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Although immune dysfunction is a key feature of coronavirus disease 2019 (COVID-19),
the metabolism-related mechanisms remain elusive. Here, by reanalyzing single-cell RNA
sequencing data, we delineated metabolic remodeling in peripheral blood mononuclear
cells (PBMCs) to elucidate the metabolic mechanisms that may lead to the progression of
severe COVID-19. After scoring the metabolism-related biological processes and
signaling pathways, we found that mono-CD14+ cells expressed higher levels of
glycolysis-related genes (PKM, LDHA and PKM) and PPP-related genes (PGD and
TKT) in severe patients than in mild patients. These genes may contribute to the
hyperinflammation in mono-CD14+ cells of patients with severe COVID-19. The mono-
CD16+ cell population in COVID-19 patients showed reduced transcription levels of genes
related to lysine degradation (NSD1, KMT2E, and SETD2) and elevated transcription levels
of genes involved in OXPHOS (ATP6V1B2, ATP5A1, ATP5E, and ATP5B), which may
inhibit M2-like polarization. Plasma cells also expressed higher levels of the OXPHOS gene
ATP13A3 in COVID-19 patients, which was positively associated with antibody secretion
and survival of PCs. Moreover, enhanced glycolysis or OXPHOSwas positively associated
with the differentiation of memory B cells into plasmablasts or plasma cells. This study
comprehensively investigated the metabolic features of peripheral immune cells and
revealed that metabolic changes exacerbated inflammation in monocytes and
promoted antibody secretion and cell survival in PCs in COVID-19 patients, especially
those with severe disease.
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HIGHLIGHTS

1. COVID-19 patients, especially those with severe cases,
showed dramatic metabolic remodeling in immune cells.

2. Enhanced glycolysis and PPP activity may contribute to the
hyperinflammation of mono-CD14+ cells in severely ill
patients.

3. Reduced lysine degradation and OXPHOS in mono-CD16+

cells may inhibit M2-like polarization in COVID-19 patients.
4. Increased OXPHOS activity was positively associated with

antibody secretion and survival of PCs in patients with severe
COVID-19.
INTRODUCTION

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
continues to spread globally, causing widespread morbidity and
mortality and showing a tremendously high transmission rate
(1). Infection with SARS-CoV-2 is characterized by a broad
spectrum of clinical syndromes, which range from asymptomatic
disease or mild influenza-like symptoms to severe pneumonia
and acute respiratory distress syndrome, often requiring assisted
mechanical ventilation and even resulting in death (2, 3). Severe
coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2
infection is often associated with older populations and
individuals with preexisting conditions, such as cardiovascular
disease, diabetes, chronic respiratory disease, and cancer (2).

Recent reports revealed that the progression to severe COVID-
19 is associated with immune dysregulation (4). Patients with
severe COVID-19 showed drastic changes in their myeloid cell
compartments, with an increased proportion of neutrophils and
classical (CD14hiCD16lo) monocytes, dysfunction of HLA-
DRloCD163hi and HLA-DRloS100AhiCD14+ monocytes, and a
decreased fraction of nonclassical (CD14loCD16hi) monocytes (5).
A highly impaired interferon (IFN) response is a hallmark of severe
COVID-19 and causes a persistent viral load and immunopathy
(6, 7). In patients with severe COVID-19 but not in patients with
mild disease, lymphopenia is a common feature, with drastically
reduced numbers of CD4+ T cells and CD8+ T cells. Lymphopenia
or dysfunction of T cells is one of the key indicators of disease
progression (8, 9). SARS-CoV-2-specific neutralizing antibodies
produced by plasma cells (PCs) are important for viral clearance
(10). Critically ill COVID-19 patients but not those with mild
symptoms had high concentrations of a fucosylated IgG antibodies
against SARS-CoV-2, amplifying proinflammatory cytokine release
and acute-phase responses (11). Therefore, antibodies,
lymphopenia and inflammatory markers in monocytes may help
identify COVID-19 cases and predict their severity.

