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The epidermal growth factor receptor (EGFR) family of receptor tyrosine

kinases (RTKs) consists of EGFR, ErbB2, ErbB3, and ErbB4. These receptors

play key roles in cell proliferation, angiogenesis, cell migration, and in some

cases, tumor promotion. ErbB4 is a unique member of the EGFR family,

implicated not only in pro-tumorigenic mechanisms, such as cell

proliferation and migration, but also in anti-tumorigenic activities, including

cell differentiation and apoptosis. ErbB4 is differentially expressed in a wide

variety of tissues, and interestingly, as different isoforms that result in vastly

different signalling outcomes. Most studies have either ignored the presence of

these isoforms or used overexpression models that may mask the true function

of ErbB4. ErbB4 is widely expressed throughout the body with significant

expression in skeletal tissue, mammary glands, heart, and brain. Knockout

models have demonstrated embryonic lethality due to disrupted heart and

brain development. Despite high expression in the brain and a critical role in

brain development, remarkably little is known about the potential signalling

activity of ErbB4 in brain cancer.This review focuses on the unique biology of

ErbB4 in the brain, and in particular, highlights brain cancer research findings.

We end the reviewwith a focus on high grade gliomas, primarily glioblastoma, a

disease that has been shown to involve EGFR and its mutant forms. The role of

the different ErbB4 isotypes in high grade gliomas is still unclear and future

research will hopefully shed some light on this question.

KEYWORDS

ErbB4, EGFR, receptor tyrosine kinase, high grade glioma, diffuse midline glioma
Overview of ErbB4 biology

The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases

(RTKs), also known as the ErbB family of receptors, comprises four members: EGFR/

ErbB1/HER1; ErbB2/Neu/HER2; ErbB3/HER3; and ErbB4/HER4 (1). These receptors

play key roles in cellular proliferation, differentiation, migration, angiogenesis, and
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apoptosis (1). Therefore, unsurprisingly, aberrant signalling

through these receptors has been implicated in the

pathogenesis of numerous tumor types.

The ErbB receptors share similar domain organization,

including an extracellular ligand-binding domain, a single

membrane-spanning region, an intracellular tyrosine kinase

domain, and a C-terminal region containing various tyrosine

residues (Figure 1) (2). Following ligand engagement of these

receptors at the cell surface, hetero- or homodimerization occurs,

leading to trans-autophosphorylation of tyrosine residues within

their cytoplasmic tails. This creates binding or docking sites for

adaptor and signalling proteins containing SH2 and PTB

domains, such as Grb2, Shc, and PI3-Kinase (PI3-K) (3, 4).

Several ligands are capable of binding to and activating the

ErbB family. Each ErbB-binding ligand contains an EGF-like

domain, which helps to confer binding specificity, and allows the

ligand to preferentially or specifically bind to a particular ErbB

family member (1). Whilst ErbB1, 3, and 4 bind several ligands,

ErbB2 does not appear to bind any known ligands (Figure 2) (5).

However, ErbB2 dimerizes with other ErbB members, which

helps to stabilize ligand interactions. Furthermore, it appears

that ErbB2 is the preferred dimerization partner for other ErbB

family members (5).

ErbB4 was cloned in 1993 and shows similar domain

organization to the other, previously identified, members of

the ErbB family (6, 7). Specifically, the ecto- and cytoplasmic

domains are separated by a single transmembrane domain (8).

The extracellular domain contains two cysteine-rich regions and
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displays high levels of similarity to the extracellular domain of

ErbB3 (7, 8). The cytoplasmic domain is more homologous to

the cytoplasmic domains of EGFR and ErbB2 and is composed

of a juxtamembrane (JM) region, a tyrosine kinase domain, and

a carboxy terminal tail (7, 8).
ErbB4 domain structure

ErbB4 structure and signalling is complicated by the

existence of different splice variants (9). Specifically, exon

splicing occurs within the ERBB4 JM domain to produce the

splice variants JM-a, JM-b, JM-c, and JM-d (Figure 3) (9–11). A

cleavage site for the tumor necrosis factor-alpha converting

enzyme (TACE) is encoded within exon 16 of ERBB4 (9). The

JM-a and JM-d variants both contain exon 16, and therefore,

contain the cleavage site (9). In contrast, the ErbB4 JM-b and

JM-c variants do not contain exon 16 (9). Additional splicing

results in alterations to the cytoplasmic domain (towards the C-

terminal tail), producing the CYT-1 and CYT-2 variants by the

inclusion or exclusion of exon 26 (9). This results in the

respective presence or absence of a 16-amino acid sequence

(Ser1046 through Gly1061) (11–13).

