 
patient-derived glioma stem cell (GSC) line and a glioma cell line were 
used to evaluate drug response, demonstrating that the GSScore is pre-
dictive of chemotherapeutic responses in glioma cell lines. 

In conclusion, this work provides a GSScore that predicts chemo-
therapeutic response in glioma cell lines and identifies a novel classifi-
cation of LGG subtypes and associated subtype predictors, which might 
facilitate the development of precision therapy for gliomas. 

2. Materials and methods 

2.1. Data acquisition and processing 

Published bulk RNA sequencing expression and clinical information 
were downloaded from the University of California Santa Cruz (UCSC) 
Xena website (https://xenabrowser.net)[17] and the Chinese Glioma 
Genome Atlas (CGGA) website (http://cgga.org.cn)[18]. The expression 
dataset IDs were TCGA-LGG.htseq_fpkm.tsv, mRNAseq_693, and 
mRNAseq_325 (hereafter referred to as TCGA LGG, CGGA693, and 
CGGA325, respectively). FPKM (fragments per kilobase of transcript per 
million fragments mapped) were transformed into TPM (transcripts per 
million) values using the formula TPM = FPKM

Σ(FPKM)
∗ 106. Genes detected in 

all three datasets were used for downstream analyses. Patients with 
WHO grade II and III gliomas in the datasets were included in the 
analysis. The TCGA LGG, CGGA693, and CGGA325 datasets contained 
495, 420, and 182 samples with complete survival data, respectively, 
which were included in the current study. Copy number variation data 
of LGG patients were downloaded from the TCGA database and pro-
cessed with GISTIC2.0 from the GenePattern website (https://cloud. 
genepattern.org/) to identify significantly amplified or deleted 
genomic regions[19]. An scRNA-seq dataset (GSE103224)[20] con-
taining 17,185 cells from eight patients was downloaded from the GEO 
database. 

2.2. mRNA stemness index derivation 

A one-class logistic regression model based on pluripotent stem cell 
samples (embryonic and induced) from the Progenitor Cell Biology 
Consortium (PCBC) (SynID syn2701943) was used to calculate the 
mRNAsi[8,16]. Spearman correlations were calculated between the 
weight vector of the model and the expression profiles of the samples in 
the TCGA and CGGA datasets. The indices were then mapped to a range 
from 0 to 1 with a linear transformation that subtracted the minimum 
and divided by the Spearman correlation coefficient. 

2.3. Functional and pathway enrichment analysis 

Patients with LGG were divided into high- and low-stemness sub-
groups using the median of the mRNAsi. Differential analysis was per-
formed using the Wilcoxon rank sum test with thresholds of FDR < 0.01 
and |log2FoldChange| > 1.5[21]. Kyoto Encyclopedia of Genes and 
Genomes (KEGG)[22] and Gene Ontology (GO) pathway enrichment 
analyses[23] were performed using the differentially expressed genes 
from the high and low mRNAsi subgroups using the clusterProfiler R 
package[24] with a p-value < 0.05. Gene set variation analysis was 
performed to identify signaling pathway alterations between the two 
mRNAsi subgroups using the GSVA R package[25]. 

2.4. Single-cell RNA-sequencing analysis 

Single-cell RNA-seq data were processed using the Seurat(v 4.3.0) R 
package[26]. Cells with < 200 or > 5000 transcripts were excluded to 
filter out empty droplets and low-quality cells. Cells with > 5% mito-
chondrial genes were excluded because of poor quality[27]. The Nor-
malizeData function in the Seurat R package was then employed to scale 
the raw counts in each cell to 10,000. Log transformation was also 
performed. The FindVariableFeatures function was used to identify 
highly variable genes[26,28,29]. Principal component analysis was 
performed with the top 2000 most variable genes identified and tSNE 
dimensionality reduction was performed with the top 15 principal 
components. Established methods and cell markers were used for cell 
malignancy and cell type annotation[30]. The mRNAsi of single cells 
was calculated using the scCancer R package[31]. Differentially 
expressed genes in high and low mRNAsi malignant cells were identified 
using the DESeq2 R package[32]. Interactions of malignant cells with 
immune cells were inferred using the CellChat R package. 

