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The epidermal growth factor receptor (EGFR) family of receptor tyrosine
kinases (RTKs) consists of EGFR, ErbB2, ErbB3, and ErbB4. These receptors
play key roles in cell proliferation, angiogenesis, cell migration, and in some
cases, tumor promotion. ErbB4 is a uniqgue member of the EGFR family,
implicated not only in pro-tumorigenic mechanisms, such as cell
proliferation and migration, but also in anti-tumorigenic activities, including
cell differentiation and apoptosis. ErbB4 is differentially expressed in a wide
variety of tissues, and interestingly, as different isoforms that result in vastly
different signalling outcomes. Most studies have either ignored the presence of
these isoforms or used overexpression models that may mask the true function
of ErbB4. ErbB4 is widely expressed throughout the body with significant
expression in skeletal tissue, mammary glands, heart, and brain. Knockout
models have demonstrated embryonic lethality due to disrupted heart and
brain development. Despite high expression in the brain and a critical role in
brain development, remarkably little is known about the potential signalling
activity of ErbB4 in brain cancer.This review focuses on the unique biology of
ErbB4 in the brain, and in particular, highlights brain cancer research findings.
We end the review with a focus on high grade gliomas, primarily glioblastoma, a
disease that has been shown to involve EGFR and its mutant forms. The role of
the different ErbB4 isotypes in high grade gliomas is still unclear and future
research will hopefully shed some light on this question.
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Overview of ErbB4 biology

The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases
(RTKs), also known as the ErbB family of receptors, comprises four members: EGFR/
ErbB1/HERI1; ErbB2/Neu/HER2; ErbB3/HER3; and ErbB4/HER4 (1). These receptors
play key roles in cellular proliferation, differentiation, migration, angiogenesis, and
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apoptosis (1). Therefore, unsurprisingly, aberrant signalling
through these receptors has been implicated in the
pathogenesis of numerous tumor types.

The ErbB receptors share similar domain organization,
including an extracellular ligand-binding domain, a single
membrane-spanning region, an intracellular tyrosine kinase
domain, and a C-terminal region containing various tyrosine
residues (Figure 1) (2). Following ligand engagement of these
receptors at the cell surface, hetero- or homodimerization occurs,
leading to trans-autophosphorylation of tyrosine residues within
their cytoplasmic tails. This creates binding or docking sites for
adaptor and signalling proteins containing SH2 and PTB
domains, such as Grb2, Shc, and PI3-Kinase (PI3-K) (3, 4).

Several ligands are capable of binding to and activating the
ErbB family. Each ErbB-binding ligand contains an EGF-like
domain, which helps to confer binding specificity, and allows the
ligand to preferentially or specifically bind to a particular ErbB
family member (1). Whilst ErbB1, 3, and 4 bind several ligands,
ErbB2 does not appear to bind any known ligands (Figure 2) (5).
However, ErbB2 dimerizes with other ErbB members, which
helps to stabilize ligand interactions. Furthermore, it appears
that ErbB2 is the preferred dimerization partner for other ErbB
family members (5).

ErbB4 was cloned in 1993 and shows similar domain
organization to the other, previously identified, members of
the ErbB family (6, 7). Specifically, the ecto- and cytoplasmic
domains are separated by a single transmembrane domain (8).
The extracellular domain contains two cysteine-rich regions and

10.3389/fonc.2022.983514

displays high levels of similarity to the extracellular domain of
ErbB3 (7, 8). The cytoplasmic domain is more homologous to
the cytoplasmic domains of EGFR and ErbB2 and is composed
of a juxtamembrane (JM) region, a tyrosine kinase domain, and
a carboxy terminal tail (7, 8).

ErbB4 domain structure

ErbB4 structure and signalling is complicated by the
existence of different splice variants (9). Specifically, exon
splicing occurs within the ERBB4 JM domain to produce the
splice variants JM-a, JM-b, JM-c, and JM-d (Figure 3) (9-11). A
cleavage site for the tumor necrosis factor-alpha converting
enzyme (TACE) is encoded within exon 16 of ERBB4 (9). The
JM-a and JM-d variants both contain exon 16, and therefore,
contain the cleavage site (9). In contrast, the ErbB4 JM-b and
JM-c variants do not contain exon 16 (9). Additional splicing
results in alterations to the cytoplasmic domain (towards the C-
terminal tail), producing the CYT-1 and CYT-2 variants by the
inclusion or exclusion of exon 26 (9). This results in the
respective presence or absence of a 16-amino acid sequence
(Ser1046 through Gly1061) (11-13).