The different ErbB4 isoforms allow for various signalling

outcomes. Subsequent to ligand engagement, cleavage of

protease-sensitive ErbB4 isoforms (JM-a, JM-d) within the JM

domain (between His-651 and Ser-652) by TACE releases the

extracellular domain and leaves a membrane-bound intracellular
FIGURE 1

The domain arrangement of the ErbB receptor family. The extracellular region is composed of 4 domains: I, II, III & IV. Domains I and III (purple)
form an extracellular ligand-binding domain that facilitates ligand attachment at the cell surface. ErbB2, while containing a ligand-binding
domain, does not bind any ligands. Upon ligand engagement, the ErbB family members hetero- or homodimerize with each other, leading to
trans-autophosphorylation of tyrosine residues within their cytoplasmic tails through their intracellular tyrosine kinase domain. ErbB3 does not
have an active tyrosine kinase domain and must heterodimerize with another ErbB receptor to be phosphorylated.
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domain (ICD), known as m80. This triggers a secondary

cleavage event by g-secretase, releasing an intracellular domain

fragment (s80), which can then translocate to the nucleus and

interact with transcriptional regulators (14, 15). Moreover,

ErbB4 contains a Nuclear Localization Sequence, providing

further evidence for its role as a transcriptional regulator,

which is unique within the ErbB receptor family (16, 17). The

16 additional amino acids present within the CYT-1 isoform

contain docking sites for SH2 domains and WW-domain-

containing proteins (15). This allows, for example, CYT-1 to

signal through the PI3-Kinase pathway, whereas CYT-2 lacks

this ability (Figure 4) (12).
Frontiers in Oncology 03
Ligand binding

The ErbB family is activated by ligands that share an EGF-

like motif of 45–55 amino acids (18). Binding specificity is

conferred by loops that form within this motif due to covalent

interactions between six cysteine residues (18). The ligands can

be separated into three groups – those that specifically bind

EGFR, those that bind ErbB4 and EGFR (epiregulin, betacellulin,

heparin-binding EGF) and the neuregulins (NRG), which

specifically bind ErbB4 and ErbB3 (Figure 2) (19). Neuregulin

(denoted as Heregulin in humans) belongs to a family of EGF-

like polypeptides that are widely expressed. They are encoded by
FIGURE 3

Adapted from Donoghue et al. Graphic representation of ERBB4 juxtamembrane (JM-a, b, c, d) and cytoplasmic (CYT-1, 2) variant sequences.
JM-a- and JM-d variants contain tumor necrosis factor converting enzyme (TACE) and g-secretase cleavage sites causing release of the
extracellular domain and subsequent release of a soluble intracellular fragment. Variants containing JM-b and JM-c do not undergo cleavage
and remain as a full-length receptor. CYT-1-containing variants include a 16-amino acid sequence that contains WW domain-containing
oxidoreductase (WWOX)- and PI3K-binding motifs. These binding motifs are absent from CYT-2-containing variants. Amino acid sequences
were generated from the NCBI Nucleotide database.
FIGURE 2

Tabular representation of ErbB ligand binding. ErbB1, 3, and 4 are capable of binding several ligands while ErbB2 does not appear to bind any
known ligands.
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at least six genes (NRG-1–6), each of which have multiple splice

forms (19). NRG-1 was the first member of the family to be

discovered and is the best-characterized (19, 20). The

neuregulins can again be divided into two groups, depending

on their ability to bind ErbB3 and ErbB4 (NRG-1, NRG-2), or

ErbB4 only (NRG-3, NRG-4). Early studies found that NRG-1 is

a preferred ligand for ErbB4 (7, 21). Binding analyses showed

that ErbB4/ErbB2 heterodimers have greatly increased affinity

for heregulin, well surpassing that of ErbB3/ErbB4 heterodimers

or ErbB4 homodimers (22). The ability of ErbB4 to bind a

variety of ligands from both the EGF-like and NRG families

contributes to its uniqueness in the ErbB family and has the

potential to diversify signalling outcomes even further.
Role of ErbB4 in brain development

An RNA analysis study demonstrated that ErbB4 is highly

expressed in brain, heart, and skeletal muscle (7). A subsequent

study showed that ErbB4 mRNA is expressed in the hindbrain,

mid-brain, and ventral forebrain at E9.5 in developing mouse

embryos and the protein is detectable in brain tissue of both

embryonic and adult mice (23).

Studies addressing specific variant expression in mice have

shown that the mouse kidney solely expresses the JM-a variant

and the heart solely expresses the JM-b variant, whilst the

cerebellum expresses both variants (6). With regards to the

cytoplasmic domain variants, CYT-1 is mainly expressed in

mouse heart, mammary gland, and skin, while CYT-2 is the

main variant in kidney and neural tissues (12). This tissue-
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specific expression of ErbB4 juxtamembrane and cytoplasmic

variants further complicates signalling outcomes.