2.5. Stemness-based classification of LGG patients 

Weighted gene coexpression network analysis (WGCNA) was per-
formed to identify the gene module most correlated with the mRNAsi. 
Pearson correlation coefficient between two genes from the expression 
data was calculated and the similarity matrix was constructed. An ad-
jacency matrix was converted with a soft threshold of 5. The adjacency 
matrix was transformed into a topological matrix by the topological 
overlap metric (TOM). A gene dendrogram was identified by average 
linkage hierarchical clustering. The modules were obtained by Dynamic 
Tree Cut. Genes of the identified module and differentially expressed 
genes from the high and low mRNAsi subgroups of GSE103224 were 
intersected to identify genes responsible for malignant cell stemness. 
Multivariate Cox regression analysis was performed to construct the 
GSScore[33–36]. Differentially expressed genes from the high and low 
GSScore groups were identified using the Wilcoxon rank-sum test with 
thresholds of FDR < 0.01 and log2FoldChange > 1. The Consensu-
sClusterplus function was then used based on the differentially 
expressed genes from the GSScore subgroups to establish a new classi-
fication of LGG patients. Unsupervised consensus clustering was per-
formed by resampling 80% of the data over 1000 iterations. The optimal 
cluster number was determined using CDF curves, the PAC algorithm, 
and a consensus heatmap. 

2.6. Chemotherapeutic response prediction 

The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm 
[37–40] was used to predict the response of the patients to immuno-
therapy in each LGG cluster. The Profiling Relative Inhibition Simulta-
neously in Mixtures (PRISM) dataset[41] contains gene expression 
profiling and drug sensitivity information of different types of cancer 
cell lines. The CERES score[42] measures the essentiality of genes for the 
survival of cancer cell lines. The correlation of GSScores and glioma 
target genes in glioma cell lines was calculated. The OncoPredict R 

H. Zhou et al.                                                                                                                                                                                                                                    

https://xenabrowser.net
http://cgga.org.cn
https://cloud.genepattern.org/
https://cloud.genepattern.org/


Computational and Structural Biotechnology Journal 21 (2023) 3827–3840

3829

package was used to predict the response of patients to chemothera-
peutics, including TMZ[43]. The IC50 of LGG patients was estimated 
using ridge regression by integrating expression profiles from the Ge-
nomics of Drug Sensitivity in Cancer (GDSC2), Cancer Therapeutics 
Response Portal (CTRP2) database (https://www.cancerrxgene.org), 
and LGG samples[44–47]. The area under the dose response curve 
(AUC) is a measure of drug sensitivity, with a lower value indicating a 
higher sensitivity to the drug[46]. 

2.7. Machine learning identification of stemness subtype predictors 

TCGA LGG patients were randomly divided into training and testing 
sets at a ratio of 7:3 using the caret R package. We then divided patients 
with LGG into high and low subgroups based on the median GSScore. 
Differentially expressed genes from the high and low GSScore subgroups 
were used as input for feature selection in LGG sample clustering using 
four machine learning methods. Boruta, support vector machine (SVM), 
extreme gradient boosting (XGBoost), and least absolute shrinkage and 
selection operator (LASSO) were used to select genes of importance. For 
the Boruta function, the confidence level was set to 0.01, and the 
maximal number of importance source runs was set to 1000. In-
tersections of the genes selected by the four methods were used in the 
multivariate logistic regression analysis to construct the stemness sub-
type predictor. We evaluated the performance of the stemness subtype 
predictor using the ROC and precision-recall curves in the training and 
testing sets. 

2.8. Cell culture 

The glioma patient-derived cell coded “GPDC8″ was generated from 
a patient with glioma who underwent surgical resection at the Depart-
ment of Neurosurgery, Xiangya Hospital in 2020. Tumor tissues were 
enzymatically dissociated and cultivated in serum-free NSA culture 
medium, as previously described[48]. The T98G cell line was purchased 
from the Shanghai Cell Bank of the Chinese Academy of Sciences. Cell 
lines were incubated in Dulbecco’s Modified Eagle Medium supple-
mented with 10% fetal bovine serum at 37 ◦C and 5% CO2. 