Metabolism is a fundamental biological process that includes
anabolism and catabolism for cell maintenance and growth (12). To
date, many studies have focused on the roles of metabolic rewiring
in the control of immune responses in various diseases, including
COVID-19 (11, 13–15). One such study found that enhanced
glycolysis in monocytes and macrophages led to excessive and
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prolonged production of the cytokines IL-6 and IL-1b in
atherosclerosis (15). In COVID-19 patients, enhanced glycolysis
in monocytes suppresses the T cell response and promotes
epithelial cell death in the lungs (13). Depolarization and
dysfunction of mitochondria in monocytes are also correlated
with reactive oxygen species generation, proinflammatory
cytokine secretion, and cell death in SARS-CoV-2-infected
patients (16). Metabolic shifts in CD4+ T and CD8+ T cells
control cell differentiation and inflammation (14, 17). Antibody
production is a metabolically demanding process. In patients with
HIV infection, antibody glycosylation is determined in an antigen-
and pathogen-specific manner, highlighting the importance of
metabolic processes in antibody production (18). However, the
metabolic alterations related to antibody production in SARS-CoV-
2-infected patients are still incompletely understood. Collectively,
these findings demonstrate that SARS-CoV-2 infection may cause
metabolic alterations in immune cells (subsets of monocytes, T cells
and B cells) that contribute to immune dysfunction and disease
progression in COVID-19 patients. However, a more in-depth
analysis of the metabolic alterations in immune cells and the
associations of these alterations with immune cell dysfunction
and disease progression in COVID-19 patients remains unclear.

In this study, we reanalyzed single cell RNA sequencing
(scRNA-seq) data of peripheral blood mononuclear cell
(PBMC) samples from 21 COVID-19 patients (10 with mild
and 11 with severe cases) and 11 healthy controls (HCs) to
identify the immunometabolic rewiring associated with disease
severity. We first assessed and mapped the metabolic landscape
of peripheral immune cells from mildly and seriously ill COVID-
19 patients by scRNA-seq. We identified several genes of
metabolic processes associated with inflammation, antibody
production and cell differentiation in these immune cells,
providing insight into the metabolic mechanisms underlying
disease severity during SARS-CoV-2 infection.
MATERIALS AND METHODS

Sample Collection
The single-cell gene expression data of PBMCs from 21 COVID-
19 patients (10 with mild cases and 11 with severe cases) and 11
healthy controls (HCs) were downloaded from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) or GSA database (https://
bigd.big.ac.cn/gsa/). The corresponding accession numbers were
GSE150728 (19), GSE149689 (20) and HRA000297 (21). Patients
older than 70 were excluded. All severely ill patients included in
this study needed mechanical ventilation. The clinical
characteristics of these patients are listed in Table S1. The
median days from symptom onset are 14.5 and 11.5 days in
mild and severe COVID-19 cases, respectively.

Single-Cell Filtering, Clustering,
Dimensional Reduction, and Visualization
The raw count matrix (UMI counts per gene per cell) was
processed with Seurat v3.2.2 (22). Cells with fewer than 200
expressed genes and in which more than 15% of transcripts were
April 2021 | Volume 12 | Article 651656
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mitochondrial genome transcripts were removed. Genes
expressed in less than 10 cells were removed. Then, the gene
expression data were normalized using the “NormalizeData”
function with default settings. The batch-driven sources of cell-
cell variation were regressed out using the number of detected
UMIs, mitochondrial gene expression data, and ribosome gene
expression data, which were implemented using the ‘‘ScaleData’’
function. The corrected expression matrix was used for cell
clustering and dimensional reduction. Cell clustering and
dimensional reduction were performed using the Seurat
package. A total of 2, 000 highly variable genes (HVGs) were
selected from the corrected expression matrix and were then
centered and scaled using the ‘‘FindVariableGenes’’ function in
the Seurat package. Principal component analysis (PCA) was
then performed on the HVGs using the ‘‘RunPCA’’ function. The
batch effects were removed with the “IntegrateData” function.

Cells were then clustered utilizing the ‘‘FindClusters’’
function by embedding the cells into a graph structure in the
PCA space. The parameter resolution was set to 1.5 to identify
cell types in all cell populations and in T cell populations. The
clustered cells were then projected onto a two-dimensional space
using the “RunUMAP” function. The clustering results were
visualized with the “DimPlot” function.

Identifying Various Cell Types
To annotate cell clusters, differentially-expressed genes (DEGs)
in each cluster were first identified with the “FindMarkers”
function. The cell clusters were then annotated according to a
curated set of known cell markers. The cell clusters consistently
expressing the same cell marker were merged.

Scoring of Metabolism-Related Gene
Ontology Terms and KEGG Pathways
Metabolism-related Gene Ontology (GO) terms were
downloaded from The Gene Ontology Resource (http://
geneontology.org/). The child terms of metabolic processes
(GO:0008152) were retained (Table S2). The metabolism-
related Kyoto Encyclopedia of Genes and Genomes (KEGG)
terms were downloaded from the KEGG database (https://www.
kegg.jp/), and a subset of 48 metabolism-related pathways were
extracted for further analysis (Table S3). The score of each GO
term or KEGG pathway in each cell was calculated using the
genes in each term with the AddModuleScore function in Seurat.