The different ErbB4 isoforms allow for various signalling
outcomes. Subsequent to ligand engagement, cleavage of
protease-sensitive ErbB4 isoforms (JM-a, J]M-d) within the J]M
domain (between His-651 and Ser-652) by TACE releases the
extracellular domain and leaves a membrane-bound intracellular

@) Ligand Binding Domain ErbB1 ErbB2 ErbB3 ErbB4
== Inactive HER1 HER2 HER3 HER4
EGFR Neu
Domain |
Domain Il
Domain 11l
Domain IV
Transmembrane Region i
Tyrosine Kinase
Domain
Tyrosine Phosphorylation
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FIGURE 1
The domain arrangement of the ErbB receptor family. The extracellular region is composed of 4 domains: |, II, Ill & IV. Domains | and Il (purple)

form an extracellular ligand-binding domain that facilitates ligand attachment at the cell surface. ErbB2, while containing a ligand-binding
domain, does not bind any ligands. Upon ligand engagement, the ErbB family members hetero- or homodimerize with each other, leading to
trans-autophosphorylation of tyrosine residues within their cytoplasmic tails through their intracellular tyrosine kinase domain. ErbB3 does not
have an active tyrosine kinase domain and must heterodimerize with another ErbB receptor to be phosphorylated.
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FIGURE 2

Tabular representation of ErbB ligand binding. ErbB1, 3, and 4 are capable of binding several ligands while ErbB2 does not appear to bind any

known ligands.

domain (ICD), known as m80. This triggers a secondary
cleavage event by y-secretase, releasing an intracellular domain
fragment (s80), which can then translocate to the nucleus and
interact with transcriptional regulators (14, 15). Moreover,
ErbB4 contains a Nuclear Localization Sequence, providing
further evidence for its role as a transcriptional regulator,
which is unique within the ErbB receptor family (16, 17). The

Ligand binding

The ErbB family is activated by ligands that share an EGF-
like motif of 45-55 amino acids (18). Binding specificity is
conferred by loops that form within this motif due to covalent
interactions between six cysteine residues (18). The ligands can
be separated into three groups - those that specifically bind

EGFR, those that bind ErbB4 and EGFR (epiregulin, betacellulin,
heparin-binding EGF) and the neuregulins (NRG), which
specifically bind ErbB4 and ErbB3 (Figure 2) (19). Neuregulin
(denoted as Heregulin in humans) belongs to a family of EGF-
like polypeptides that are widely expressed. They are encoded by

16 additional amino acids present within the CYT-1 isoform
contain docking sites for SH2 domains and WW-domain-
containing proteins (15). This allows, for example, CYT-1 to
signal through the PI3-Kinase pathway, whereas CYT-2 lacks
this ability (Figure 4) (12).

Juxtamembrane variants

IM-8 G v CNGPTSHDCIYYPWTGHSTLPQHAR TPLIA
JM-b G CIGSSIEDCIGLMDR TPLIA
JM-c G TPLIA
JM-d G CIGSSIEDCIGLMDRCNGPTSHDCIYYPWTGHSTLPQHAR TPLIA
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FIGURE 3

Adapted from Donoghue et al. Graphic representation of ERBB4 juxtamembrane (JM-a, b, ¢, d) and cytoplasmic (CYT-1, 2) variant sequences.
JM-a- and JM-d variants contain tumor necrosis factor converting enzyme (TACE) and y-secretase cleavage sites causing release of the
extracellular domain and subsequent release of a soluble intracellular fragment. Variants containing JM-b and JM-c do not undergo cleavage
and remain as a full-length receptor. CYT-1-containing variants include a 16-amino acid sequence that contains WW domain-containing
oxidoreductase (WWOX)- and PI3K-binding motifs. These binding motifs are absent from CYT-2-containing variants. Amino acid sequences
were generated from the NCBI Nucleotide database.
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ErbB4 signalling pathways. Once ErbB4 is phosphorylated, signalling cascades become activated, notably the PI3K-AKT and Ras-MAPK pathways
that influence cell survival, proliferation, and differentiation. JM-a or JM-d-containing ErbB4 variants are cleaved by TACE and y-secretase,
resulting in the release of a soluble intracellular fragment that forms a complex with TAB2 and undergoes nuclear translocation. In the nucleus,

ErbB4 regulates gene transcription.

at least six genes (NRG-1-6), each of which have multiple splice
forms (19). NRG-1 was the first member of the family to be
discovered and is the best-characterized (19, 20). The
neuregulins can again be divided into two groups, depending
on their ability to bind ErbB3 and ErbB4 (NRG-1, NRG-2), or
ErbB4 only (NRG-3, NRG-4). Early studies found that NRG-1 is
a preferred ligand for ErbB4 (7, 21). Binding analyses showed
that ErbB4/ErbB2 heterodimers have greatly increased affinity
for heregulin, well surpassing that of ErbB3/ErbB4 heterodimers
or ErbB4 homodimers (22). The ability of ErbB4 to bind a
variety of ligands from both the EGF-like and NRG families
contributes to its uniqueness in the ErbB family and has the
potential to diversify signalling outcomes even further.

