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Abstract: Traditional methodologies often fall short in addressing the complexity of biological
systems. In this regard, system biology omics have brought invaluable tools for conducting com-
prehensive analysis. Current sequencing capabilities have revolutionized genetics and genomics
studies, as well as the characterization of transcriptional profiling and dynamics of several species
and sample types. Biological systems experience complex biochemical processes involving thousands
of molecules. These processes occur at different levels that can be studied using mass spectrometry-
based (MS-based) analysis, enabling high-throughput proteomics, glycoproteomics, glycomics,
metabolomics, and lipidomics analysis. Here, we present the most up-to-date techniques utilized
in the completion of omics analysis. Additionally, we include some interesting examples of the
applicability of multi omics to a variety of biological systems.

Keywords: systems biology; omics; genomics; transcriptomics; proteomics; glycoproteomics; glycomics;
metabolomics; lipidomics; foodomics

1. Introduction

Omics is an interdisciplinary research field focused on understanding the interactions
within biological systems from a holistic perspective, considering the entire system rather
than individual parts [1,2]. This field emphasizes the use of high-throughput technolo-
gies and large-scale data generated at the molecular level. Computational tools are then
employed to integrate and analyze the data, enabling an understanding of biological pro-
cesses. The “omics” concept encloses the subfields of genomics [3], transcriptomics [4],
proteomics [5], glycoproteomics [6], glycomics [7], metabolomics [8], lipidomics [9], and
several others, providing a comprehensive analysis of the corresponding biomolecules.

In recent years, omics science has emerged as a pivotal area of research in under-
standing cellular and molecular systems, significantly enhancing our comprehension of
human health, development, diagnosis, prognosis, and aging [10]. Omics technologies
offer detailed insights by cataloging variations linked with different stages of diseases or
a variety of biological processes, thereby serving as a critical tool for monitoring disease
progression and developing biomarkers. Stand-alone omics approaches offer a restricted
point of view of the studied system, offering insights into specific molecules and their
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potential significance in metabolic pathways. Additionally, these approaches lack the
necessary information for a comprehensive understanding of dynamic biological processes.
In this regard, multi omics plays a central role in unraveling the relationships between
different biomolecules and their interactions by simultaneously examining different single
omics approaches (Figure 1), to provide a holistic view of the biological system [11]. This
allows for the validation of individual findings and reduces the risk of false positives. As
a fundamental component of system biology, multi omics allows researchers to explore
biological systems as interconnected networks. However, the integration of omics data is
challenging due to factors such as large data sets, data heterogeneity, sample sizes, and
the need for advanced statistical methods [1]. Multi omics approaches could shed light on
the fundamental causes of diseases, their functional repercussions, and pertinent interac-
tions [12,13]. Together, omics technologies offer a comprehensive view of the biological
status and changes occurring within an organism, especially in the context of disease.
The integration of data from these diverse sources allows researchers to construct a more
comprehensive model of disease mechanisms. This integrated approach helps identify
potential diagnostic markers and therapeutic targets and enhances our understanding of
the complex network of biological pathways involved in disease etiology and progression.
By enabling a systems-level analysis, omics sciences facilitate the identification of key
regulatory nodes and pathways that could be targeted for intervention, paving the way for
personalized medicine and improved healthcare outcomes [14–16].
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Figure 1. Multi omics. Inside the eukaryotic nucleus, spatial conformations of genomic material
and interactions participate in regulating gene expression. Different RNAs are accumulated, and
some splice variants are produced in response to internal and external stimuli. Transcripts can be
rapidly degraded or preserved and can sustain high or low translation rates. Post translational
modifications provide different protein functions that can modify ligand affinity, protein interactions,
catalytic activity, etc. The cellular regulatory processes favor synthesis, degradation, modification,
and interaction of a multitude of molecules. The right section of the figure shows high-throughput
sequencing methods and technologies to measure gene expression in situ, and the common LC-
MS/MS label-free quantitation “discovery stage” followed by the targeted “validation stage”.

