
AIMS Microbiology, 4(2): 362–376. 

DOI: 10.3934/microbiol.2018.2.362 

Received: 28 February 2018 

Accepted: 22 May 2018 

Published: 31 May 2018 

http://www.aimspress.com/journal/microbiology 

 

Review 

Intracellular proteins moonlighting as bacterial adhesion factors 

Constance Jeffery* 

Department of Biological Sciences, University of Illinois at Chicago, 900 S Ashland Ave, Chicago, 

IL 60607, USA 

* Correspondence: Email: cjeffery@uic.edu; Tel: +13129963168; Fax: +13124132691. 

Abstract: Pathogenic and commensal, or probiotic, bacteria employ adhesins on the cell surface to 

attach to and interact with the host. Dozens of the adhesins that play key roles in binding to host cells 

or extracellular matrix were originally identified as intracellular chaperones or enzymes in glycolysis 

or other central metabolic pathways. Proteins that have two very different functions, often in two 

different subcellular locations, are referred to as moonlighting proteins. The intracellular/surface 

moonlighting proteins do not contain signal sequences for secretion or known sequence motifs for 

binding to the cell surface, so in most cases is not known how these proteins are secreted or how they 

become attached to the cell surface. A secretion system in which a large portion of the pool of each 

protein remains inside the cell while some of the pool of the protein is partitioned to the cell surface 

has not been identified. This may involve a novel version of a known secretion system or it may 

involve a novel secretion system. Understanding the processes by which intracellular/cell surface 

moonlighting proteins are targeted to the cell surface could provide novel protein targets for the 

development of small molecules that block secretion and/or association with the cell surface and 

could serve as lead compounds for the development of novel antibacterial therapeutics. 
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1. Introduction to intracellular proteins that moonlight as bacterial adhesins 

Bacterial adherence factors, also known as adhesins, are proteins on the cell surface that form 

and maintain physical interactions with host cells and tissues. They are important in both health and 

disease as they are needed by pathogens for infection and by commensal or ―good‖ bacteria to 

maintain a symbiotic relationship with the host. Surprisingly, several dozen of these proteins were 

previously identified as ubiquitous intracellular enzymes that have a canonical function in essential 
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cellular processes and are sometimes referred to as ―housekeeping enzymes‖ [1–5]. The first 

intracellular/surface moonlighting protein (ISMP) to be identified was an enzyme in glycolysis, 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which has a second role on the surface of 

pathogenic streptococci [6]. Other intracellular/surface moonlighting proteins include other 

metabolic enzymes that are also widespread in evolution and function in glycolysis, the citric acid 

cycle, or DNA and protein metabolism, for example, phosphoglycerate kinase and enolase. 

Intracellular chaperones (Hsp60/GroEL, Hsp70/DnaK), and protein synthesis elongation factors 

(EF-Tu, EF-G) have also been found to serve as adhesins in bacteria (Table 1). 

In general, moonlighting proteins comprise a subset of multifunctional proteins that perform 

two or more distinct and physiologically relevant biochemical or biophysical functions that are not 

due to gene fusions, multiple RNA splice variants, or pleiotropic effects [1]. The MoonProt Database 

includes information about hundreds of moonlighting proteins for which biochemical or biophysical 

evidence supports the presence of at least two biochemical functions in one polypeptide chain [7]. Of 

these, over 30 types of proteins have one function inside the cell and another function as an adhesin 

on the cell surface. Some are found to moonlight on the surface of multiple species, so there are over 

100 ISMPs. The bacterial ISMPs (Table 1) are found in typical Gram-positive and Gram-negative 

species, as well as mycobacteria, spirochetes, and mycoplasma. 

An ISMP can have different extracellular functions in different species. Enolase converts the 

reversible conversion of 2-phosphoglycerate to phosphoenolpyruvate in the cytoplasm in glycolysis 

and gluconeogenesis and has been found to have many moonlighting functions in addition to being 

an adhesin on the bacterial cell surface. As a bacterial adhesin, enolase binds host proteins in the 

extracellular matrix, mucin, and other proteins and plays an important role in infection of 

mammalian and avian hosts [8–24] (Figure 1). Some ISMPs also have third (or more) functions as 

secreted soluble proteins, in many cases with roles in modulation of the immune system [2,3]. 