Role of ErbB4 in brain development

An RNA analysis study demonstrated that ErbB4 is highly
expressed in brain, heart, and skeletal muscle (7). A subsequent
study showed that ErbB4 mRNA is expressed in the hindbrain,
mid-brain, and ventral forebrain at E9.5 in developing mouse
embryos and the protein is detectable in brain tissue of both
embryonic and adult mice (23).

Studies addressing specific variant expression in mice have
shown that the mouse kidney solely expresses the JM-a variant
and the heart solely expresses the JM-b variant, whilst the
cerebellum expresses both variants (6). With regards to the
cytoplasmic domain variants, CYT-1 is mainly expressed in
mouse heart, mammary gland, and skin, while CYT-2 is the
main variant in kidney and neural tissues (12). This tissue-
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specific expression of ErbB4 juxtamembrane and cytoplasmic
variants further complicates signalling outcomes.

An essential role for ErbB4 in the central nervous system (CNS)
has been demonstrated in mice by the creation of ErbB4 null
mutants, which are terminal at E10.5 due to aborted development of
myocardial ventricular trabeculae and disruptions to innervation of
the hindbrain (23). In the CNS, ErbB4 is the primary receptor for
NRG-1 (24, 25). This NRG-1-ErbB pathway is crucial for the
proliferation, differentiation, and survival of glial cells, as well as
the development of Schwann cells in the peripheral nervous system
(26). This pathway also has an important role in inducing receptors
for neurotransmitters such as acetylcholine, gamma-aminobutyric
acid (GABA), and N-Methyl-D-aspartic acid, as well as regulating
dendritogenesis in the cerebellum (27-29). Studies supporting these
crucial roles have reported expression of both ErbB4 and NRG-1-4
in the brain (7, 19).

The different NRG isoforms are the products of alternative
splicing of a single gene, which is regulated by neuronal activity
(30, 31). There are more than 30 isoforms of NRG-1 alone, and
these isoforms are categorized into six groups (32). In rats,
mRNA analysis has shown that at different ages, each group has
a distinctive expression pattern in the brain (30). This is
consistent with the previously established role of NRG-1 in
neural development. However, there are significantly fewer
studies focusing on the NRG-2-4 isoforms. NRG-1 is highly
expressed in the embryonic and fetal brain and expression
declines during postnatal development. In contrast, NRG-2
levels significantly increase soon after birth (33, 34). This
indicates that NRG-1 is vital in prenatal development while
NRG-2 has an essential role in the postnatal and adult brain.
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NRG-2, -3, and -4 stimulate ErbB4 tyrosine phosphorylation
(35). Furthermore, NRG-2 and -3 stimulation couples ErbB4
activation to biological responses and NRG-3 is a critical
mediator in cortical inhibitory circuit assembly (35, 36). Until
recently, NRG-4 was not demonstrated to have a role in neural
development (37). However, it has since been shown to have an
important role in the regulation of dendritic arborization in the
developing cerebral cortex (37). Additionally, NRGs and ErbB4
are essential for synapse formation, interneuron migration, and
axon and dendrite development, all of which are necessary for
the GABAergic circuitry assembly that controls neural activity in
the cerebral cortex (25).

As defective heart development is the reason for lethality in
ErbB4 KO mice, one group expressed ErbB4 under a cardiac-
specific myosin promoter in these mice, allowing them to reach
adulthood (38). Consequently, the potential developmental role
of ErbB4 in the brain and other tissues could be studied. Authors
observed aberrant cranial neural crest cell migration, abnormal
cranial nerve architecture, and significantly more interneurons
in the cerebellum of the heart-rescued ErbB4 KO mice (38).

In the developing rat brain, Yau and colleagues analyzed
ErbB4 immunoreactivity and showed that ErbB4 is preferentially
expressed in interneurons migrating tangentially from the
ventral to the dorsal telencephalon (25). ErbB4 mRNA was
also detected at high levels in the cerebral cortex from prenatal
day 18-20, peaking at postnatal day 0 (day of birth), hinting at
the regulatory role of ErbB4 on neural development.
Comparable results were reported by Fox and Kornblum, who
found high ErbB4 expression in the germinal zones surrounding
the lateral ventricles of the mouse forebrain only from prenatal
day 17 through to postnatal day 1 (39).

Intriguingly, the high expression of the JM-a isoform in the
brain (6) suggests ErbB4 cleavage and nuclear activity could play
an important role in this tissue (40). The ability of ErbB4 to
translocate into the nucleus and alter transcription has been
associated with diverse outcomes, including poor prognostic
outcomes in breast cancer (41). In the brain, ErbB4 signalling
(specifically, the nuclear translocation of the ErbB4 ICD) is
thought to be critical for the timing of astrogenesis in the
developing brain (40). Interaction of the ErbB4 ICD with the
signalling protein TAB2 and the corepressor N-CoR leads to
nuclear translocation of a complex that can repress glial gene
transcription and prevent neural precursor cells from

differentiating into astrocytes (40).