This review provides a comprehensive and up-to-date description of the most widely
used omics techniques and describes their applicability for understanding biological sys-
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tems. Additionally, our review focuses on holistic approaches that have demonstrated the
benefits of multi omics applications.

2. Genomics and Transcriptomics

A few decades ago, scientists studied single genes at a time. Current technological
innovations allow fast and cost-effective sequencing of entire genomes [17]. This tremen-
dous change in sequencing capability is reflected in the first human genome, which was
produced by an international consortium that cost billions of dollars; today, the sequenc-
ing of individual genomes can be completed for a reasonable price in a relatively short
time [18]. Such technological progress encourages research efforts focused on genomic
studies rather than single genes. Genomics encompasses a wide range of approaches to
study and understand organisms’ DNA. This includes the analysis of genome structure
and composition (genes as well as non-coding regions), their functions and interaction with
each other, variation, evolution, and more. The significant improvement in the throughput
and accuracy of sequencing capabilities has had an important impact on the identification
of novel coding and regulatory regions [19], as well as on our understanding of the spatial
organization of the DNA within a cell nucleus [20]. Genomics has also revolutionized the
pharmaceutical industry by allowing the identification of protein targets and accelerating
drug discovery [21–23]. The field has seen rapid expansion, with models and methods
developed for analyzing genome rearrangements [24], gene duplication, phylogenetic
networks [25], and gene clustering [26].

While genomics provides an overview of all the genetic information of organisms,
transcriptomics refers to the study of gene expression patterns of the entire set of RNA
molecules in an individual [27]. High-throughput sequencing technologies (e.g., Illumina)
allow quantifying the number of times a given sequence is present in a sample. In global
transcriptomics analyses, RNA is isolated from tissue samples and further prepared to
enrich messenger RNAs (mRNAs), small RNAs (sRNAs), long non-coding RNAs (lncRNA),
etc. The resulting data represent a snapshot of the enriched RNA abundance from the
bulk of cells within the sample. These analyses provide an average representation of
gene expression across a population of cells [28]. Although transcriptomics offers an
important source of information, it does not tell the whole story about transcripts. It
does not consider the rate at which transcripts are produced or degraded, nor how much
of the transcripts are translated into proteins. Additional techniques, such as polysome
profiling, allow researchers to estimate the translation rate of a transcript by measuring
the number of ribosomes attached to individual mRNAs [29,30], and ribosome profiling
can tell the ribosome footprint by isolating the section of the transcript that is bound to the
ribosome [31,32]. More sophisticated library preparations involving reversible inhibition of
transcription elongation combined with tagging nascent RNA can also provide information
about the specific transcription rates of mRNAs and their degradation, as well as providing
clues about the splicing process [33–35]. More recently, long-read sequencing techniques,
such as PacBio Iso-Seq or Oxford Nanopore direct RNA-seq, allow the sequencing of
complete transcripts to detect multiple isoforms from the same gene and their dynamics
between distinct treatments [36].