An essential role for ErbB4 in the central nervous system (CNS)

has been demonstrated in mice by the creation of ErbB4 null

mutants, which are terminal at E10.5 due to aborted development of

myocardial ventricular trabeculae and disruptions to innervation of

the hindbrain (23). In the CNS, ErbB4 is the primary receptor for

NRG-1 (24, 25). This NRG-1-ErbB pathway is crucial for the

proliferation, differentiation, and survival of glial cells, as well as

the development of Schwann cells in the peripheral nervous system

(26). This pathway also has an important role in inducing receptors

for neurotransmitters such as acetylcholine, gamma-aminobutyric

acid (GABA), and N-Methyl-D-aspartic acid, as well as regulating

dendritogenesis in the cerebellum (27–29). Studies supporting these

crucial roles have reported expression of both ErbB4 and NRG-1–4

in the brain (7, 19).

The different NRG isoforms are the products of alternative

splicing of a single gene, which is regulated by neuronal activity

(30, 31). There are more than 30 isoforms of NRG-1 alone, and

these isoforms are categorized into six groups (32). In rats,

mRNA analysis has shown that at different ages, each group has

a distinctive expression pattern in the brain (30). This is

consistent with the previously established role of NRG-1 in

neural development. However, there are significantly fewer

studies focusing on the NRG-2–4 isoforms. NRG-1 is highly

expressed in the embryonic and fetal brain and expression

declines during postnatal development. In contrast, NRG-2

levels significantly increase soon after birth (33, 34). This

indicates that NRG-1 is vital in prenatal development while

NRG-2 has an essential role in the postnatal and adult brain.
FIGURE 4

ErbB4 signalling pathways. Once ErbB4 is phosphorylated, signalling cascades become activated, notably the PI3K-AKT and Ras-MAPK pathways
that influence cell survival, proliferation, and differentiation. JM-a or JM-d-containing ErbB4 variants are cleaved by TACE and g-secretase,
resulting in the release of a soluble intracellular fragment that forms a complex with TAB2 and undergoes nuclear translocation. In the nucleus,
ErbB4 regulates gene transcription.
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NRG-2, -3, and -4 stimulate ErbB4 tyrosine phosphorylation

(35). Furthermore, NRG-2 and -3 stimulation couples ErbB4

activation to biological responses and NRG-3 is a critical

mediator in cortical inhibitory circuit assembly (35, 36). Until

recently, NRG-4 was not demonstrated to have a role in neural

development (37). However, it has since been shown to have an

important role in the regulation of dendritic arborization in the

developing cerebral cortex (37). Additionally, NRGs and ErbB4

are essential for synapse formation, interneuron migration, and

axon and dendrite development, all of which are necessary for

the GABAergic circuitry assembly that controls neural activity in

the cerebral cortex (25).

As defective heart development is the reason for lethality in

ErbB4 KO mice, one group expressed ErbB4 under a cardiac-

specific myosin promoter in these mice, allowing them to reach

adulthood (38). Consequently, the potential developmental role

of ErbB4 in the brain and other tissues could be studied. Authors

observed aberrant cranial neural crest cell migration, abnormal

cranial nerve architecture, and significantly more interneurons

in the cerebellum of the heart-rescued ErbB4 KO mice (38).

In the developing rat brain, Yau and colleagues analyzed

ErbB4 immunoreactivity and showed that ErbB4 is preferentially

expressed in interneurons migrating tangentially from the

ventral to the dorsal telencephalon (25). ErbB4 mRNA was

also detected at high levels in the cerebral cortex from prenatal

day 18–20, peaking at postnatal day 0 (day of birth), hinting at

the regulatory role of ErbB4 on neural development.

Comparable results were reported by Fox and Kornblum, who

found high ErbB4 expression in the germinal zones surrounding

the lateral ventricles of the mouse forebrain only from prenatal

day 17 through to postnatal day 1 (39).

Intriguingly, the high expression of the JM-a isoform in the

brain (6) suggests ErbB4 cleavage and nuclear activity could play

an important role in this tissue (40). The ability of ErbB4 to

translocate into the nucleus and alter transcription has been

associated with diverse outcomes, including poor prognostic

outcomes in breast cancer (41). In the brain, ErbB4 signalling

(specifically, the nuclear translocation of the ErbB4 ICD) is

thought to be critical for the timing of astrogenesis in the

developing brain (40). Interaction of the ErbB4 ICD with the

signalling protein TAB2 and the corepressor N-CoR leads to

nuclear translocation of a complex that can repress glial gene

transcription and prevent neural precursor cells from

differentiating into astrocytes (40).
Role of ErbB4 in brain injury,
neurodegenerative diseases, and
psychological disorders

ErbB4 has been implicated in neuroprotection from brain

ischemia, via a signalling mechanism involving NRG-1b
Frontiers in Oncology 05
activation that protects against oxygen-glucose deprivation-

induced neuronal death (42). Experiments in rodent models

have also linked ErbB4 signalling to neuronal protection after

brain injury and hemorrhage (43–45). Multiple studies have

found ErbB4 to be critical for the assembly of the GABAergic

(inhibitory) system (19). Alterations in this circuitry have

been associated with the development of neurodevelopmental

diseases, neurological and psychological disorders, and

neuronal plasticity (46, 47). Furthermore, ErbB4 is

expressed at the presynaptic terminals of GABAergic

interneurons (48, 49), with detailed analysis narrowing this

down to parvalbumin-expressing interneurons (50).