Role of ErbB4 in brain injury,
neurodegenerative diseases, and
psychological disorders

ErbB4 has been implicated in neuroprotection from brain
ischemia, via a signalling mechanism involving NRG-1
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activation that protects against oxygen-glucose deprivation-
induced neuronal death (42). Experiments in rodent models
have also linked ErbB4 signalling to neuronal protection after
brain injury and hemorrhage (43-45). Multiple studies have
found ErbB4 to be critical for the assembly of the GABAergic
(inhibitory) system (19). Alterations in this circuitry have
been associated with the development of neurodevelopmental
diseases, neurological and psychological disorders, and
neuronal plasticity (46, 47). Furthermore, ErbB4 is
expressed at the presynaptic terminals of GABAergic
interneurons (48, 49), with detailed analysis narrowing this
down to parvalbumin-expressing interneurons (50).
Although an extensive coverage of the literature in this field
is beyond the scope of this review, we will briefly summarize
some of the research addressing the role of ErbB4 in
schizophrenia, Alzheimer’s disease (AD), and Parkinson’s
disease (PD).

Several studies have identified intronic variants of ErbB4
that are associated with schizophrenia, AD, and PD (51-54). The
ERBB4 and NRG-1 genes have been implicated as risk genes for
the development of schizophrenia. Indeed, the Neuregulin-
ErbB4 signalling pathway plays a critical role in the
development of inhibitory circuits in the mammalian cortex
(50, 55). Mice hypomorphic for NRG-1 or ERBB4 demonstrate
similar behavioral abnormalities and anti-psychotic drug
treatment of the NRG-1 hypomorphs is able to partially
reverse the behavioral phenotype (56).

Fifteen ErbB4 sequence variants have been associated with
schizophrenia. Moreover, one of these variants is associated with
an increased risk of schizophrenia in people carrying the
Icelandic NRG-1 risk haplotype. Two ErbB4 alleles are
significantly overexpressed in Ashkenazi schizophrenia
patients, compared with matched controls (57). Other studies
have identified additional genetic variants of the ErbB4 gene
associated with this disease (58-60). Neuregulin signalling
through ErbB4 selectively decreases fast synaptic GABA,
currents on hippocampal interneurons which may contribute
to the pathophysiology of epilepsy and neuropsychiatric
disorders (61).

A 2010 study found significantly higher ErbB4
immunoreactivity in apoptotic hippocampal pyramidal
neurons in AD patients, compared with healthy controls (62).
These results, the authors argue, reflect a link between ErbB4 up-
regulation and the progression of AD pathology (62). In a
subsequent study, the same group found increased ErbB4
expression in neurons from the cortico-medial nucleus
amygdala, human basal forebrain, and superior frontal gyrus
of patients with AD (63). Additionally, ErbB4 is found at high
levels surrounding the neuritic plaques that are characteristic of
AD and potential allelic variants of ErbB4 have been associated
with AD (64). Similarly, there is elevated ErbB4 expression in
midbrain tissue sections of PD patients, compared with
healthy controls.
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The role of ErbB4 in cancer —
oncogene, tumor suppressor, or
both? the influence of isoforms

The different ErbB4 isoforms and their variable tissue
expression may help to explain seemingly opposing signalling
outcomes. Non-cleavable isoforms may dimerize with other
ErbB members and recruit signalling proteins to the plasma
membrane (65-67). Alternatively, proteolytic cleavage may
result in translocation of the 80kDa intracellular domain to
the nucleus, where it can participate as a transcriptional
regulator (Figure 3) (14, 16, 65).

The ErbB4 isoform JM-a/CYT-2 is capable of oncogenic
activity as a result of autoactivation, independent of the ligand
binding that is required by other isoforms (68, 69). This ligand-
independent autophosphorylation can increase cell proliferation
and decrease apoptosis (52). Furthermore, the JM-a/CYT-2
isoform is known to promote survival and proliferation of
breast cancer cells (68, 70). Specifically, overexpression of the
JM-a/CYT-2 isoform combination promotes the proliferation of
breast cancer cells, even in the absence of ligand (68).
Conversely, expression of CYT-1 in breast cancer cell lines has
tumor-suppressor effects by producing ligand-dependent growth
inhibition and differentiation (71, 72). Results of such studies
indicate isoform-specific roles of ErbB4 in cancer.

Interestingly, cytosolic localization of ErbB4 has been
associated with better breast cancer prognosis, whilst nuclear
localization is associated with worse prognosis (41). Real-time
reverse transcription-PCR (RT-PCR) analysis of breast cancer
samples determined that expression of the cleavable JM-a
isoform is associated with estrogen receptor-o. expression and
a high histologic grade of differentiation (73). ErbB4 nuclear
immunoreactivity is also associated with poor patient survival,
compared with women whose cancer cells had membranous
ErbB4 staining (73).