2. Importance in health and disease 

In pathogenic bacteria the extracellular function often plays a key role in infection or virulence [2,3]. 

ISMPs have been found to be involved in aiding the bacteria to bind directly to host cells, including 

fructose-1,6-bisphosphate aldolase from Neisseria meningitidis [25] and Streptococcus pneumoniae [26] 

and the Hsp60 chaperone from Clostridium difficile [27], Helicobacter pylori [28], Chlamydia 

pneumoniae [29], Legionella pneumophila [30] and several other species. In some cases a specific 

receptor on the host cell surface has been identified. Listeria monocytogenes alcohol acetaldehyde 

dehydrogenase binds to Hsp60 (another moonlighting protein) on the surface of several human cell 

lines [31,32]. Streptococcus pyogenes GAPDH binds to the uPAR/CD87 receptor [33]. Streptococcus 

pneumoniae fructose 1,6-bisphosphate aldolase binds to the flamingo cadherin receptor (FCR) [26]. 

Haemophilus ducreyi Hsp60 binds to membrane glycosphingolipids [34,35].  

Other ISMPs bind to extracellular matrix or secreted mucins in the mucosal layer of the 

intestines and airway. Mycoplasma pneumoniae EF-Tu and pyruvate dehydrogenase, Mycobacterium 

tuberculosis malate synthase, and Streptococcus mutans autolysin AltA, Staphylococcus caprae 

autolysin AltC, and Staphylococcus aureus autolysin Aaa bind to one or more of the extracellular 

matrix components fibronectin, laminin, and/or collagen [36–40]. Mycoplasma genitalium GAPDH, 

Salmonella typhimurium Hsp60, and Streptococcus gordonii enolase, EF-Tu, and the beta subunit of 

the DNA-directed RNA polymerase bind mucin [18,41,42]. Other examples are given in Table 1. 
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Figure 1. Intracellular enzymes and chaperones can function as adhesins on the bacterial 

cell surface. An ISMP can function as an enzyme inside of the cell and an adhesin when 

located on the cell surface. Enolase is found in the cytoplasm in almost all species where 

it converts 2-phosphoglycerate to phosphoenolpyruvate as the ninth step of glycolysis. In 

many species of bacteria, it is also found on the cell surface where it can bind to the host’s 

extracellular matrix or airway mucins. For pathogenic bacteria, this attachment can be 

important for invading host tissues and promoting infection. In most cases, how the 

intracellular enzyme is transported outside the cell and how it becomes attached to the cell 

surface are not known (curved arrow). There might be a receptor for the protein on the 

bacterial cell surface (hexagon), but the nature of the surface attachment is known for only 

a few ISMPs. 

The ability of many pathogenic bacteria to use surface proteins to bind to the soluble host 

protein plasminogen also assists in invasion of host tissues [11–14,43,44]. Plasminogen is a 

precursor to plasmin, which is a broad-spectrum serine protease present in blood that helps break 

down fibrin clots [45]. When an invading pathogen uses a receptor on its surface to bind 

plasminogen from the host, the plasminogen can be converted to plasmin, the active form of the 

protease, by using an endogenous protease or subverting the host’s tissue-type plasminogen (tPA) 

activators and urokinase-type plasminogen activators [46]. The active plasmin that is then attached to 

the surface of the invading organism can be used as a general protease to degrade host extracellular 

matrix and basement membrane, thereby facilitating migration through tissues. In the case of 

Mycoplasma hyopenumoniae, a swine-specific pathogen with a reduced genome that lacks genes for 

building amino acids, having an active protease on the surface enables cleavage of a variety of host 

proteins to produce peptides and amino acids that can be taken up by the bacterium as nutrients [47,48]. 

Other ISMPs also aid in infection and virulence by serving as receptors on the bacterial cell surface 

to acquire nutrients from the host. Staphylococcal GAPDH serves as a transferrin binding protein to 

acquire iron from the host [49].  