Multicellular organisms show a great diversity in cellular composition. For instance,
even though a human being originates from a single diploid cell as tissue develops, dif-
ferent cells fall into a heterogeneity of cellular fates influenced by internal and external
factors [37,38]. Moreover, once fully developed, cells from the same tissues undergo distinct
tasks. Currently, platforms such as Fluidigm C1, Clontech iCell8, BD Rhapsody, and 10×
Genomics Chromium allow the isolation of individual cells or nuclei to prepare single-cell
RNA-seq (scRNA-seq) libraries [39]. Every platform has its strengths and limitations. A
recent study compared the droplet-based 10× Chromium and the microwell-based BD
Rhapsody [40]. The results of this study indicate that the microwell-based platform ex-
hibits better mRNA capture efficiency, but it can be under-represented or even lose larger
cell types compared to the droplet-based system. The scRNA-seq technology has been
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applied to understand the dynamic activities of transcription regulation over time and the
trajectories of cell states at the individual cell level, for instance, in response to neuronal
activation [41]. Moreover, generating multiple single-cell data has allowed scientists to
produce reference single-cell atlases to compare cellular conditions across various research
investigations [42]. Although scRNA-seq has significantly increased our understanding
of the complex cellular heterogeneity of tissues and organs, it has some disadvantages,
such as the effect of cell dissociation and the loss of positional information [43]. The spatial
context of the cells has a significant role in developmental biology, cellular communication,
and disease study, among others. Emerging technologies to determine cell gene expression
preserving in situ spatial locations within a tissue are known as spatial transcriptomics
(ST). These technologies can be broadly divided into imaging-based and sequencing-based
methods [44]. Imaging-based technologies rely on fluorescence in situ hybridization of
probes that target specific genes. Conversely, sequencing-based technologies depend on
spatial barcodes on an array to capture transcripts unbiasedly. Recent reviews have dis-
cussed currently available ST technologies’ characteristics, applications, advantages, and
limitations [45,46]. Commercially available ST technologies for whole transcriptome profil-
ing include the 10× Visium, which resolves several to dozens of cells [47]. New methods
such as Stereo-seq can provide single-cell resolution, and it has been successfully used to
study the spatiotemporal transcriptomic dynamics during organogenesis [48].

3. Proteomics, Glycoproteomics, and Glycomics

Proteomics and its associated glycoproteomics and glycomics techniques are dynamic
research areas working to elucidate the associations between protein structure and func-
tion [49–51]. Protein abundance and post-translational modifications are the fundamental
parameters utilized to evaluate the dynamic behavior of proteins. The exponential growth
of these omics was possible due to their integration with mass spectrometry-based (MS-
based) analysis, which enormously contributed to the creation of large and reliable data
sets from a variety of sample types such as plants [52], animal models, human bodily fluids,
tissues, etc. [53–56].

In MS-based proteomics, the proteins are identified using two common approaches:
bottom up and top down. In the bottom-up approach, the intact proteins are digested
into peptides prior to introduction to the mass spectrometer, where they are detected
and fragmented to facilitate identification [57]. In top-down proteomics, the proteins are
ionized and fragmented in the intact form in the mass spectrometer [58]. This approach
allows an important characterization of protein isoforms and provides a general picture
of the protein’s post-translational modifications, such as glycosylation, acetylation, and
phosphorylation [59,60]. The protein purification stages are crucial for the obtention of
sensitive and reproducible results. In the past decade, proteomics analysis was commonly
performed on bodily fluids such as serum, plasma, and cerebrospinal fluid (CSF) and
different types of tissues [61–63]. These investigations mainly searched for abundance
changes in the proteome of disease samples compared to healthy controls. At present,
proteomics analysis has extended to more complicated samples such as extra vesicular
exosomes (EVs) [64], nucleosomes [65], or single-cell approaches [66]. For instance, Van
den Ackerveken et al. [65] developed a fast and robust enrichment method able to isolate
nucleosomes from plasma. Further top-down proteomics analysis of colorectal cancer
(CRC) samples showed alterations in the histone PTMs after alterations of epigenetic
modification [65,67]. The approach was able to identify and quantify 13 histone PTMs
with significant changes in abundance between the CRC and the control samples. Recent
advancements in MS instruments, such as the development of the Orbitrap Astral (Thermo
Fisher Sci.), allowed researchers in the field to address single-cell proteomics using label-free
quantitative (LFQ) analysis. Ye et al. [68] developed a lossless LFQ single-cell proteomics
(SCP) method used for the identification of over 40,000 peptides and 5000 proteins in
Hela cells. The approach integrated sample preparation utilizing the cellenONE, the
proteoCHIP EVO96, and the direct transference of the sample to Evotip disposal trap
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columns. The samples were subsequently analyzed using the Evosep One LC, with whisper
flow gradients linked to a narrow-window data independent acquisition (DIA) system.