Although an extensive coverage of the literature in this field

is beyond the scope of this review, we will briefly summarize

some of the research addressing the role of ErbB4 in

schizophrenia, Alzheimer’s disease (AD), and Parkinson’s

disease (PD).

Several studies have identified intronic variants of ErbB4

that are associated with schizophrenia, AD, and PD (51–54). The

ERBB4 and NRG-1 genes have been implicated as risk genes for

the development of schizophrenia. Indeed, the Neuregulin-

ErbB4 signalling pathway plays a critical role in the

development of inhibitory circuits in the mammalian cortex

(50, 55). Mice hypomorphic for NRG-1 or ERBB4 demonstrate

similar behavioral abnormalities and anti-psychotic drug

treatment of the NRG-1 hypomorphs is able to partially

reverse the behavioral phenotype (56).

Fifteen ErbB4 sequence variants have been associated with

schizophrenia. Moreover, one of these variants is associated with

an increased risk of schizophrenia in people carrying the

Icelandic NRG-1 risk haplotype. Two ErbB4 alleles are

significantly overexpressed in Ashkenazi schizophrenia

patients, compared with matched controls (57). Other studies

have identified additional genetic variants of the ErbB4 gene

associated with this disease (58–60). Neuregulin signalling

through ErbB4 selectively decreases fast synaptic GABAA

currents on hippocampal interneurons which may contribute

to the pathophysiology of epilepsy and neuropsychiatric

disorders (61).

A 2010 study found significantly higher ErbB4

immunoreactivity in apoptotic hippocampal pyramidal

neurons in AD patients, compared with healthy controls (62).

These results, the authors argue, reflect a link between ErbB4 up-

regulation and the progression of AD pathology (62). In a

subsequent study, the same group found increased ErbB4

expression in neurons from the cortico-medial nucleus

amygdala, human basal forebrain, and superior frontal gyrus

of patients with AD (63). Additionally, ErbB4 is found at high

levels surrounding the neuritic plaques that are characteristic of

AD and potential allelic variants of ErbB4 have been associated

with AD (64). Similarly, there is elevated ErbB4 expression in

midbrain tissue sections of PD patients, compared with

healthy controls.
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The role of ErbB4 in cancer –
oncogene, tumor suppressor, or
both? the influence of isoforms

The different ErbB4 isoforms and their variable tissue

expression may help to explain seemingly opposing signalling

outcomes. Non-cleavable isoforms may dimerize with other

ErbB members and recruit signalling proteins to the plasma

membrane (65–67). Alternatively, proteolytic cleavage may

result in translocation of the 80kDa intracellular domain to

the nucleus, where it can participate as a transcriptional

regulator (Figure 3) (14, 16, 65).

The ErbB4 isoform JM-a/CYT-2 is capable of oncogenic

activity as a result of autoactivation, independent of the ligand

binding that is required by other isoforms (68, 69). This ligand-

independent autophosphorylation can increase cell proliferation

and decrease apoptosis (52). Furthermore, the JM-a/CYT-2

isoform is known to promote survival and proliferation of

breast cancer cells (68, 70). Specifically, overexpression of the

JM-a/CYT-2 isoform combination promotes the proliferation of

breast cancer cells, even in the absence of ligand (68).

Conversely, expression of CYT-1 in breast cancer cell lines has

tumor-suppressor effects by producing ligand-dependent growth

inhibition and differentiation (71, 72). Results of such studies

indicate isoform-specific roles of ErbB4 in cancer.

Interestingly, cytosolic localization of ErbB4 has been

associated with better breast cancer prognosis, whilst nuclear

localization is associated with worse prognosis (41). Real-time

reverse transcription-PCR (RT-PCR) analysis of breast cancer

samples determined that expression of the cleavable JM-a

isoform is associated with estrogen receptor-a expression and

a high histologic grade of differentiation (73). ErbB4 nuclear

immunoreactivity is also associated with poor patient survival,

compared with women whose cancer cells had membranous

ErbB4 staining (73).

Mutations targeting the ErbB4 gene have been functionally

characterized in some non-brain cancers, like non-small cell

lung cancer (74). Kurppa and colleagues identified four specific

mutations, located in the dimerization interface of the

extracellular domain and in the tyrosine kinase domain (74).

These mutations were functionally analyzed and found to

increase basal and ligand-induced ErbB4 phosphorylation (74).