2.9. Drug application and cell viability assay 

The cells were seeded in 96-well plates at a density of 10,000 cells/ 
well. Dasatinib, TGX-221, and ifosfamide (Selleck Chemicals, TX, USA) 
were applied at different concentrations (0.1, 1, 10, 50, and 100 μmol/L 
for dasatinib; 0.1, 1, 10, and 50 μmol/L for TGX-221; and 0.1, 1, and 10 
μmol/L for ifosfamide). Viability was measured 3 days after drug 
application using the Cell Counting Kit-8 (Cat. No. BA00208, Bioss, 
Beijing). Cell apoptosis was measured 1 day after drug application using 
Annexin V/FITC-PI (C1062S, Beyotime, China). 

2.10. Statistical analysis 

Statistical analysis was performed using R software (version 4.1.1) 
and GraphPad Prism6 (version 6.02). The Wilcoxon rank-sum and 
Kruskal–Wallis tests were used to compare continuous variables in 
multiple groups. Student’s t-test was used to compare continuous vari-
ables in two groups unless otherwise declared. The Wilcoxon rank-sum 
test was more effective in FDR control than other methods in population- 
level RNA-seq studies with large sample sizes, and we used the Wilcoxon 
rank-sum test as appropriate[21]. The Kaplan–Meier curve and 
log-rank test were used to compare survival differences between the 
groups. Two-way analysis of variance was used to compare differences 
in cell lines in response to drugs (alpha=0.05). ROC curves and 
prediction-recall curves were used to assess the predictive value of the 
models. 

3. Results 

3.1. Associations between the stemness index and clinical features 

The mRNAsi[8] was calculated using The Cancer Genome Atlas 
(TCGA) LGG dataset. Correlations between the mRNAsi and clinico-
pathological features were explored (Fig. 1A&B). The mRNAsi was 
ranked according to different clinicopathological subgroups, as shown 
in Fig. 1C. There were no significant differences in the mRNAsi among 
different age and sex subgroups. With regard to cellular heterogeneity, 
we examined the correlation of mRNAsi with four subtypes of glioma 
[49], of which the mesenchymal subtype was strongly associated with 
the cultured astroglial signature, the proneural subtype was highly 
enriched with the oligodendrocytic signature, the classical subtype was 
strongly associated with the murine astrocytic signature, and the neural 
subtype showed associations with oligodendrocytic and astrocytic dif-
ferentiation with an additional enrichment of genes expressed by neu-
rons. The mesenchymal subtype had the lowest mRNAsi value, followed 
by the classical subtype. The neural and proneural subtypes had the 
highest mRNAsi values, with no significant difference between the two 
subgroups. Samples of WHO grade II glioma exhibited higher mRNAsi 
levels than those of WHO grade III glioma (p = 0.024). Patients who 
survived had significantly higher mRNAsi scores than those who didn’t 
(p = 0.0011). Additionally, we assessed the mRNAsi levels of groups of 
patients with different mutations. Patients with mutations in IDH and 
TERT showed significantly higher mRNAsi levels than those without 
(p = 8.5e-12 and p = 0.0072, respectively). Patients with ATRX muta-
tions had significantly lower mRNAsi levels than those without ATRX 
mutations (p = 0.00012). Patients with codeletion of 1p19q 
(p < 2.2e-16) and methylation of the MGMT promoter (p = 3.2e-05) 
also showed significantly higher mRNAsi scores. 

3.2. The mRNAsi is correlated with the overall survival of LGG patients 

Patients were stratified into high and low mRNAsi subgroups based 
on the median mRNAsi value. The overall survival (OS) and progression- 
free survival (PFS) of the different mRNAsi subgroups were analyzed 
using Kaplan–Meier survival analysis (Fig. 2A). The high mRNAsi 
subgroup exhibited significantly longer OS (p = 0.00061) and PFS 
(p < 0.0001) than the low mRNAsi subgroup. Differential expression 
analysis was performed between the two subgroups (Fig. 2B) and 
identified 307 differentially expressed genes (Supplementary Table S1). 
Functional enrichment analyses were performed using the clusterPro-
filer R package. Biological processes, cellular components, and molec-
ular functions identified as significantly enriched in the high mRNAsi 
subgroup are shown in Fig. 2C and included T-cell activation, leukocyte- 
mediated immunity, positive regulation of cytokines, synaptic mem-
branes, collagen-containing extracellular matrix, and extracellular ma-
trix structural constituents. KEGG pathway enrichment analysis 
identified pathways enriched in the high and low mRNAsi subgroups 
(Fig. 2D) including neuroactive ligand–receptor interaction, synaptic 
vesicle cycle, calcium signaling pathway, cytokine-receptor interaction, 
phagosome, etc. 