Mutations targeting the ErbB4 gene have been functionally
characterized in some non-brain cancers, like non-small cell
lung cancer (74). Kurppa and colleagues identified four specific
mutations, located in the dimerization interface of the
extracellular domain and in the tyrosine kinase domain (74).
These mutations were functionally analyzed and found to
increase basal and ligand-induced ErbB4 phosphorylation (74).

Similarly, novel ErbB4 mutations are present in 19% of
melanoma patients and seven missense mutations in ERBB4
have been found to increase transformation ability and kinase
activity (75). ErbB4 gain-of-function mutations are believed to
be used by melanoma cells to activate the PI3K pathway (76).
Furthermore, mutant ErbB4 in melanoma cells is associated with
increased cell growth and this growth is reduced when these cells
are treated with the ErbB inhibitor lapatinib (75).Silencing
endogenous ErbB4 in ErbB4 mutant-expressing melanoma
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cells leads to an arrest in AKT phosphorylation and cellular
proliferation (75).

However, not all ErbB4 mutations are linked to cancer. For
example, a recent study by Jones and colleagues analyzed data
from the Cancer Cell Line Encyclopedia (CCLE) and the Cancer
Genome Atlas (TCGA), focusing on copy number mutations in
ErbB4 (77). The study found that a region in Intron 1 of the
ERBB4 gene was deleted in 69.1% of tumor samples harboring
ERBB4 copy number loss (77). However, the same deletion was
found at a similar frequency in matched normal tissue samples
from these glioblastoma patients and in the general
population (77).

The lack of isoform-specific and
cleavage-specific reagents

Whilst ErbB4 is activated by a specific subset of ligands, once
ligand-bound, it can homodimerize with other ErbB4 receptor
molecules or heterodimerize with other ErbB family members.
This complicates the study of ErbB4-induced signalling events
(13). Compounding this, the lack of ErbB4-specific reagents can
make it challenging to study its biological role. For example, the
assessment of ErbB4 phosphorylation status can be difficult due
to the lack of specific antibodies that are able to detect
phosphorylation of specific tyrosine residues. A report from
Gallo and colleagues found that an antibody directed against Tyr
1056, found within the ErbB4 CYT1 isoform but not the CYT2
isoform, produced a signal in mutant ErbB4 cells lacking this site
(31). The authors showed that it not only cross-reacted with
other ErbB4 phosphorylation sites, but also with phosphorylated
EGFR (55). This highlights the importance of using
immunoprecipitation in certain cases to verify the identity of
phosphorylated ErbB4.

The existence of different ErbB4 isoforms also makes it
inherently complicated to study the biological role of this
receptor. It has been demonstrated in many publications that
different ErbB4 isoforms produce varying signalling and
biological outcomes. Furthermore, the generation of the ErbB4
intracellular domain (4ICD) can result in different subcellular
localizations. Although there are currently no antibodies that
specifically detect the different ErbB4 isoforms, antibodies have
been developed that recognize the N-terminal or C-terminal of
the receptor. A study by Tovey and colleagues compared
antibody detection of ErbB4 in estrogen receptor-positive
breast cancer patients (78). They used two different antibodies:
the HFR1 antibody, which recognizes both the intact receptor
and cleaved ICD, and the H4.77.16 antibody, which recognizes
the extracellular domain of ErbB4, and thus only stains the full
length receptor (78). The authors reported that patients
demonstrating nuclear staining with the H4.77.16 antibody
only had poorer survival (78). No such survival correlation
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was observed with the HFRI antibody, suggesting that HFR1
may select for cytoplasmic and nuclear ErbB4 ICDs whilst
H4.77.16 selects for membranous ErbB4 (79). These findings
suggest that ErbB4 may be recycled in the cytoplasm or nucleus,
however, further study is required for confirmation (80).

Due to the well-documented roles of EGFR and ErbB2 as
oncogenes, much research has been directed at developing
specific inhibitors against these family members, such as
Gefitinib (EGFR inhibitor) and CP-724714 (ErbB2 inhibitor)
(81, 82). Some of these have shown promise in the clinic,
including the EGFR inhibitor Afatinib as a treatment for
advanced non-small-cell lung cancer and the ErbB2 inhibitor
Lapatinib in the treatment of advanced breast cancer (83, 84).

To date, there are no specific ErbB4 inhibitors. This makes it
challenging to study the role of endogenous ErbB4. Many studies
have used overexpression models to study the biological role of
ErbB4. However, overexpression models, while helpful, have
limitations and may not be truly representative of normal
cellular function or the role of endogenous ErbB4 (85).
Furthermore, many studies looking at expression do not take
into account the different isoforms (85). In addition, the use of
different ErbB4 antibodies can generate conflicting results (79).