Similarly, novel ErbB4 mutations are present in 19% of

melanoma patients and seven missense mutations in ERBB4

have been found to increase transformation ability and kinase

activity (75). ErbB4 gain-of-function mutations are believed to

be used by melanoma cells to activate the PI3K pathway (76).

Furthermore, mutant ErbB4 in melanoma cells is associated with

increased cell growth and this growth is reduced when these cells

are treated with the ErbB inhibitor lapatinib (75).Silencing

endogenous ErbB4 in ErbB4 mutant-expressing melanoma
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cells leads to an arrest in AKT phosphorylation and cellular

proliferation (75).

However, not all ErbB4 mutations are linked to cancer. For

example, a recent study by Jones and colleagues analyzed data

from the Cancer Cell Line Encyclopedia (CCLE) and the Cancer

Genome Atlas (TCGA), focusing on copy number mutations in

ErbB4 (77). The study found that a region in Intron 1 of the

ERBB4 gene was deleted in 69.1% of tumor samples harboring

ERBB4 copy number loss (77). However, the same deletion was

found at a similar frequency in matched normal tissue samples

from these glioblastoma patients and in the general

population (77).

The lack of isoform-specific and
cleavage-specific reagents

Whilst ErbB4 is activated by a specific subset of ligands, once

ligand-bound, it can homodimerize with other ErbB4 receptor

molecules or heterodimerize with other ErbB family members.

This complicates the study of ErbB4-induced signalling events

(13). Compounding this, the lack of ErbB4-specific reagents can

make it challenging to study its biological role. For example, the

assessment of ErbB4 phosphorylation status can be difficult due

to the lack of specific antibodies that are able to detect

phosphorylation of specific tyrosine residues. A report from

Gallo and colleagues found that an antibody directed against Tyr

1056, found within the ErbB4 CYT1 isoform but not the CYT2

isoform, produced a signal in mutant ErbB4 cells lacking this site

(31). The authors showed that it not only cross-reacted with

other ErbB4 phosphorylation sites, but also with phosphorylated

EGFR (55). This highlights the importance of using

immunoprecipitation in certain cases to verify the identity of

phosphorylated ErbB4.

The existence of different ErbB4 isoforms also makes it

inherently complicated to study the biological role of this

receptor. It has been demonstrated in many publications that

different ErbB4 isoforms produce varying signalling and

biological outcomes. Furthermore, the generation of the ErbB4

intracellular domain (4ICD) can result in different subcellular

localizations. Although there are currently no antibodies that

specifically detect the different ErbB4 isoforms, antibodies have

been developed that recognize the N-terminal or C-terminal of

the receptor. A study by Tovey and colleagues compared

antibody detection of ErbB4 in estrogen receptor-positive

breast cancer patients (78). They used two different antibodies:

the HFR1 antibody, which recognizes both the intact receptor

and cleaved ICD, and the H4.77.16 antibody, which recognizes

the extracellular domain of ErbB4, and thus only stains the full

length receptor (78). The authors reported that patients

demonstrating nuclear staining with the H4.77.16 antibody

only had poorer survival (78). No such survival correlation
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was observed with the HFR1 antibody, suggesting that HFR1

may select for cytoplasmic and nuclear ErbB4 ICDs whilst

H4.77.16 selects for membranous ErbB4 (79). These findings

suggest that ErbB4 may be recycled in the cytoplasm or nucleus,

however, further study is required for confirmation (80).

Due to the well-documented roles of EGFR and ErbB2 as

oncogenes, much research has been directed at developing

specific inhibitors against these family members, such as

Gefitinib (EGFR inhibitor) and CP-724714 (ErbB2 inhibitor)

(81, 82). Some of these have shown promise in the clinic,

including the EGFR inhibitor Afatinib as a treatment for

advanced non-small-cell lung cancer and the ErbB2 inhibitor

Lapatinib in the treatment of advanced breast cancer (83, 84).

To date, there are no specific ErbB4 inhibitors. This makes it

challenging to study the role of endogenous ErbB4. Many studies

have used overexpression models to study the biological role of

ErbB4. However, overexpression models, while helpful, have

limitations and may not be truly representative of normal

cellular function or the role of endogenous ErbB4 (85).

Furthermore, many studies looking at expression do not take

into account the different isoforms (85). In addition, the use of

different ErbB4 antibodies can generate conflicting results (79).
The role of ErbB4 in brain cancers,
including high-grade glioma

Whilst there is a wealth of literature on the potential role of

ErbB4 in breast cancer, melanoma, and lung cancer, relatively

little is known about its potential role in brain cancers. This is

surprising, given its high expression in this tissue and the

essential role it plays in brain growth and development.

Figure 5 highlights some of the available data on ErbB4

expression and/or activation in various brain cancers.