Next, we compared differences in somatic mutations between the 
two groups and discovered that RYR2, PCLO, CELSR1, CELSR3, and 
RIMBP2 had higher mutation rates in the low mRNAsi subgroup 
(Fig. 2E). Analysis of copy number variations in mRNAsi subgroups 
showed that the low mRNAsi subgroup had deletions in Chr 4, Chr 6, and 
Chr 11, and amplifications in Chr 10 (Fig. 2F). 

3.3. Identification of stemness subtypes in LGG 

We analyzed 17,185 cells from 8 cases in the current study. 
Dimension reduction and unsupervised clustering were performed. 
Principal component analysis was applied to reduce total dimensionality 
(Fig. 3A). The t-Distributed Stochastic Neighbor Embedding (tSNE) 
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analysis identified 19 clusters of single cells (Fig. 3B). We annotated the 
clusters with cell markers validated by other studies[30] (Fig. 3C&D). 
The mRNA stemness indices of LGG malignant single cells were calcu-
lated with the scCancer R package[31] (Fig. 3E). Differential analysis 
was performed between groups of malignant cells with high and low 
mRNAsi levels. We also identified IL6, SPP1, and VEGF signaling path-
ways that showed significant differences in associations between 
high/low mRNAsi cells and monocytes/macrophages or endothelial 
cells (Fig. 3F). Weighted gene coexpression network analysis (WGCNA) 
identified 19 gene modules that were significantly correlated with the 
mRNA stemness index, among which the black module showed the 
highest correlation coefficient (cor = 0.72, p = 7e-67. Fig. 3G&H). 
Genes in the black module (411 genes, Supplementary Table S2) and 

those identified in the differential analysis (456 genes, Supplementary 
Table S3) (Fig. 3I) were intersected to acquire the three genes most 
correlated with the mRNAsi including ITGB4, FDPS, and RRAS. ITGB4 is 
indicated to promote glioma stem cell self-renewal and gliomagenesis 
through a positive feedback loop[50]. These genes may be responsible 
for the stemness index of malignant cells. The GSScores were calculated 
using the two genes ITGB4 and FDPS identified by multivariate Cox 
regression analysis of the three genes. GSScore =

0.001995 ∗ expression(ITGB4) − 0.010649 ∗ expression(FDPS). GSScore 
was used to divide the data into high and low GSScore subgroups. Dif-
ferential expression analysis identified 90 genes with differential 
expression between the high and low GSScore subgroups (FDR < 0.01，| 
log2FoldChange| > 2). 

Fig. 1. The mRNA stemness index (mRNAsi) distribution in different clinicopathological groups. (A) mRNAsi correlation with different clinicopathological features. 
(B) mRNAsi correlation with tumor mutation burden and different gene mutations. (C) mRNAsi distribution in different clinicopathological groups. 
*** p < 0.001, **** p < 0.0001. 
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Fig. 2. Different clinical features of mRNAsi high and low groups. (A) High mRNAsi group showed significantly better OS (upper) and PFS (lower) than low mRNAsi 
group. (B) Heatmap of 307 differentially expressed genes between mRNAsi high and low groups. (C) GO analysis identified biological processes, cellular components, 
and molecular functions in DEGs of mRNAsi high and low groups. (D) KEGG analysis identified pathways differentially enriched between mRNAsi high and low 
groups. (E) Mutated genes different between mRNAsi high and low groups. (F) CNVs and mutations of DEGs in mRNAsi high and low groups. 
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Unsupervised consensus clustering using the expression profiles of 
the 90 differentially expressed genes identified a new cluster of LGG 
patients. The consensus heatmap, relative change in the area under the 
cumulative distribution function (CDF) curve, and proportion of 
ambiguously clustering (PAC) algorithm suggested that the optimal 
number of clusters was three (Fig. 4A-D). Patients with LGG were thus 

clustered into three groups: Cluster 1 (C1), Cluster 2 (C2), and Cluster 3 
(C3). Kaplan-Meier analysis revealed that the three clusters had signif-
icantly different OS times, with Cluster 1 showing the shortest and 
Cluster 3 the longest (p < 0.0001) (Fig. 4E). Pearson’s correlation 
analysis identified a negative correlation between GSScore and mRNAsi 
(Fig. 4F). Gene set variation analysis identified gene sets that were 