Score Immune Cell Function
Functional signatures of immune cells were calculated using the
AddModuleScore function in the Seurat package. The
inflammation score of monocytes was calculated using IFNG,
IL10, IL12A, IL13, IL17A, IL18, IL1A, IL1B, IL2, IL21, IL22,
IL23A, IL4, IL5, IL6, S100A8, S100A9, S100A10, S100A11,
S100A6, S100A12, TNF, and CXCL8. The IFN response score
was calculated using ADAR, APOBEC3, BST2, CD74, MB21D1,
DDIT4, DDX58, DDX60, EIF2AK2, GBP1, GBP2, HPSE, IFI44L,
IFI6, IFIH1, IFIT1, IRF1, IRF7, ISG15, ISG20, MAP3K14,
MOV10, MS4A4A, MX1, MX2, NAMPT, NT5C3, OAS1, OAS2,
OAS3, OASL, P2RY6, PHF15, PML, RSAD2, RTP4, SLC15A3,
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SLC25A28, SSBP3, TREX1, TRIM5, TRIM25, SUN2, ZC3HAV1,
IFITM1, IFITM2, and IFITM3. The MHC class II score was
calculated using HLA-DMA, HLA-DMB, HLA-DPA1, HLA-
DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, and
HLA-DRB5. The S100 gene family score was calculated using
S100A1, S100A2, S100A3, S100A4, S100A5, S100A6, S100A7,
S100A7A, S100A7L2, S100A7P1, S100A7P2, S100A8, S100A9,
S100A10, S100A11, S100A12, S100A13, S100A14, S100A15A,
S100A16, S100B, S100G, S100P, and S100Z. The aging score
was calculated using genes in the GO term aging (GO:0007568).
The apoptosis score was calculated using genes in the Apoptosis
pathway (hsa04210). The monocyte migration score was
calculated using genes in the GO term leukocyte migration
(GO:0050900). The T cell migration score was calculated using
genes in the GO term T cell migration (GO:0072678). The
cytotoxicity score was calculated using PRF1, IFNG, GNLY, NKG7,
GZMB, GZMA, GZMH, KLRK1, KLRB1, KLRD1, CTSW, and CST7.
The exhaustion score was calculated using LAG3, TIGIT, PDCD1,
CTLA4, HAVCR2, and TOX. The B cell differentiation score was
calculated using genes in the GO term B cell differentiation. The B
cell chemotaxis score was calculated using genes in the GO term B
cell chemotaxis (GO:0035754). The B cell activation score was
calculated using genes in the GO term B cell activation
(GO:0042113), and the B cell proliferation score was calculated
using genes in the GO term B cell proliferation (GO:0042100).
Correlation Analysis Between Metabolism-
Related Pathways and Immune Function
The correlation between KEGG metabolism-related pathways
and immune function in each cell type was evaluated using the
scores calculated above with the corr.test function in R (v4.0.2).
Differential Gene Expression and Gene
Coexpression Analyses
The “FindMarkers” function in Seurat with the MAST algorithm
(v1.15.0) was used to analyze DEGs. For each pairwise
comparison, the “FindMarkers” function was run with the
parameter test.use=‘MAST’. A gene was considered significantly
upregulated if the average natural logarithm of the fold change
(logFC) was > 0.25 and the adjusted P was < 0.01. Genes with
logFC < −0.25 and adjusted P < 0.01 were considered significantly
downregulated. Using these DEGs, coexpressed genes were
identified using the corr.test function in R. ClusterProfiler (23)
in R was used to perform GO term enrichment analysis for the
significantly upregulated and downregulated genes. Only GO term
of Biological Process was displayed.
RESULTS

Changes in the Metabolic Profiles of
Immune Cells in COVID-19 Patients
The severity of COVID-19 was categorized as mild, moderate,
severe, or critical according to the “Diagnosis and Treatment
April 2021 | Volume 12 | Article 651656
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Protocol of COVID-19 (the 7th Tentative Version)” by the
National Health Commission of China. In this study, we
grouped patients with mild and moderate COVID-19 into the
mild group and assigned those with severe and critical diseases to
the severe group. A total of 32 peripheral blood samples—from
ten patients with mild COVID-19, eleven patients with severe
COVID-19, and eleven HCs—were integrated (19–21). The
median days from symptom onset are 14.5 and 11.5 in mild
and severe COVID-19, respectively. The demographics and
clinical features of these individuals are shown in Table S1.