ErbB4 expression and activity is ubiquitous during brain

development. As would be expected, dysfunctions of ErbB4

isoforms have been implicated in different pathologies,

including malignancies. Overexpression of ErbB4 has been

identified in medulloblastomas, pilocytic astrocytomas,

ependymomas, and glioblastomas (GBMs) (Figure 5) (86–89).

In most benign meningiomas, however, ErbB4 is underexpressed

and co-expression of ErbB4 with ErbB2 has been associated with

poor prognosis in medulloblastoma and with increased

proliferation index in ependymomas (86–88, 90).

Medulloblastomas, characterized as Grade IV lesions and

ranked as the most common solid tumors in childhood, arise

from abnormal development of the cerebellum (91).

Overexpression of ErbB4 in conjunction with ErbB2 correlates

with poor prognosis in medulloblastoma patients (87) (92).

Recent analysis of the relative RNA levels of ErbB4 isoforms

has shed some light on the differential expression patterns

present within medulloblastoma.
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A paper by Zeng and colleagues analyzed the relative levels

of the different JM and CYT isoforms of ERBB4 in two pediatric

brain tumor types: highly malignant medulloblastoma and the

relatively benign pilocytic astrocytoma (86). They found

different ratios of expression of the JM isoforms, with

predominantly more of the cleavable JM-a isoform than the

non-cleavable JM-b isoform in medulloblastoma and pilocytic

astrocytoma, whereas the opposite pattern occurred in normal

brain. Furthermore, rare isoforms (JM-c and JM-d) were

differentially expressed in the two tumor types, with both

expressing JM-c and only medulloblastoma expressing the JM-

d variant. Neither of these rare isoforms were detected in normal

brain (86).

Ependymoma is the third most common brain tumors in

children (88). Histological grading for these tumors is

controversial, hence there is much interest in identifying

molecular targets that can be used as prognostic markers (93).

Next generation sequencing of an ependymoma tumor found

previously unknown mutations for this cancer, including an

ERRB4 variant that has been detected in lung adenocarcinoma

(93). A study of a large cohort of pediatric ependymoma patients

found that co-expression of ErbB4 with ErbB2 occurred in over

70% of cases and was associated with higher proliferative index

and poorer patient survival (88). The JM-a/CYT-1 and JM-a/

CYT-2 isoforms were most highly expressed, with very little JM-

b detected (88).

High grade gliomas (HGGs) are one of the most common

forms of cancer affecting the central nervous system (94). HGG

commonly targets adults, but as many as 12% of children

diagnosed with primary CNS tumors suffer from HGG (95).

HGG typically originates in non-neuronal cells, including glial

cells, oligodendrocytes, and ependymal cells, in the brain and

spinal cord (94). As expected, given the extensive role it plays

during brain development, studies have identified ErbB4 as a

potential target in HGG (10, 96, 97).

The most studied HGG is GBM, the most common and

aggressive primary brain tumor in adults (98). Reports on the

expression of ErbB4 in this disease are contradictory, with some

reports suggesting that expression levels may influence whether

ErbB4 plays an oncogenic or tumor suppressor role (99). ErbB4

mRNA and protein is expressed in the GBM cell lines SKMG‐3,

SF767, U87, T98, and LN-229, as well as in primary GBM cells

(10, 100–103). However, quantitative RT-PCR analysis of GBM

patient samples found that whilst EGFR mRNA was

overexpressed, ERBB4 mRNA remained at a level similar to

normal brain (80). Moreover, a study by Andersson and

colleagues showed that ErbB4 mRNA and protein expression

was highest in low-grade gliomas, compared with higher grade

tumors, suggesting that ErbB4 may act as a tumor suppressor

(100). However, the results of this study were variable, and some

GBM samples expressed comparatively high levels of ErbB4,

both at the mRNA and protein level (100). Also, this study did

not use isoform-specific antibodies and qPCR probes, and
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therefore, did not assess expression of the different ErbB4

isoforms (100). Comparison of ErbB4 isoform-specific

expression in low versus high-grade glioma may be more

pertinent. An isoform-specific RT-qPCR analysis of patient-

derived GBM cell lines found JM-a/CYT-2 to be the

predominantly expressed ErbB4 isoform, which is different

from the usual JM-b predominance in neural tissue (10, 73).

As previously stated, the JM-a/CYT-2 isoform has the capacity

to autophosphorylate without ligand binding and thereby

increase cell proliferation and decrease apoptosis (52, 68, 69).

It is, therefore, possible that the JM-a/CYT-2 isoform performs

these oncogenic functions in GBM, contributing to the

aggressiveness of this disease. A recent report using patient-

derived GBM samples and xenograft models of GBM also found

significant associations between ErbB4 mRNA levels and

tumorigenicity, proliferation, angiogenesis, and therapeutic

response (10). Patients with high levels of ErbB4 activation

had significantly shorter survival than those with little or no

ErbB4 activation (10). These findings support the potential role

of ErbB4 as a prognostic and therapeutic target in GBM.