The use of moonlighting proteins in adherence to host cells and tissues is not seen only in 

pathogenic species. Bacterial species that are sometimes referred to as ―good‖ bacteria or probiotics, 

in other words nonpathogenic symbionts that help promote health and well-being, use ISMP in 

commensal interactions with host species, especially in the intestines. Lactobacillus plantarum 
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GAPDH and enolase were shown to aid the bacterium in binding to mammalian cells and could play 

a role for this probiotic species to bind to the lining of the gut [23,50]. Lactobacillus johnsonii EF-Tu 

and Hsp60 also bind to human cells and to mucin [51,52]. Lactobacillus acidophilus GAPDH also 

binds mucin [53]. 

ISMPs may also assist in symbiotic relationships with other species, including a symbiotic 

relationship between lactic acid bacteria and yeast. The bacteria break down starch and other 

carbohydrates to produce lactic acid that is used by the yeast. In return they receive nutrients made 

by the yeast. This symbiotic relationship is found in several kinds of fermented foods like kefir, a 

drink made from cow’s milk. Lactococcus lactis GAPDH, pyruvate kinase, Hsp60/GroEL, 

DnaK/Hsp70, and 6-phosphofructokinase have been shown to bind to invertase on the surface of the 

yeast Saccharomyces cerevisiae to help maintain this inter-species symbiotic interaction [54]. 

One of the benefits of probiotic bacteria has been suggested to be that they compete with 

pathogens for binding sites or nonspecific binding to the surface of epithelial cells lining the gut. 

Several moonlighting proteins were found to aid Lactobacillus species in competing with pathogenic 

species for binding to epithelial cell lines in vitro. Some of the same ISMPs may be involved in the 

competition of pathogenic and commensal bacteria for binding to epithelial cells. Several of the 

moonlighting proteins have been found to perform the same combination of enzyme and adhesion 

functions in both pathogenic and commensal bacteria, for example, enolases from Lactobacillus, 

Staphylococcus, Streptococcus and several other species bind human plasminogen [14].  

3. Proteomic and other technical approaches for identifying intracellular/surface proteins 

The adhesion functions of the ISMPs in Table 1 were mainly found through experiments to 

identify proteins that bind to a specific molecular target, such as collagen, fibronectin, or other 

extracellular matrix proteins or through studies of proteins involved in binding to a specific target 

cell type. In recent years, many more intracellular proteins have been found to have a second location 

on the cell surface through surface proteomics, or ―surfomics‖, studies that aimed to identify all the 

proteins on a cell surface [55]. Surface proteomics studies employ variations of three types of 

experimental approaches to identify cell surface proteins. The main difference in the methods is in 

how the candidate proteins are isolated: through fractionating the cells to isolate components of the 

cell membrane and/or cell wall, surface ―shaving‖ or using proteases to digest proteins on the cell 

surface without damaging the cell membrane, or labeling proteins on the surface with biotin or O
18

 

before disrupting the cells and isolating the proteins. In each case the surface proteins are then 

identified using mass spectrometry. Although these methods might incorrectly identify some strictly 

intracellular proteins as being part of the cell surface proteome due to experimental artifacts inherent 

in the challenges of cell fractionation, and even some intracellular proteins that are correctly found to 

have a second location on the cell surface might have a different function other than as adhesins, at 

least some of the known intracellular/surface adhesins were correctly found to be localized to the cell 

surface, and it is possible that some of the additional cytoplasmic proteins found in these studies are 

also moonlighting as adhesins. Additional experiments are needed to determine if the intracellular 

proteins identified as being on the cell surface through proteomics methods are indeed involved in 

bacterial adhesion and were not found on the surface because they have another role on the surface 

or perhaps they were artifacts of the experimental methods. 
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4. Molecular mechanisms for intracellular proteins to function as cell surface adhesins 

It might at first seem unlikely that so many intracellular chaperones and enzymes required for 

central metabolism evolved to function also as cell surface binding proteins. Acquiring the new 

function required (1) evolution of a new protein-protein interaction site as well as (2) mechanisms 

for secretion and cell surface attachment, all while maintaining the first function of the protein. 