The role of ErbB4 in brain cancers,
including high-grade glioma

Whilst there is a wealth of literature on the potential role of
ErbB4 in breast cancer, melanoma, and lung cancer, relatively
little is known about its potential role in brain cancers. This is
surprising, given its high expression in this tissue and the
essential role it plays in brain growth and development.
Figure 5 highlights some of the available data on ErbB4
expression and/or activation in various brain cancers.

ErbB4 expression and activity is ubiquitous during brain
development. As would be expected, dysfunctions of ErbB4
isoforms have been implicated in different pathologies,
including malignancies. Overexpression of ErbB4 has been
identified in medulloblastomas, pilocytic astrocytomas,
ependymomas, and glioblastomas (GBMs) (Figure 5) (86-89).
In most benign meningiomas, however, ErbB4 is underexpressed
and co-expression of ErbB4 with ErbB2 has been associated with
poor prognosis in medulloblastoma and with increased
proliferation index in ependymomas (86-88, 90).

Medulloblastomas, characterized as Grade IV lesions and
ranked as the most common solid tumors in childhood, arise
from abnormal development of the cerebellum (91).
Overexpression of ErbB4 in conjunction with ErbB2 correlates
with poor prognosis in medulloblastoma patients (87) (92).
Recent analysis of the relative RNA levels of ErbB4 isoforms
has shed some light on the differential expression patterns
present within medulloblastoma.
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A paper by Zeng and colleagues analyzed the relative levels
of the different JM and CYT isoforms of ERBB4 in two pediatric
brain tumor types: highly malignant medulloblastoma and the
relatively benign pilocytic astrocytoma (86). They found
different ratios of expression of the JM isoforms, with
predominantly more of the cleavable JM-a isoform than the
non-cleavable JM-b isoform in medulloblastoma and pilocytic
astrocytoma, whereas the opposite pattern occurred in normal
brain. Furthermore, rare isoforms (JM-c and JM-d) were
differentially expressed in the two tumor types, with both
expressing JM-c and only medulloblastoma expressing the JM-
d variant. Neither of these rare isoforms were detected in normal
brain (86).

Ependymoma is the third most common brain tumors in
children (88). Histological grading for these tumors is
controversial, hence there is much interest in identifying
molecular targets that can be used as prognostic markers (93).
Next generation sequencing of an ependymoma tumor found
previously unknown mutations for this cancer, including an
ERRB4 variant that has been detected in lung adenocarcinoma
(93). A study of a large cohort of pediatric ependymoma patients
found that co-expression of ErbB4 with ErbB2 occurred in over
70% of cases and was associated with higher proliferative index
and poorer patient survival (88). The JM-a/CYT-1 and JM-a/
CYT-2 isoforms were most highly expressed, with very little JM-
b detected (88).

High grade gliomas (HGGs) are one of the most common
forms of cancer affecting the central nervous system (94). HGG
commonly targets adults, but as many as 12% of children
diagnosed with primary CNS tumors suffer from HGG (95).
HGG typically originates in non-neuronal cells, including glial
cells, oligodendrocytes, and ependymal cells, in the brain and
spinal cord (94). As expected, given the extensive role it plays
during brain development, studies have identified ErbB4 as a
potential target in HGG (10, 96, 97).