Glycoproteomics and glycomics MS-based analysis is dedicated to the comprehensive
study of carbohydrate moieties present in cells and organisms. These branches of omics
science delve into understanding the structure, function, and dynamics of glycans attached
to proteins and lipids across different biological systems and their role in health and dis-
ease. By analyzing these structures, glycomics and glycoproteomics analysis provides
insights into cellular communication [69,70], immune response [71], pathogen interac-
tion [72,73], and disease progression [74], making it a crucial field in biomedical research
and therapeutic development. Advanced technologies such as high-performance liquid
chromatography–mass spectrometry (LC-MS) are employed to decipher the complex and
diverse structures of glycans and the protein O- and N-site heterogeneity. Derivatization
techniques are essential due to the low ionization efficiency and poor stability of native
glycan and glycopeptide structures that hinder their accurate quantitation and detection
by MS systems [75–77]. Through derivatization, researchers can achieve more accurate
glycan and glycopeptide profiling, facilitating a deeper understanding of glycan functions
in biological processes and disease mechanisms. Common glycan derivatization tech-
niques include hydrazide chemistry [78], carbamate derivatization [79], chemical labeling
by reductive amination [80], and permethylation [81]. In the case of glycopeptides, the
glycan moiety can be derivatized through selective reductive amination reactions directed
to the sialic acid [76,77]. The glycopeptides can also be derivatized, targeting the peptide
N-terminus using tandem mass tags (TMTs) [82]. Alterations in glycan expression are
linked to various diseases, including cancer [83–85], neurodegenerative diseases [86–88],
autoimmune disorders [89,90], and infectious diseases [73,91,92]. These changes can impact
cell signaling [93], immune recognition [94], and molecular stability [95], leading to altered
cellular behaviors and disease progression. For example, in cancer, altered glycosylation
can promote tumor growth, facilitate metastasis, and enable evasion of immune surveil-
lance [96]. In autoimmune diseases, aberrant glycosylation can lead to improper immune
responses against self-antigens [90]. Understanding these changes is crucial for developing
diagnostic markers and therapeutic targets. Integrating glycomics and proteomics analyses
enhances our understanding of disease mechanisms by providing a comprehensive view of
the glycome and its interaction with proteins [97–99]. Mechref and co-workers [53] have
shown that integrating proteomics and glycomics analysis can shed light on the glycopro-
tein source of glycans and provide mechanistic insight into the clinicopathological changes
observed in different disease conditions [53]. This strategy was applied to samples derived
from healthy and mild cognitive impairment (MCI) patients. The results pointed to the
isomeric N-glycans GlcNAc5,Hex6,Neu5Ac3 and GlcNAc4,Hex5,Fuc,Neu5Ac as biomarker
candidates to differentiate healthy and MCI patients. Moreover, the proteomics analysis
showed a correlation of the identified glycoproteins with neuroinflammation, an impor-
tant process in the progression of brain-related diseases. The same research group also
utilized proteomics-glycomics approaches to describe the protein glycosylation differences
in 11 SARS-CoV2 variants. A significantly large abundance of sialofucosylated N-glycans
was observed in the variants of concern when compared to the variants of interest. The
proteomics analyses were used for the validation of variant amino acid sequences [92].

4. Metabolomics and Lipidomics

The metabolome includes all the small-molecule metabolite parts of a biological
sample, including structural functions, stimulatory and inhibitory effects, fuel storage
molecules, and others [100]. Lipids are structurally diverse molecules that perform multiple
important functions within the cell. They are characterized by their hydrophobic nature
and fundamental components of the cellular membranes [101]. Either the metabolome or
the lipidome can be studied at the single-cell level or in a more complex matrix such as a
bodily fluid or an organ tissue [100,102,103]. The analyses of these biological systems using
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high-throughput targeted or untargeted metabolomics or lipidomics MS-based analysis
provide an invaluable opportunity to study and quantify differential abundance [104].