Satisfying the first requirement can be surprisingly simple. In general, most of the amino acid 

residues on a protein’s surface are not directly connected to the protein’s main function and are 

therefore not under significant selective pressure during evolution. In fact, surface amino acids vary a 

great deal even among close homologues. Having just a small number of these surface residues in a 

correct three-dimensional arrangement can be sufficient for formation of a novel protein-protein 

interaction site. In fact, Ehinger and coworkers showed that a nine amino acid sequence on the 

surface of enolase was sufficient for its interaction with plasminogen [56]. In general, for an average 

protein comprised of 300 or 400 amino acids, there is ample space and material for development of a 

new protein-protein binding site. In addition, most of these proteins are essential housekeeping 

proteins that first evolved billions of years ago and are expressed in many species and cell types, 

providing both the time and variety of cellular conditions for evolution of the protein surface to 

include a new binding function.  

A more difficult question is how most of the ISMPs are secreted and become attached to the cell 

surface. The ISMPs do not contain a signal sequence or the twin arginine motif found in most 

proteins secreted by the canonical Sec or TAT secretion systems, respectively. For these reasons, the 

ISMPs are sometimes referred to as anchorless surface proteins or surface-associated housekeeping 

enzymes and are said to be secreted through non-classical, noncanonical, or unconventional secretion 

pathways. It is not clear if any of the known non-canonical secretion systems are involved in the 

secretion of ICMS, but most still require a kind of secretion signal, and they tend to be involved in 

the secretion of a few specific proteins [57]. 

Although it has been suggested that these intracellular proteins could become released from 

dead or damaged cells, several lines of evidence support the idea that at least some of them do 

require a secretion system [58,59]. First, the ISMPs are not the most abundant proteins in the cell, 

and those proteins that are most abundant are not often found on the cell surface. Second, a large 

portion of the pool of each protein type remains inside the cell while only some of the pool of the 

protein is partitioned to the cell surface. Why only part of the cytoplasmic pool of these specific 

proteins become targeted to the cell surface is not known. 

For some individual proteins, there is additional evidence that a secretion system is probably 

involved. Yang and coworkers concluded that the release of GroEL, DnaK, enolase, pyruvate 

dehydrogenase subunits PdhB and PdhD, and superoxide dismutase SodA, by Bacillus subtilis is not 

due to gross cell lysis based on observing a constant cell density, no change in secretion in the 

presence of chloramphenicol, constant cell viability count, negligible amounts of two highly 

expressed cytoplasmic proteins EF-Tu and SecA in the culture medium, and the lack of effect of 

deleting lytC and lytD autolysins on the amount of the proteins in the media [60]. They also showed 

that these proteins were not released into the medium by membrane vesicles and there was no 

N-terminal cleavage (which might have suggested the presence of a signal sequence). Also, a mutant 

form of enolase with a hydrophobic helix replaced with a more neutral helix was retained in the cell 

when the wild type protein was found in the media, which also supports the model that it is not due 
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to cell lysis. They followed up by showing that in Bacillus subtilis enolase, the internal hydrophobic 

helical domain was essential but not sufficient for export of enolase [61], although a larger portion of 

the N-terminal domain (residues 1–140) was sufficient for export of GFP in B subtilis and E coli. 

Boel and colleagues found that Lys341 of E. coli, Enterococcus faecalis, and Bacillus subtilis 

enolase becomes spontaneously modified with the substrate 2-phosphoglycerate (2PG), and this 

post-translational modification is required for export form the cell [62]. Substitution of Lys341 with 

other amino acids (Ala, Arg, Glu, Gln) prevented modification and secretion even though the 

Lys341Glu mutant enzyme was enzymatically active, showing that enzyme activity was not 

sufficient for secretion (and also that secretion was not due to cell leakage, because a single amino 

acid change can cause a decrease in secretion).  