Immunohistochemical studies of GBM patient samples have

also attempted to relate ErbB family expression patterns to

survival outcomes, with conflicting results. As outlined above,

the 2004 study by Andersson and colleagues found variable

expression of ErbB4 protein in GBM samples (100). Another

study examined expression profiles of the ErbB family members

in a panel of nine GBM patient samples (104). Whilst ErbB4 was

expressed in the vast majority of GBM samples, expression levels

were lower in GBM samples than in controls. Moreover, in GBM

patient samples, ErbB4 was mainly detected in neuronal-like

elements and occasionally in hypertrophic astrocytes (104).
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Other studies report more significant ErbB4 expression

levels in GBM. Using immunohistochemistry, Bodey and

colleagues reported elevated ErbB4 expression in pediatric

HGG samples compared with normal brain controls, with

‘strong immunoreactivity’ in GBM samples (97). Nabika and

colleagues examined expression profiles of ErbB1–4 and the

Cyclin-Dependent Kinases p21 and p27 in high grade (III and

IV) gliomas (105). High ErbB1/EGFR and ErbB4 expression,

along with low p27 expression, was associated with poor patient

outcome (105). In addition, high ErbB4 expression was an

independent indicator for poor survival (105). Further studies

are required to understand these conflicting results and to clearly

define the role that ErbB4 plays in GBM.

In addition to isoform-specific expression levels, mutations

may influence ErbB4 function in GBM. Circulating tumor cell

clusters in GBM were first identified in 2018 and sequencing

analysis identified a structural variant of the ERBB4 gene within

these clusters (106). Moreover, targeted next generation

sequencing identified ERBB4 mutations in a cohort of 228

primary GBM patients (107). Although these mutations are of

unknown significance, in this cohort they were found to

contribute to overall survival (107). Therefore, the authors

speculated that, based on other data supporting a role for

ERBB4 in GBM progression, these may be inactivating

mutations (10, 107).

Molecular interactions can also affect ErbB4 signalling in

GBM. The WWOX tumor suppressor protein can interact with

full-length ErbB4 or with the ICD only, with distinct results

(108). WWOX interaction with full-length ErbB4 stabilizes the

ErbB4 receptor in the cellular membrane (108). In contrast,

when interacting with the ICD only, WWOX prevents the ICD
FIGURE 5

ErbB4 expression and activation in various brain cancers. ErbB4 activation and mutations have only been identified in Glioblastoma. ErbB4
overexpression is observed in medulloblastoma and ependymoma. Isoform expression has been analyzed in all four cancers displayed however
only glioblastoma and pilocytic astrocytoma showed a change in the isoform expression pattern.
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from reaching the nucleus (108). In 2019, Chen and colleagues

reported a novel regulatory pathway involving ErbB4 and

circular RNA, which is upregulated in glioma (GM) cells

(109). The circular RNA, circ_0074026 was highly expressed

in HGG samples and correlated with ERBB4 mRNA expression

(109). This circular RNA targets miRNA-1304, which appears to

modulate ERBB4 expression and possibly contribute to glioma

progression (109).

Diffuse midline glioma (DMG), otherwise known as diffuse

intrinsic pontine glioma (DIPG), is considered the pediatric

counterpart of GBM (110). DMG tumors are rarely surgically

removed or biopsied, and consequently, they have not been

molecularly characterized to the same level as many other

primary brain tumors, such as GBM (111, 112). However,

FISH analysis of genetic expression profiles comparing DIPG

samples with non-DIPG pediatric GBM found recurrent focal

gains for ERBB4 (96).

As previously discussed, ErbB4 can heterodimerize with the

other ErbB family members, with each dimer having unique

signalling properties. For example, since EGFR is dysregulated in

approximately 70% of GBMs, the EGFR/ErbB4 heterodimer

would almost certainly be present in tumors and may even be

the dominant signalling moiety (113). Likewise, the presence of

ErbB2 and ErbB3 has the capacity to alter the function of ErbB4

in tumors. Thus, additional studies are required to determine

how the co-expression of ErbB family members may influence

the function of ErbB4 in patients.

In summary, research is limited regarding individual ErbB4

isoform expression in brain tumors. However, analysis of ErbB4

isoform differential expression in medulloblastoma and

ependymoma has highlighted the association between JM-a

isoform expression and higher proliferative indices, translating

to poorer survival rates (87, 88). Comparison of isoform-specific

expression in low- versus high-grade glioma has not been

reported, however the JM-a isoform appears to be the

dominant isoform in GBM, and this may contribute to tumor

aggressiveness (10). Future mechanistic studies are required to

clarify the role of the JM-a isoform in GBM progression.
ErbB4 and possible therapeutic
implications in high grade glioma

Currently there are no small molecule inhibitors that

specifically inhibit ErbB4. There are, however, inhibitors that

block the activity of ErbB4 in conjunction with other ErbB

family members. We have demonstrated that the pan-ErbB

inhibitor dacomitinib could inhibit the growth of GBM and

pediatric medulloblastoma in orthotopic xenograft models

(114). Similar results have been obtained with a second pan-
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ErbB inhibitor, NT113, in models of adult GBM (115). However,

it remains unknown whether the inhibition of ErbB4 enhances

or impedes the efficacy of these drugs. Another possible

approach might be the repurposing of ibrutinib, which was

designed to target Bruton’s tyrosine kinase. A recent report

demonstrated that it inhibited ErbB4 at low concentrations and

showed some preferential efficacy towards high-expressing

ErbB4 cell lines (116).