Using graph-based clustering with uniform manifold
approximation and projection (UMAP), a total of 198,503 single
cells were reanalyzed and clustered into 14 lineages: mono-CD14+

cells (CD14+; classical monocytes), mono-CD16+ cells (CD16+;
nonclassical monocytes), mono-CD14+CD16+ cells (CD14+ and
CD16+; intermediate monocytes), proliferative cells (MKI67+;
cycling), plasma cells (IGKChi; PCs), B-memory cells (MS4A1+),
B-naïve cells (TCL1A+), plasmacytoid dendritic cells (LILRA4+;
pDCs), myeloid DCs (CD1C+; mDCs), NK cells (KLRF1+), gdT &
mucosal-associated invariant T (MAIT) cells (TRGV9+ and
SLC4A10+), hematopoietic stem cells (CD34+; HSCs), T-CD4+

cells (CD3D+ and CD4+), and T-CD8+ cells (CD3D+ and CD8A+)
(Figures 1A, B). Then, a total of 69, 189 T cells (CD3D+) were
further identified as NKT (KLRF1+), CD8-CCR7 (naïve), CD8-
GZMK (central memory), CD8-GZMB (cytotoxic), CD4-TCF7
(central memory), CD4-ICOS (T follicular help, Tfh), CD4-
GZMB (cytotoxic), CD4-GATA3 (Th2), CD4-FOXP3 (Treg),
CD4-CCR7 (naïve), and CD4-CCR6 (Th17) cells (Figures 1C, D).

Among these cell types, we observed a significantly increased
proportion of cycling, mono-CD14+, mono-CD14+CD16+, CD4-
FOXP3, and CD4-ICOS cells and a decreased fraction of mono-
CD16+ cells, NK cells, T-CD8+ cells, gdT & MAIT cells, pDCs,
and NKT cells in patients with severe disease compared with
HCs (Figures 1E, F). Moreover, compared to patients with mild
disease, patients with severe disease had higher proportions of
mono-CD14+, mono-CD14+CD16+, and CD4-ICOS cells and
lower proportions of NK cells, T-CD8+ cells, gdT & MAIT cells,
pDCs, NKT cells, and CD8-CCR7 cells. These results are
consistent with previous reports (19, 21), indicating that SARS-
CoV-2 infection greatly perturbs the immune response.

To character ize the metabol ic features of these
disproportionate cell types in patients with COVID-19, we
identified the DEGs (MAST algorithm; P < 0.01, logFC > 0.25
or logFC < -0.25) in patients with mild or severe disease
compared to HCs and performed gene enrichment analysis
(Table S4). The GO terms (p. adjust < 0.01) enriched with
these DEGs overlapped with the child terms of metabolic
processes (GO:0008152) (Table S2 and Figure 1G). Monocytes
and memory B cells showed significant metabolic changes,
especially in patients with severe COVID-19. Cytokine
production and ATP biosynthesis processes were dysfunctional
in mono-CD14+ cells. Oxidative phosphorylation (OXPHOS)
and protein processing were dysregulated in memory B cells.
These findings demonstrate that metabolic changes in immune
cells might play important roles in the control of the immune
response in COVID-19 patients.
Frontiers in Immunology | www.frontiersin.org 4
Metabolic Transcriptome Rewiring in
Immune Cells in COVID-19 Patients
A total of 36 metabolic pathways and 12 metabolism-related
signaling pathways were analyzed (Table S3). For each cell, each
pathway was scored according to the expression levels of its
genes using Seurat (v3.2.2) (22). For each scored pathway, we
performed Student’s t-test between HCs and mild or severe
COVID-19 patient. Only terms with P < 0.01 are displayed.
The DEGs in these metabolic pathways are listed in Table S5.
Most of the metabolic pathways were more active in patients
with COVID-19. However, metabolism-related signaling
pathways were mostly downregulated in COVID-19 patients
(Figure 2A). Compared to HCs, COVID-19 patients showed
dramatic remodeling of several metabolic processes, including
glucose, lipid metabolism, amino acid metabolism, nucleic acid
metabolism, the tricarboxylic acid cycle (TCA cycle), and
OXPHOS (Figure 2A). Of note, the majority of immune cells
(~86.4%) in COVID-19 patients exhibited uniform and
significant upregulation of the glycolytic process (Figure 2A).
Specifically, in COVID-19 patients, mono-CD14+, and mono-
CD14+CD16+ cells showed higher levels of glycolysis, fatty acid
synthesis, TCA cycle activity, OXPHOS, and pentose phosphate
pathway (PPP) activity with PPAR and HIF-1 signaling pathway
activation than those in HCs, and these cells showed the highest
PPP activity in patients with severe cases (Figure 2A). Moreover,
after SARS-CoV-2 infection, alanine, aspartate and glutamate
metabolism and lysine degradation were downregulated in
mono-CD14+ cells. The genes involved in lysine degradation
and in the AMPK, FoxO, AMPK, PI3K-AKT, mTOR, cAMP,
and cGMP-PKG signaling pathways were downregulated in
mono-CD14+CD16+ cells (Figure 2A). Mono-CD16+ cells
exhibited higher glycolysis, fatty acid synthesis, TCA cycle,
OXPHOS, PPP, and alanine, aspartate, glutamate and arginine
metabolism activity in COVID-19 patients than in HCs; in
addition, these cells exhibited lower lysine degradation activity
and lower AMPK, Hippo, FoxO, AMPK, PI3K-AKT, mTOR,
TGF-b, cAMP, and cGMP-PKG signaling pathway activity in
COVID-19 patients than in HCs. In addition, mono-CD16+ cells
from patients with severe COVID-19 showed particularly
increased levels of alanine, aspartate and glutamate metabolism
and fatty acid synthesis (Figure 2A).