Secretion of some ISMPs may involve an as yet unknown secretion pathway, or their secretion 

might utilize an alternative version of one or more of the known secretion systems. If the latter is true, 

there are several possibilities, which are not mutually exclusive: One or more of the known secretion 

systems could be leaky. Post translational modifications (PTMs), possibly transient PTMs, can 

render some subset of the ISMP to be passable substrates. Alternative versions of the secretion 

systems might exist that require additional proteins such as a chaperone that have not yet been 

identified. An alternative system’s secretion could be in competition with folding/unfolding or only 

rare conformations of an ISMP might be competent for secretion. It’s possible that some 

combination of these factors could result in an inefficient secretion process, or that the alternative 

version requires induction of the expression of an unknown protein component of a known secretion 

system or an enzyme involved in adding PTMs. A search for shared characteristics might suggest 

what protein features singled out these intracellular proteins for adoption to play a second role on the 

cell surface, but a study of 98 ISMPs found that they share physical characteristics typical of 

intracellular proteins [63]. A couple studies have identified peptides on the cell surface that are the 

results of proteolytic cleavage of intracellular proteins, including EF-Tu [64,65], and the authors 

suggested that cleavage might yield peptides that are better at binding to some host proteins than the 

intact ISMPs. Because intact versions of these proteins are also found on the cell surface, the 

proteolytic cleavage is likely to take place after transport across the membrane and not as part of the 

secretion mechanism.  

After the intracellular proteins are transported to the extracellular milieu, they become anchored 

to the surface of the bacterial cells, but in most cases, the mechanism for cell surface anchoring is 

also not known. For surface proteins in general, known anchoring mechanisms involve an N-terminal 

signal sequence for secretion and/or a C-terminal sorting motif, such as the LPXTG motif that is 

recognized by sortase A, for anchoring to the peptidoglycan network on the cell surface [66]. A 

smaller number of surface proteins have been found to be targeted to the cell surface due to the 

presence of additional motifs [67–69], including the GW repeat, the choline binding motif, and the 

LysM domain, but these are not found in the majority of the ISMPs in Table 1. Studies with purified 

proteins have shown that some intracellular/surface moonlighting proteins can adhere to the cell 

surface by re-association in both Gram-positive and Gram-negative bacteria, so it is possible that 

some of the ISMPs are secreted and then re-associate with the cell surface of after secretion. An 

increase in extracellular pH has been shown to cause some Lactobacillus crispatus ISMPs to be 

released from the cell surface [70]. Some ISMPs may also be released from the surface during 

cell-wall renewal that occurs during exponential growth phase [71]. In most cases it is not known to 

which components of the cell surface—proteins, lipids, etc.—the proteins bind, but it was shown recently 
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that extracellular enolase is bound to a rhamnose residue in cell membrane of mycoplasma [72], and 

enolase and GAPDH bind covalently to lipotectoic acid on Lactobacillus crispatus [73]. 

5. Potential for targeting ISMPs in the development of novel antibacterials and treatments 

for IBD 

With the increasing problem of antibiotic resistance [74,75], new methods for inhibiting 

bacterial infections and virulence are needed, and studies of ISMPs might provide new targets for the 

development of novel therapeutics. But it’s not the moonlighting proteins themselves that might be 

the best targets. The catalytic mechanisms of most of these ISMP are conserved between bacteria and 

their human hosts, which makes sense because they play key roles in central metabolic pathways 

such as glycolysis. Instead of targeting the ISMPs, elucidating how these proteins are targeted to the 

bacterial cell surface might identify processes and proteins that are involved in the novel secretion 

systems (or new versions of known secretion systems) or surface attachment mechanisms and that 

could serve as novel targets for developing new strategies for controlling infection. 

Learning how pathogenic and commensal bacteria adhere to host cells and tissues could also 

lead to better understanding of how these species colonize host tissues and compete with each other. 

This information can be important in treatment of diseases that involve an imbalance of pathogenic 

and probiotic bacterial species, for example ulcerative colitis and Crohn’s disease [76], which are 

autoimmune diseases of the gut that affect over a million people in the US alone [77]. Understanding 

bacterial adhesion could potentially lead to information about how probiotic species could be used to 

displace pathogens and improve the balance of bacterial species. 