The effective use of agents that inhibit ErB4 in brain cancer

will require research that identifies pro-tumorigenic forms of

ErbB4; targeting tumor suppressor forms of ErbB4 with drugs

could obviously be detrimental to patients. As previously

discussed, mutations of ErbB4 have been described in a range

of brain cancers and the presence of such activating mutations

could identify patients who may benefit from ErbB4

therapeutics. We recently demonstrated that the presence of

highly phosphorylated ErbB4 in GBM, independent of

phosphorylated EGFR, was linked to shorter patient survival

compared to its absence (10). Additionally, in xenograft models,

increased ErbB4 activation in GBM cells was associated with

increased tumorigenicity, proliferation, and angiogenesis, as well

as reduced sensitivity to anti-EGFR treatments (10). This

strongly suggests that in GBM, activation of ErbB4 is pro-

tumorigenic and thus phosphorylated ErbB4 could be a second

biomarker for predicting response to ErbB4 targeting drugs. The

mechanisms by which ErbB4 activation increases high-grade

glioma aggressiveness are not yet understood. Indeed, there may

be other viable targets within this pathway.

No specific ErbB4 inhibitors are currently available.

Furthermore, the implications of inhibiting ErbB4 function in

the brain, particularly the developing child brain, must be

considered. As previously established, ErbB4 has important

roles in normal brain physiology and vital roles in brain

development (25). Thus, it is reasonable to speculate that

negative side effects could occur in patients administered an

ErbB4 inhibitor. It may be possible to limit side effects by

developing isoform-specific inhibitors that target only the

oncogenic ErbB4 isoform JM-a/CYT-2. Using approaches such

as CRISPR in patient-derived cell lines will allow us to determine

the role of the different isoforms, such as JM-a/CYT-2, in the

growth and survival of brain cancer cells. These are the critical

studies required before moving ErbB4 therapeutic forward into

the clinic. Developing inhibitors for specific ErbB family

members has proven a difficult task and may take a significant

amount of time and resources to achieve. It is therefore

imperative to elucidate ErbB4 signalling mechanisms in HGG

and establish the impact of this pathway on disease progression

and therapeutic resistance before developing such inhibitors.

We have shown that the interaction between c-MET and

EGFR leads to the transactivation of both receptors in GBM

(117). It is likely that ErbB4 can also be activated by other
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receptors expressed in brain cancers. Indeed, as recently

extensively reviewed, many G-protein-coupled receptors can

activate members of the ErbB family, including ErbB4 (118).

Therefore, when determining the role of ErbB4 in brain cancers,

other mechanisms of activation apart from ligand engagement

must be considered. Identifying the presence of activated ErbB4,

rather than the simple presence of ErbB4 protein, may be the

most important approach to determining if ErbB4 is a driver in

patient tumors (10).

Lessons should be learnt from the development and trial of

EGFR-specific inhibitors in GBM treatment. While promising in

pre-clinical models, EGFR inhibitors have had inconsistent

results in clinical trials (119). This is believed to be due to the

highly plastic and heterogenous nature of high-grade gliomas

(119). Ultimately, a single target may not be enough to treat

these cancers. Perhaps a multi-faceted approach with both

ErbB4 inhibitors and EGFR inhibitors could prove more

consistently effective against high-grade gliomas.
Future directions

The ‘uniqueness’ of ErbB4 in the ErbB receptor family,

epitomized by its isoform variations, tissue- and disease state-

specific expression, vast array of activating ligands (and yet, a

seemingly selective subset of downstream targets), and large

number of tyrosine phosphorylation sites makes it an attractive

potential target to treat diseases such as GBM. However, these

unique characteristics, in conjunction with the lack of inhibitors and

other high-quality reagents for detecting its activation, and its ability

to homo- and heterodimerize with other members of the ErbB

receptor family, also make it inherently complicated to study.

Clearly, more mechanistic studies are required to further

elucidate the role that ErbB4 may play in the progression of

GBM. Current therapies do not adequately address the diffuse

nature of this tumor or the plasticity of the signalling pathways

that underlie its progression. Therefore, further insights into the

role of ErbB4 in this disease are warranted.
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