Recently, a few techniques based on single-cell metabolomics (SCM) have been de-
veloped, including Patch clamp-based nano ESI-MS, CE-MS-based SCMS, MALDI-MSI-
based SCMS, LALDI-MSI-based SCMS, SIMS-MSI-based SCMS, and mass cytometry-based
SCMS [105]. Metabolites are crucial components of biochemical pathways and cellular
functions; therefore, quantitative metabolomics has become a powerful tool in many re-
search fields, including those investigating cancer and neurodegenerative disorders. In this
sense, there is a challenge to explore and identify metabolic hallmarks that can track disease
development and progression [106]. Cancer cells can reprogram their metabolic pathways
to adapt tumor microenvironments and survive pharmacological treatments [107]. This
phenomenon, known as metabolic plasticity, results in a heterogenous tumor with different
metabolic phenotypes that are hard to characterize and consequently difficult to treat [108].
In this regard, SCM has been applied in the identification of sub-types of circulating tumor
cells with distinct metastatic potential [109], and provided useful information for drug
therapy [110,111]. In addition, SCM has been used to study the dynamic cancer cell–cell
interaction during the drug resistance process [112] and the potential role of microbiota in
the development and progression of different cancer types [113]. As metabolites directly
reflect the cell behavior, the integration of SCM with other single-cell omics could suggest
mechanisms underlying tumor development and drug resistance. Metabolomics have also
been used to investigate neurodegenerative disorders [114]. Despite the expanding preva-
lence of SCM, scarce evidence of studying neurodegenerative disorders at the single-cell
level has been reported. Metabolomics was applied to a preclinical model of Alzheimer’s
disease (AD); seven AD-related neurotransmitters and sixteen biomarkers were identified
by SCM in PC12 cells [115]. It is only a matter of time before SCM will be employed on
neurodegenerative disorders to explore the individual role of each neuron and glia cell in
the progress of neurodegeneration.

Other most affordable LC–MS/MS strategies employed for metabolomics analysis
of biological samples have served to identify potential biomarkers in human serum from
patients with diabetes [116], schizophrenia [117], ischemic stroke [118], and other health con-
ditions [119–121]. Similar technique also have been used to assess food quality [122–126]
and the toxic effects of xenobiotics [127,128]. In order to enhance accuracy, precision,
and throughput, common LC-MS techniques have employed 13C or 18O isotopic ap-
proaches [129–132]. MALDI imagining is an MS-based technique widely used for the
characterization of tissues derived from several health conditions facilitating their diagno-
sis and therapy [133–137].

Lipids possess significant nutritional value due to their high caloric density and
their capacity to transport essential substances that the human body cannot produce
independently. Lipids are also involved in intra- and extracellular signaling processes [138].
Lipidomics focuses on the study and characterization of cellular and bodily fluid lipids,
along with their interactions and functions within the body. This field is a crucial tool
in healthcare for identifying biomarkers useful in diagnosing and developing therapies
for various diseases [139,140]. For example, the nervous system contains a large amount
of lipids. It has been suggested that neurological disorders may be associated with lipid
homeostasis, among other factors [103,141]. It has also been described that there are
changes in the lipidomic profiles of bioactive lipids in plasma and CSF, as well as in
specific anatomical regions of the brain associated with the pathological characteristics of
AD and Parkinson’s disease [142]. Significant alterations in plasma lipids have also been
described in rats and mice with spinal cord and sciatic nerve injury, which indicates that
lipid metabolism could be related to the recovery and/or damage processes following
nerve injury [143,144]. The application of lipidomics to disorders associated with metabolic
syndrome has been widely described. Lipidomics plays a key role in risk prediction
studies and therapeutic monitoring of diseases related to metabolic syndrome, given the
close association of lipids with these diseases [145]. Furthermore, this discipline has been
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valuable for determining population profiles, conducting research on pathogenesis, and for
identifying biomarkers and monitoring therapeutic responses [146]. It has been described
that the lipidome is altered in many neoplastic diseases. The main applications of lipidomics
in these types of disorders have focused on the detection and classification of neoplastic
cells or tissues, on differentiation between neoplastic and normal environments, in the
evaluation of cancer treatments, and for the discovery of new tumor biomarkers [147].