The most studied HGG is GBM, the most common and
aggressive primary brain tumor in adults (98). Reports on the
expression of ErbB4 in this disease are contradictory, with some
reports suggesting that expression levels may influence whether
ErbB4 plays an oncogenic or tumor suppressor role (99). ErbB4
mRNA and protein is expressed in the GBM cell lines SKMG-3,
SE767, U87, T98, and LN-229, as well as in primary GBM cells
(10, 100-103). However, quantitative RT-PCR analysis of GBM
patient samples found that whilst EGFR mRNA was
overexpressed, ERBB4 mRNA remained at a level similar to
normal brain (80). Moreover, a study by Andersson and
colleagues showed that ErbB4 mRNA and protein expression
was highest in low-grade gliomas, compared with higher grade
tumors, suggesting that ErbB4 may act as a tumor suppressor
(100). However, the results of this study were variable, and some
GBM samples expressed comparatively high levels of ErbB4,
both at the mRNA and protein level (100). Also, this study did
not use isoform-specific antibodies and qPCR probes, and
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therefore, did not assess expression of the different ErbB4
isoforms (100). Comparison of ErbB4 isoform-specific
expression in low versus high-grade glioma may be more
pertinent. An isoform-specific RT-qPCR analysis of patient-
derived GBM cell lines found JM-a/CYT-2 to be the
predominantly expressed ErbB4 isoform, which is different
from the usual JM-b predominance in neural tissue (10, 73).
As previously stated, the JM-a/CYT-2 isoform has the capacity
to autophosphorylate without ligand binding and thereby
increase cell proliferation and decrease apoptosis (52, 68, 69).
It is, therefore, possible that the JM-a/CYT-2 isoform performs
these oncogenic functions in GBM, contributing to the
aggressiveness of this disease. A recent report using patient-
derived GBM samples and xenograft models of GBM also found
significant associations between ErbB4 mRNA levels and
tumorigenicity, proliferation, angiogenesis, and therapeutic
response (10). Patients with high levels of ErbB4 activation
had significantly shorter survival than those with little or no
ErbB4 activation (10). These findings support the potential role
of ErbB4 as a prognostic and therapeutic target in GBM.
Immunohistochemical studies of GBM patient samples have
also attempted to relate ErbB family expression patterns to
survival outcomes, with conflicting results. As outlined above,
the 2004 study by Andersson and colleagues found variable
expression of ErbB4 protein in GBM samples (100). Another
study examined expression profiles of the ErbB family members
in a panel of nine GBM patient samples (104). Whilst ErbB4 was
expressed in the vast majority of GBM samples, expression levels
were lower in GBM samples than in controls. Moreover, in GBM
patient samples, ErbB4 was mainly detected in neuronal-like
elements and occasionally in hypertrophic astrocytes (104).
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Other studies report more significant ErbB4 expression
levels in GBM. Using immunohistochemistry, Bodey and
colleagues reported elevated ErbB4 expression in pediatric
HGG samples compared with normal brain controls, with
‘strong immunoreactivity’ in GBM samples (97). Nabika and
colleagues examined expression profiles of ErbBl1-4 and the
Cyclin-Dependent Kinases p21 and p27 in high grade (III and
IV) gliomas (105). High ErbB1/EGFR and ErbB4 expression,
along with low p27 expression, was associated with poor patient
outcome (105). In addition, high ErbB4 expression was an
independent indicator for poor survival (105). Further studies
are required to understand these conflicting results and to clearly
define the role that ErbB4 plays in GBM.

In addition to isoform-specific expression levels, mutations
may influence ErbB4 function in GBM. Circulating tumor cell
clusters in GBM were first identified in 2018 and sequencing
analysis identified a structural variant of the ERBB4 gene within
these clusters (106). Moreover, targeted next generation
sequencing identified ERBB4 mutations in a cohort of 228
primary GBM patients (107). Although these mutations are of
unknown significance, in this cohort they were found to
contribute to overall survival (107). Therefore, the authors
speculated that, based on other data supporting a role for
ERBB4 in GBM progression, these may be inactivating
mutations (10, 107).

Molecular interactions can also affect ErbB4 signalling in
GBM. The WWOX tumor suppressor protein can interact with
full-length ErbB4 or with the ICD only, with distinct results
(108). WWOX interaction with full-length ErbB4 stabilizes the
ErbB4 receptor in the cellular membrane (108). In contrast,
when interacting with the ICD only, WWOX prevents the ICD
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from reaching the nucleus (108). In 2019, Chen and colleagues
reported a novel regulatory pathway involving ErbB4 and
circular RNA, which is upregulated in glioma (GM) cells
(109). The circular RNA, circ_0074026 was highly expressed
in HGG samples and correlated with ERBB4 mRNA expression
(109). This circular RNA targets miRNA-1304, which appears to
modulate ERBB4 expression and possibly contribute to glioma
progression (109).

Diffuse midline glioma (DMG), otherwise known as diffuse
intrinsic pontine glioma (DIPG), is considered the pediatric
counterpart of GBM (110). DMG tumors are rarely surgically
removed or biopsied, and consequently, they have not been
molecularly characterized to the same level as many other
primary brain tumors, such as GBM (111, 112). However,
FISH analysis of genetic expression profiles comparing DIPG
samples with non-DIPG pediatric GBM found recurrent focal
gains for ERBB4 (96).

As previously discussed, ErbB4 can heterodimerize with the
other ErbB family members, with each dimer having unique
signalling properties. For example, since EGFR is dysregulated in
approximately 70% of GBMs, the EGFR/ErbB4 heterodimer
would almost certainly be present in tumors and may even be
the dominant signalling moiety (113). Likewise, the presence of
ErbB2 and ErbB3 has the capacity to alter the function of ErbB4
in tumors. Thus, additional studies are required to determine
how the co-expression of ErbB family members may influence
the function of ErbB4 in patients.

In summary, research is limited regarding individual ErbB4
isoform expression in brain tumors. However, analysis of ErbB4
isoform differential expression in medulloblastoma and
ependymoma has highlighted the association between JM-a
isoform expression and higher proliferative indices, translating
to poorer survival rates (87, 88). Comparison of isoform-specific
expression in low- versus high-grade glioma has not been
reported, however the JM-a isoform appears to be the
dominant isoform in GBM, and this may contribute to tumor
aggressiveness (10). Future mechanistic studies are required to
clarify the role of the JM-a isoform in GBM progression.