Fig. 3. Identification of differentially expressed genes between high and low GSScore subgroups. (A) Principal component analysis plot of GSE103224 dataset. (B) 
tSNE plot of GSE103224 dataset showing 19 clusters. (C) Cell annotations of GSE103224 with established markers. (D) Cell markers expression in different clusters. 
(E) mRNAsi distribution in single cells of GSE103224. (F) Differential cell communications of mRNAsi high and low malignant cells with glioma microenvironment 
compartments. (G) Heatmap of the correlation between mRNAsi and module eigengenes identified with WGCNA. (H) Correlation of genes in black module with 
mRNAsi. (I) Differentially expressed genes identified between GSScore high and low groups. 
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enriched in the three clusters (Fig. 4G). C1 mainly comprises the clas-
sical and mesenchymal subtypes, while C2 and C3 mostly comprise the 
proneural and neural subtypes. The GSVA analysis shows C1 enrichment 
of epithelial mesenchymal transition and hypoxia pathways and C3 
enrichment of synaptic and neurotransmitter associated pathways. The 
significant differences in survival time, subtype composition, and 
pathway enrichment of the three clusters might indicate some common 
biological characteristics in each of the clusters. 

3.4. Stemness subtypes exhibit different clinicopathological characteristics 

Clinicopathological patterns differed among the three stemness 
subtypes. The mRNAsi was significantly different among the three 
clusters, with C1 having the lowest and C3 showing the highest mRNAsi 
scores (p < 2.2e-16). The GSScores of C1 and C2 were significantly 
higher than that of C3 (p < 2.2e-16). C2 included younger patients, 
whereas C3 included elderly patients (p = 4.4e-12) (Fig. 5A). The 

Fig. 4. Identification of three LGG stemness clusters. (A) Consensus clustering matrix for k = 3. (B) CDF curves of the consensus score from k = 2–10. (C) The relative 
change in the area under the curve of CDF from k = 2–10. (D) Heatmap of DEGs between the three clusters. (E) OSs of these three clusters are significantly different. 
(F) Correlation of GSScore and mRNAsi (r = − 0.68, p < 2.2e-16). (G) GSVA analysis identified differentially enriched cell type signatures among the three clusters. 
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Fig. 5. Clinicopathological features of three LGG stemness clusters. (A) mRNAsi, GSScore, and age distribution in the three LGG clusters. (B) Survival status, subtype, 
pathology diagnosis distribution in the three LGG clusters. (C) Mutations in the three clusters. (D) CNVs in the three clusters. (E) TMB, MGMT, IDH, ATRX, TERT 
mutation and 1p19q codeletion status in the three clusters. 
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distributions of OS time, molecular subtype, and pathological diagnosis 
were also different among the clusters (Fig. 5B). Nearly half of the C1 
patients and less than a quarter of the C2 and C3 patients were deceased. 
The proneural subtype accounted for half of the C2 and C3 patients, 
whereas the classical subtype was primarily observed in C1. Somatic 
mutations were also differentially distributed in the three clusters, with 
IDH1 mutations primarily observed in C2 and C3; TP53 and ATRX 
mutations primarily observed in C2 CIC and FUBP1 mutations primarily 
observed in C3; and EGFR and PTEN mutations primarily observed in C1 
(Fig. 5C). Copy number variation analysis revealed a significant increase 
in Chr 7 and loss of Chr 10 in C1 and a significant loss of Chr 1p and Chr 
19q in C3 (Fig. 5D). The tumor mutation burden was significantly 
different among the three clusters (p = 8.9e-08) (Fig. 5E). Unmethy-
lated MGMT was primarily detected in C1. 