5. Multi Omics Integration

The study of organisms as complex systems requires the integration of distinct ap-
proaches (Figure 1). For instance, although genomic and transcriptomic analyses offer
powerful tools in our understanding of molecular processes, downstream gaps cannot
be filled without integrating other approaches. None of the above methods provide in-
formation about what happens to a gene’s translated product or the effect of metabolite
accumulation. Consideration of these questions highlights the relevance of multi omics
analysis, as they provide a more complete and holistic landscape of cell molecular interac-
tions. Table 1 summarizes additional omics approaches, focusing on the multi-integration
of molecular data sets.

Table 1. Complemental integrative omics applications.

Omics
Spotlight

Omics
Integration Applications References

Diagnosis
and

prognosis

G+T+P+M Alzheimer’s disease diagnosis [148]
T+Me+scT Evaluation of Covid-19 prognosis [149]
G+T+P+pP Hepatocellular carcinoma classification [150]

G+T Identification of prognostic biomarkers for gastric cancer [151]
P+M+L Search for pathway alterations in Alzheimer’s disease [152,153]
G+T+M Identification of metabolite biomarkers for predicting radiation resistance [154]
T+P+E Epigenetic alterations associated with Alzheimer’s disease [155]
G+T+P Gastrointestinal microbiome and diabetes mellitus (type 1) [156]
G+P+M Liver disease pathogenesis [157]
T+P+M Effect of heavy-metal exposure in neurodevelopment [158]
sT+sM Spatial resolution approaches to study brain injuries [159]
sT+sM Multimodal spatial approach used in Parkinson’s disease [160]
scT+E Identification of genomic variants associated with eye diseases [161]

Biomarker

T+M+L Progression of lung fibrosis [162]
G+T+P Metabolic mapping of Alzheimer’s disease [163]

G+T+M+Me Identification of osteoporosis biomarkers [164]
M+L Predictive biomarkers for COVID-19 severity [165]

G+T+P+pP Exploration for Hepatocellular carcinoma biomarkers [150]
P+Gly Identification of mild cognitive impairment biomarkers [53]
T+P Temporal lobe epilepsy biomarkers [166]
T+P Emphysema biomarkers [167]
T+P Idiopathic pulmonary fibrosis [168]

Drug
targets and
therapeutics

G+T+P Alzheimer’s drug discovery [169]
G+T+P Prostate cancer diagnosis and therapies [170]
P+Gly Glycosylation profile of the S1 protein of eleven SARS-CoV-2 variants [92]
G+T Drug response profiling of childhood acute lymphoblastic leukemia cell lines [171]
G+T Prioritization of therapeutic targets for dyslipidemia [172]

Abbreviations: G, genomics; T, transcriptomics; P, proteomics; M, metabolomics; L, lipidomics; Gly, glycomics; sc,
single cell; p, phospho; Me, methylomics; E, epigenomics; and s, spatial.

Omics technologies are high-throughput molecular assays that produce large data
sets of information. Public repositories facilitate the accessibility of this information to the
scientific community. Some examples are the following: for high-throughput sequencing
SRA [173]; for functional genomics and DNA sequence information NCBI GEO [174], Gen-
Bank [175]; for spatial transcriptomics CROST [176]; for proteomics and glycoproteomics
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PRIDE [177], Proteome Xchange [178]; for glycomics GlycoPOST [179]; for metabolomics
and lipidomics MetaboLights [180], HMDB [181]; and many others for multi omics as listed
in the references [182–184]. However, single omics relay in the application of common
statistics mainly focusing on the differentiation of the studied groups, for example, principal
component analysis (PCA) plots; heat maps; receiver operating characteristic (ROC) curves;
dot plots; statistical tests such as Anova, t-test, Mann–Whitney U Test, and several others
in accordance with the data size and distribution; and the appropriated false discovery
rate (FDR) corrections such as Benjamini-Hochberg, Bonferroni, etc. [185–187]. Regarding
the multi omics integration, the application of computational approaches is necessary due
to the data complexity. Ingenuity pathway analysis (IPA) is an extensive database from
QIAGEN Co. able to integrate transcriptomics, proteomics, and metabolomics data in
diverse biological pathways [188]. A similar free alternative is iPathwayGuide developed
from ADVAITA Co. [189]; many other software developments and its applications in di-
verse multi omics investigations are described in the following references: IOAT [190],
multi omics of primary immunodeficiencies [191], Omics TIDE [192], IBAG [193], cancer
omics [194], and TiMEG [195].