ErbB4 and possible therapeutic
implications in high grade glioma

Currently there are no small molecule inhibitors that
specifically inhibit ErbB4. There are, however, inhibitors that
block the activity of ErbB4 in conjunction with other ErbB
family members. We have demonstrated that the pan-ErbB
inhibitor dacomitinib could inhibit the growth of GBM and
pediatric medulloblastoma in orthotopic xenograft models
(114). Similar results have been obtained with a second pan-
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ErbB inhibitor, NT113, in models of adult GBM (115). However,
it remains unknown whether the inhibition of ErbB4 enhances
or impedes the efficacy of these drugs. Another possible
approach might be the repurposing of ibrutinib, which was
designed to target Bruton’s tyrosine kinase. A recent report
demonstrated that it inhibited ErbB4 at low concentrations and
showed some preferential efficacy towards high-expressing
ErbB4 cell lines (116).

The effective use of agents that inhibit ErB4 in brain cancer
will require research that identifies pro-tumorigenic forms of
ErbB4; targeting tumor suppressor forms of ErbB4 with drugs
could obviously be detrimental to patients. As previously
discussed, mutations of ErbB4 have been described in a range
of brain cancers and the presence of such activating mutations
could identify patients who may benefit from ErbB4
therapeutics. We recently demonstrated that the presence of
highly phosphorylated ErbB4 in GBM, independent of
phosphorylated EGFR, was linked to shorter patient survival
compared to its absence (10). Additionally, in xenograft models,
increased ErbB4 activation in GBM cells was associated with
increased tumorigenicity, proliferation, and angiogenesis, as well
as reduced sensitivity to anti-EGFR treatments (10). This
strongly suggests that in GBM, activation of ErbB4 is pro-
tumorigenic and thus phosphorylated ErbB4 could be a second
biomarker for predicting response to ErbB4 targeting drugs. The
mechanisms by which ErbB4 activation increases high-grade
glioma aggressiveness are not yet understood. Indeed, there may
be other viable targets within this pathway.

No specific ErbB4 inhibitors are currently available.
Furthermore, the implications of inhibiting ErbB4 function in
the brain, particularly the developing child brain, must be
considered. As previously established, ErbB4 has important
roles in normal brain physiology and vital roles in brain
development (25). Thus, it is reasonable to speculate that
negative side effects could occur in patients administered an
ErbB4 inhibitor. It may be possible to limit side effects by
developing isoform-specific inhibitors that target only the
oncogenic ErbB4 isoform JM-a/CYT-2. Using approaches such
as CRISPR in patient-derived cell lines will allow us to determine
the role of the different isoforms, such as JM-a/CYT-2, in the
growth and survival of brain cancer cells. These are the critical
studies required before moving ErbB4 therapeutic forward into
the clinic. Developing inhibitors for specific ErbB family
members has proven a difficult task and may take a significant
amount of time and resources to achieve. It is therefore
imperative to elucidate ErbB4 signalling mechanisms in HGG
and establish the impact of this pathway on disease progression
and therapeutic resistance before developing such inhibitors.

We have shown that the interaction between ¢-MET and
EGEFR leads to the transactivation of both receptors in GBM
(117). It is likely that ErbB4 can also be activated by other
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receptors expressed in brain cancers. Indeed, as recently
extensively reviewed, many G-protein-coupled receptors can
activate members of the ErbB family, including ErbB4 (118).
Therefore, when determining the role of ErbB4 in brain cancers,
other mechanisms of activation apart from ligand engagement
must be considered. Identifying the presence of activated ErbB4,
rather than the simple presence of ErbB4 protein, may be the
most important approach to determining if ErbB4 is a driver in
patient tumors (10).

Lessons should be learnt from the development and trial of
EGFR-specific inhibitors in GBM treatment. While promising in
pre-clinical models, EGFR inhibitors have had inconsistent
results in clinical trials (119). This is believed to be due to the
highly plastic and heterogenous nature of high-grade gliomas
(119). Ultimately, a single target may not be enough to treat
these cancers. Perhaps a multi-faceted approach with both
ErbB4 inhibitors and EGFR inhibitors could prove more
consistently effective against high-grade gliomas.

Future directions

The ‘uniqueness’ of ErbB4 in the ErbB receptor family,
epitomized by its isoform variations, tissue- and disease state-
specific expression, vast array of activating ligands (and yet, a
seemingly selective subset of downstream targets), and large
number of tyrosine phosphorylation sites makes it an attractive
potential target to treat diseases such as GBM. However, these
unique characteristics, in conjunction with the lack of inhibitors and
other high-quality reagents for detecting its activation, and its ability
to homo- and heterodimerize with other members of the ErbB
receptor family, also make it inherently complicated to study.

Clearly, more mechanistic studies are required to further
elucidate the role that ErbB4 may play in the progression of
GBM. Current therapies do not adequately address the diffuse
nature of this tumor or the plasticity of the signalling pathways
that underlie its progression. Therefore, further insights into the
role of ErbB4 in this disease are warranted.
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