3.5. Stemness subtypes harbor distinct tumor immune microenvironment 
(TIME) and immunogenomic patterns 

The tumor immune score, stromal score, and tumor purity were 
calculated using the ESTIMATE algorithm (Fig. 6A). Immune (p = 4.1e- 
13) and stromal (p = 4.7e-09) scores were significantly higher in C1 and 
C2 than in C3. Tumor purity was significantly higher in C3 than in C2 
and C1 (p = 4.5e-05). CIBERSORT was used to identify the proportion of 
immune cells in the three clusters (Fig. 6B). Among all TIME component 
cells, M2 macrophages, monocytes, resting CD4 memory T cells, and 
activated NK cells showed the highest infiltration rates in LGG. Infil-
tration by M2 macrophages, resting CD4 memory T cells, M1 macro-
phages, regulatory T cells, and CD8 T cells was significantly higher in C1 
than in C2 and C3. The infiltration of monocytes, activated NK cells, and 
activated mast cells was significantly higher in C2 than in C1 and C3. 
Naïve CD4 T cells and follicular helper T cells exhibited significantly 
higher infiltration rates in C3 than in C1 or C2. PD1/PDL1/PDL2 and 
CTLA4/CD80/CD86 expression levels were consistently highest in C1 
and were higher in C2 than in C3 (Fig. 6C). The tumor immune 
dysfunction and exclusion (TIDE) algorithm was then used to predict the 
response of patients with LGG to immunotherapy. C2 patients experi-
enced the highest response rate to immunotherapy among the three 
clusters (Fig. 6D). The correlation between immunotherapy response 
and GSScore was also explored; patients responding to immunotherapy 
tended to have higher GSScores (Fig. 6E). The IC50 of TMZ was esti-
mated in the three clusters, demonstrating that C1 and C3 had signifi-
cantly lower IC50 values than C2 (p < 2.2e-16) (Fig. 6F). 

3.6. Machine learning construction and validation of stemness subtype 
predictors 

Four machine learning algorithms, namely, Boruta, support vector 
machine (SVM), extreme gradient boosting (XGBoost), and least abso-
lute shrinkage and selection operator (LASSO), were used to identify 
genes critical for stemness subtype prediction. Boruta, SVM, XGBoost, 
and Lasso identified 152, 17, 70, and 40 genes, respectively (Fig. 7A). 
Seven genes, including TNNT1, KCNH7, CHI3L1, SPOCD1, ITGB4, 
XKR7, and TRIM67, commonly identified by the four algorithms were 
used to construct a stemness subtype predictor using multivariate lo-
gistic regression analysis. TNNT1 has been identified as a potential 
vulnerability or biomarker in diffuse midline glioma[51]. KCNH7 mu-
tation is associated with poor survival in esophageal squamous cell 
carcinoma[52]. CHI3L1 modulates immune suppression in glioblastoma 
[53] and promotes glioma progression[54]. SPOCD1 is upregulated as a 
transcription factor in glioblastoma[55]. ITGB4 is indicated to promote 
glioma stem cell self-renewal and gliomagenesis through a positive 
feedback loop[50]. TRIM67 upregulation induces the blebbing 
morphology of cells, higher cell motility and reduced cell adherence, 
contributing to gliomagenesis[56]. The confusion matrix, receiver 
operating characteristic (ROC), and precision-recall curves were used to 
evaluate the performance of the subtype predictor in the training 

(Fig. 7B&C) and testing datasets (Fig. 7D&E). The accuracies of the 
subtype predictor in the training and testing sets were 0.983 and 0.905, 
respectively. The subtype predictor performed well in clustering sam-
ples of CGGA693 and CGGA325 datasets into three clusters with dif-
ferential prognoses (accuracy for CGGA693 and CGGA325 was 0.878 
and 0.801, respectively). The expression levels of the seven genes in the 
two datasets were consistent, as shown in Fig. 7F&H. The OS of the three 
clusters was evaluated using Kaplan–Meier plots, which revealed that 
the OS of C1 patients was significantly shorter than that of C2 and C3 
patients (Fig. 7G&I). 