Foodomics

Foodomics represents the integration of advanced omics technologies in food and
nutrition studies, aimed at enhancing consumer welfare, health, and understanding [196].
This interdisciplinary field merges food chemistry, biological sciences, and data analysis
techniques to comprehend food and its constituents at a molecular level, with the over-
arching goal of improving food quality, safety, and nutrition by exploring the intricate
interactions between food components and the human body. In foodomics research, a
primary focus lies in understanding the interplay between food constituents and biological
systems, striving to identify biomarkers that objectively measure food intake and shed light
on its physiological effects [197]. Foodomics methodologies find application in various
studies aimed at linking dietary patterns with health outcomes. Research outcomes can
utilize metabolomics techniques to identify specific compounds in diets and analyze their
impact on health. For instance, ongoing studies apply metabolome analysis to unveil food-
specific compounds (FSCs) that can bridge dietary patterns, such as the Mediterranean-style
(MED) diet, with overall health outcomes. Drawing from a controlled feeding MED inter-
vention, the study validates the identification of FSCs from eight distinct foods, detectable
in biospecimens post-consumption [198]. Another example is the use of nuclear magnetic
resonance (NMR) to reveal alterations of protein and carbohydrate metabolisms in different
diets [199]. This study provides new insights into the effects of a healthy diet on glycemia,
reduction of inflammation, and weight loss among obese individuals, as well as alteration
of the gut microbiota metabolism.

Dilmore et al. [200] evidenced that the modified Mediterranean ketogenic diet (MMKD)
could offer potential benefits in combating memory decline associated with AD. The study
implemented MMKD dietary interventions for participants with mild cognitive impair-
ment (MCI) to assess their cognitive function. The study utilized shotgun metagenomics to
analyze the gut microbiota composition of participants, providing insights into how these
dietary interventions influenced the microbiome. Additionally, untargeted metabolomics
was employed to analyze metabolite profiles in samples collected at various intervals
during the dietary interventions, to identify changes in metabolites related to cognitive
function and gut health. However, the untargeted metabolomics platform has limitations
in characterizing lipid metabolism and mitochondrial function compared to targeted plat-
forms. Through metagenomic and metabolomic analyses, potential biomarkers associated
with cognitive function and gut health were identified. For example, changes in the levels
of GABA-producing microbes and GABA-regulating bacteria were observed in individuals
with MCI following the MMKD, suggesting a link between gut microbiota composition
and cognitive status. Overall, the study integrated a multi omics approach to investigate
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the relationship between dietary interventions, gut microbiota composition, metabolite
profiles, and cognitive function in individuals at risk for AD.

Foodomics represents a dynamic and interdisciplinary field that holds promise for
enhancing our understanding of food and its effects on health and well-being. This field has
implications for food industry practices, public health policies, and personalized nutrition
strategies, especially with the rise of alternative sources of nutrients.

6. Concluding Remarks

Omics sciences stand at the forefront of biomedical research, offering unprecedented
insights into the molecular underpinnings of diseases. Their application in disease study
promises to revolutionize the diagnosis, treatment, and prevention of human diseases,
highlighting their indispensable role in advancing medical science and improving patient
care. In this review, we have discussed the current technological innovations that allow
fast and cost-effective sequencing of entire genomes. Additionally, we revised a set of
novel and accurate transcriptomics techniques focused on showing how the transcript
patterns are affected by the development or disease progression. The development of
modern MS techniques has allowed the acquisition of high-throughput data sets in the
proteomics, metabolomics, and lipidomics fields. Additionally, we described examples
of recent studies using single cells or derived from diverse bodily fluids, as well as plant
materials. This review offers an extensive and up-to-date overview of the most widely
used omics techniques, detailing the relevance of the omics field in understanding different
types of biological systems using a holistic view.
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