Table 1. Intracellular proteins that function as cell surface adhesins in bacteria. 

Protein Species UniProt ID Extracellular function References 

6-phosphofructokinase Lactococcus lactis P0DOB5 yeast invertase [54] 

 Streptococcus oralis  E6KMA1 plasminogen [78] 

Aaa autolysin Staphylococcus aureus Q2YVT4 fibronectin [37] 

Aae autolysin Staphylococcus epidermis Q8CPQ1 fibrinogen, fibronectin, 

vitronectin 

[79] 

Aspartase Haemophilus influenzae  P44324 plasminogen [80] 

Atla autolysin Streptococcus mutans U3SW74 fibronectin [39] 

AtlC autolysin Staphylococcus caprae Q9AIS0 fibronectin [40] 

Bile salt hydrolase Bifidobacterium lactis Q9KK62 plasminogen [81] 

C5a peptidase Streptococcus agalactiae Q8E4T9 fibronectin [82] 

DNA-directed RNA 

polymerase beta subunit 

Streptococcus gordonii A0EKJ1 Muc7  [18] 

DnaK Bifidobacterium Q8G6W1 plasminogen [81] 

 Lactococcus lactis  P0A3J0 yeast invertase [54] 

 Mycobacterium 

tuberculosis  

A0A0H3L5C8 plasminogen [75] 

 Neisseria meningitidis A9M296 plasminogen [20] 

EF-Tu Lactobacillus johnsonii  Q74JU6 cells, mucins [51] 

Continued on next page 
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Protein Species UniProt ID Extracellular function References 

 Mycoplasma pneumoniae P23568 fibronectin, epithelial 

cells, plasminogen, 

heparin, fetuin, actin, 

fibrinogen, vitronectin, 

laminin 

[36,64] 

 Pseudonomas aeruginosa P09591 plasminogen [43] 

 Streptococcus gordonii  A8AWA0 Muc7  [18] 

Elongation factor G Streptococcus gordonii A8AUR6 Muc7  [18] 

Endopeptidase O Streptococcus pneumoniae Q8DNW9 plasminogen, fibronectin  [83] 

Enolase Aeromonas hydrophila Q8GE63 plasminogen [22] 

 Bacillus anthracis D8H2L1 plasminogen, laminin [8] 

 Bifidobacterium lactis  B7GTK2 plasminogen [11] 

 Borrelia burgdorferi  B7J1R2 plasminogen [16] 

 Lactobacillus crispatus Q5K117 plasminogen, laminin [14] 

 Lactobacillus johnsonii Q74K78 plasminogen, laminin [14] 

 Lactobacillus plantarum Q88YH3 fibronectin [23] 

 Leishmania mexicana Q3HL75 plasminogen [13] 

 Mycoplasma fermentans C4XEI3 plasminogen [24] 

 Mycoplasma suis F0QRW4 red blood cells [84] 

 Mycoplasma synoviae Q4A740 plasminogen, fibronectin  [9] 

 Neisseria meningitidis E0N8L2 plasminogen [20] 

 Staphylococcus aureus Q6GB54 plasminogen, laminin [14,21] 

 Streptococcus canis I7WI49 plasminogen [17] 

 Streptococcus gordonii A8AY46 Muc7  [18] 

 Streptococcus mutans Q8DTS9 plasminogen [12] 

 Streptococcus oralis A0A1F1EC06 plasminogen [19] 

 Streptococcus pneumoniae Q97QS2 plasminogen [14] 

 Streptococcus pyogenes Q1JML5 plasminogen [14] 

 Streptococcus suis A4W2T1 fibronectin, plasminogen [15] 

Fructose 1,6-bisphosphate 

aldolase 

Neisseria meningitidis F0N9L0 cells [25] 

GAPDH Bacillus anthracis Q81X74 plasminogen [85] 

 Lactobacillus acidophilus Q5FL51 mucin [53] 

 Lactobacillus plantarum F9UM10 mucin, Caco-2 cells [50] 

 Lactococcus lactis  P52987 yeast invertase [54] 