3.7. GSScores predict drug targets and chemotherapeutics 

Correlation analysis was performed between drug targets from the 
literature[57] and the GSScore to identify potential therapeutic targets 
with correlation coefficients higher than 0.4 and p < 0.05 (Fig. 8A). The 
CERES method estimates gene-dependency levels from CRISPR–Cas9 
essentiality screens while accounting for the copy number-specific ef-
fect. The correlation between the CERES score of drug targets and the 
GSScore was then calculated to find targets indispensable for cell growth 
(Fig. 8B). We hypothesize that the genes identified in this analysis 
represent putative targets in patients with high GSScores; therapies 
targeting these genes may provide beneficial outcomes for patients. 

Drugs with lower area under the curve (AUC) values in the high 
GSScore subgroup were identified with differential analysis. The Ge-
nomics of Drug Sensitivity in Cancer (GDSC2) and Cancer Therapeutics 
Response Portal (CTRP2) drug response datasets were used to identify 
candidate drugs that showed significantly lower AUC values in the high 
GSScore subgroup. Dasatinib was identified in the GDSC2 dataset as 
having a correlation between the AUC and GSScore < − 0.4, while 
ifosfamide, TGX-221, IC-87114, and fumonisin B1 were similarly iden-
tified in the CTRP2 dataset (Fig. 8C&D). Candidate drugs and their 
corresponding targets were analyzed to identify promising target path-
ways for the high GSScore subgroup. TCR, Wnt, and RTK signaling were 
identified as putative target pathways for the treatment of patients with 
high GSScores (Fig. 8E). We further validated the performance of the 
predicted drugs in vitro using GPDC8 cells with stem-like characteristics 
and T98G glioma cells. Dasatinib, TGX-221, and ifosfamide exhibited 
higher sensitivity in GPDC8 cells than in T98G cells in drug sensitivity 
experiments (Fig. 8F). GPDC8 also showed higher apoptosis rates than 
T98G when treated with dasatinib, TGX-221, or ifosfamide (Fig. 8G). 
Drug response was compared between a cell line lacking stemness 
(T98G) and a corresponding cell line showing high sphere forming 
abilities (GPDC8). As the drugs tested were predicted to be more sen-
sitive to cells with high stemness, the results showing lower cell viability 
in GDPC8 cells than in T98G cells treated with the same concentrations 
of a drug showed the validity of the GSScore in the prediction of drug 
responses, providing novel insights into precision medicine for LGG 
treatment. 

4. Discussion 

In this study, we analyzed the correlation between LGG stemness and 
clinicopathological characteristics. We derived a machine learning- 
based method to distinguish LGG subtypes. The three subtypes identi-
fied were significantly correlated with patient prognosis. We further 
validated its correlation with patient prognosis in CGGA datasets. We 
also derived a GSScore and validated its performance in predicting drug 
responses. 

GSCs can preserve a special TME niche comprising immunocytes, 
arterioles, endothelial cells, pericytes, and other components[12,58,59]. 
GSCs recruit M2 macrophages and induce Treg cell expansion to sup-
press immune responses. Direct contact between GSCs and immunocytes 
can induce the inhibition of immune cell function via PD-L1 mediation 
[60]. Pathways identified in the high mRNAsi subgroup included T cell 
activation, leucocyte-mediated immunity, positive regulation of 
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Fig. 6. Immune characteristics of three LGG stemness clusters. (A) Tumor purity, immune score, stromal score distribution of three LGG clusters. (B) Immune cell 
infiltration of three LGG stemness clusters. (C) Immune checkpoints expression of three LGG stemness clusters. (D) Proportions of responders and non-responders of 
immunotherapy in LGG stemness clusters. (E) GSScores of responders and non-responders to immunotherapy. (F) Different IC50 value of temozolomide in three LGG 
stemness clusters. 
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cytokines, synaptic membranes, collagen-containing extracellular ma-
trix, and extracellular matrix structural constituents. These results sub-
stantiate past findings of GSC recruitment and interactions with 
macrophages and T cells[61–63]. The current study identified high 

expression of multiple immune checkpoints in C1 patients, which 
exhibited the worst prognosis and harbored the highest M2 infiltration, 
corroborating a correlation between stemness and immune suppression. 
Multiple pathways, including the IL6, SPP1, and VEGF signaling 

Fig. 7. Construction and validation of stemness subtype predictor. (A) Venn diagram showing seven genes identified by four machine learning methods. (B) 
Confusion matrix of stemness subtype predictor for the training set. (C) ROC curve and prediction-recall curve of stemness subtype predictor for the training set. (D) 
Confusion matrix of stemness subtype predictor for the testing set. (E) ROC curve and prediction-recall curve of stemness subtype predictor for the testing set. (F) 
Heatmap showing the stemness subtype predictor components expression in CGGA693 dataset. (G) Kaplain-Meier curve showing overall survival in different 
stemness subtypes in CGGA693 dataset. (H) Heatmap showing the stemness subtype predictor components expression in CGGA325 dataset. (I) Kaplain-Meier curve 
showing overall survival in different stemness subtypes in CGGA325 dataset. 
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Fig. 8. GSScore correlations with and prediction of chemotherapeutic drugs. (A) Spearman correlation between drug targets and the GSScore. (B) Spearman cor-
relation between drug target CERES scores and the GSScore. (C&D) GDSC2 and CTRP2 related compounds identified with a negative correlation between the GSScore 
and AUC value. (E) Correlation of drug sensitivity with the GSScore and corresponding drug targets and associated pathways in GDSC2 dataset. (F) Dose-response 
curves of glioma spheroid forming cells GPDC8 and glioma cells T98G treated with dasatinib, TGX-221, and ifosfomide. (G) Cell apoptosis rates of T98G cells were 
significantly lower than GPDC8 stem-like cells when treated with Dasatinib, TGX221, or Ifosfamide at the same concentrations. 
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pathways, were identified to be differentially activated in the in-
teractions of high and low GSScore malignant cells with mono-
cytes/macrophages or endothelial cells. These pathways may be worth 
studying to further understand the interactions of GSCs with the glioma 
TME[64–66]. 

The failure of cancer treatment can be ascribed to metastasis, 
recurrence, heterogeneity, resistance to chemotherapy and radio-
therapy, and immunological approaches in which CSCs are essential 
agents[67]. In addition, many subtypes of GSCs have different charac-
teristics and exhibit complicated responses to therapies, particularly 
chemotherapy. TMZ is currently used as a front-line chemotherapeutic 
agent to treat gliomas[68]. The effectiveness of TMZ varies significantly 
in in-vitro experiments and in the TME[48]. Another study indicated 
that TMZ preferentially depletes GSCs but not the entire population[69]. 
The differences in responses to TMZ in the three clusters identified in 
this study implied differences in stemness. Further research should be 
conducted to explore the mechanisms underlying TMZ responses as they 
relate to stemness. 

Serpin peptidase inhibitor clade H member 1 was found to be highly 
predictive of dasatinib response[70] in glioma. Although dasatinib, as 
an SRC inhibitor, has failed in clinical trials of recurrent glioblastoma 
patients to improve overall survival[71], the current study may provide 
a new angle for dasatinib response improvement through patient strat-
ification. TGX-221 selectively blocks p110beta of the phosphatidylino-
sitol 3-kinase pathway. It has been proven to significantly decrease 
tumor growth in nude mice and transgenic mouse models of prostate 
cancer[72,73]. A study also showed an inhibition of proliferation in 
human glioblastoma cells[74]. Our study corroborates TGX221 in its 
possible role in glioma treatment. Ifosfamide has been utilized in com-
bination with other drugs to treat recurrent glioblastoma and has proven 
to be an option for patients[75]. The current study may provide a new 
perspective for patient selection in ifosfamide treatment of glioma 
patients. 

This study has some limitations. The validation test was performed 
only on the CGGA datasets, and validation of clinic-derived data is 
needed. Examination of the subtypes at the single-cell level may provide 
additional insights. The correlation of the subtypes and GSScores with 
immunotherapy is not discussed in the current manuscript and requires 
more attention in future studies. 

5. Conclusions 

In this study, LGGs were classified into three subtypes with low, 
medium, and high stemness indices. The subtypes showed significantly 
different prognoses and immune cell infiltrations. Subtype predictors 
were identified using machine-learning methods and performed well in 
the validation datasets. Our finding that the GSScore was negatively 
correlated with the stemness index and predicted drug responses pro-
vides a promising method for clinical drug screening. 
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