 Mycoplasma genitalium P47543 mucin [41] 

 Staphylococcus aureus  Q6GIL8 transferrin [49] 

 Streptococcus agalactiae Q9ALW2 plasminogen [86] 

 Streptococcus oralis A0A0F2E7M6 plasminogen [78] 

 Streptococcus pneumoniae A0A0H2US80 plasminogen [87] 

 Streptococcus pyogenes  P68777 uPAR/CD87 receptor on 

human cells, plasminogen 

[33,88] 

Continued on next page 
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Protein Species UniProt ID Extracellular function References 

 Streptococcus suis  Q3Y454 plasminogen [89] 

Glucose 6-phosphate 

isomerase 

Lactobacillus crispatus K1MKZ7 laminin, collagen  [90] 

Glutamine synthetase Lactobacillus crispatus D5GYN9 fibronectin, laminin, 

collagen I, plasminogen  

[90] 

 Mycobacterium tuberculosis  A0A0H3LHU4 plasminogen, fibronectin  [91] 

 Bifidobacterium lactis C2GUH0 plasminogen [81] 

Hsp60 Chlamydiae pneumoniae P31681 adhesin [29] 

 Lactococcus lactis  P37282 yeast invertase [54] 

 Legionella pneumophila Q5X762 adhesin [30] 

 Clostridium difficile Q9KKF0 adhesin [27] 

 Haemophilus ducreyi P31294 glycosphinngolipids [34,35] 

 Helicobacter pylori  Q8RNU2 adhesin [28] 

 Lactobacillus johnsonii  F7SCR2 adhesin [52] 

 Listeria Q8KP52 adhesin [32] 

 Salmonella typhimurium P0A1D3 mucus [42] 

Hsp65/Cpn60.2/GroEL2 Mycobacterium 

tuberculosis  

A0A0H3LCC3 CD43 on macrophage 

surface 

[92] 

Leucyl aminopeptidase Mycoplasma 

hyopneumoniae 

Q4A9M4 heparin [93] 

Malate synthase Mycobacterium 

tuberculosis 

P9WK17 fibronectin, laminin, 

epithelial cells 

[38] 

Glutamyl aminopeptidase Mycoplasma 

hyopneumoniae 

Q4AAK4 plasminogen, heparin  [47] 

Leucyl aminopeptidase Mycoplasma 

hyopneumoniae 

Q4A9M4 plasminogen, heparin, 

DNA  

[48] 

Ornithine carbamoyltransferase Staphylococcus epidermidis P0C0N1 fibronectin [94] 

Peroxiredoxin Neisseria meningitidis A0A125WDU3 plasminogen [20] 

 Streptococcus agalactiae E7S2A7 heme [95] 

Phosphoglycerate kinase Streptococcus oralis A0A0G7HBY7 plasminogen [77] 

 Streptococcus agalactiae  Q8DXT0 plasminogen, actin [83,96] 

 Streptococcus pneumoniae Q8DQX8 plasminogen [97] 

Phosphoglycerate mutase Bifidobacterium lactis P59159 plasminogen [81] 

 Streptococcus oralis E6IYJ0 plasminogen [78] 

Pyruvate dehydrogenase Mycoplasma pneumoniae P75391 fibrinogen [36] 

Pyruvate kinase Lactococcus lactis  Q07637 yeast invertase [54] 

Superoxide dismutase Mycobacterium avium P53647 adhesin [98] 

Triose phosphate isomerase Streptococcus oralis E6J203 plasminogen [78] 

6. Conclusions 

The large number of ISMPs, the variety of bacterial species, and the different host proteins 

targeted suggests that this phenomenon of intracellular housekeeping proteins moonlighting as 
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adhesins on the bacterial cell surface is widespread. There is still a great deal to learn about these 

proteins, especially how these intracellular proteins are secreted and attached to the bacterial cell 

surface. Studies of ISMP that serve as adhesins could help in identifying novel targets for 

development of therapeutics because their mechanisms of secretion and membrane attachment are 

likely to involve new proteins and cellular processes. 
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