Naïve and memory B cells in COVID-19 patients also
displayed enhanced activity of glycolysis, fatty acid
biosynthesis/elongation, the TCA cycle, OXPHOS, PPP, and
metabolism of many amino acids, with PPAR pathway
activation, than those in HCs. However, metabolism of alanine,
aspartate, glutamate, arginine and lysine was downregulated in
patients with COVID-19 (Figure 2A). Furthermore, the genes
involved in glycolysis, fatty acid elongation, the TCA cycle,
OXPHOS and arginine and proline metabolism were expressed
at higher levels in PCs from COVID-19 patients than in PCs
from HCs. These cells also showed activation of the PPAR
pathway and inhibition of the MAPK and cGMP-PKG
pathways. Severely ill COVID-19 patients had much higher
glycolysis, fatty acid elongation, TCA cycle, arginine and
proline metabolism activity in PCs than did HCs (Figure 2A).
April 2021 | Volume 12 | Article 651656
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The subsets of CD4+ T cells, e.g., CD4-TCF7, CD4-ICOS, CD4-
GATA3, CD4-CCR7 and CD4-CCR6 cel ls , showed
similar alterations in metabolic processes, including enhanced
glycolysis, TCA cycle activity, OXPHOS, arginine, proline,
cysteine, methionine, glycine, serine, threonine and tyrosine
metabolism; and reduced lysine degradation (Figure 2A).
Frontiers in Immunology | www.frontiersin.org 5
Additionally, CD8-GZMB cells mainly exhibited enhanced TCA
cycle activity, OXPHOS, glycolysis, fatty acid degradation, and
cysteine, methionine, glycine, serine, threonine, histidine and
tyrosine metabolism in COVID-19 patients (Figure 2A).
Metabolic changes in other subsets of CD4+ and CD8+ T cells
were also observed in COVID-19 patients (Figure 2A). The
A B C D

E

G

F

FIGURE 1 | The changed metabolic processes in PBMCs from COVID-19 patients. (A, C) Clustering of PBMCs among all cells and T cells, respectively, in COVID-
19 patients; (B, D) Canonical markers for cell cluster annotation. “Mean” indicates the average gene expression levels. “Pct.Exp.” indicates the percentage of cells
expressing the corresponding genes. (E, F) The proportion of each cluster in COVID-19 patients. Student’s t-test; *P < 0.05; **P < 0.01; ***P < 0.001. (G) The
significantly enriched child terms of metabolic processes (GO:0008152) in each cell type using genes differentially expressed in patients with mild or severe disease
compared to healthy controls (MAST algorithm; P <0.01, logFC > 0.25 or logFC < -0.25). M-specific: the unique GO terms enriched with DEGs found in patients with
mild disease compared to healthy controls. S-specific: the unique GO terms enriched with DEGs found in patients with severe disease compared to healthy controls.
COVID-19: GO terms enriched with DEGs found in both mild and patients with severe disease compared to healthy controls.
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FIGURE 2 | Metabolic transcriptome rewiring of immune cells in COVID-19 patients. (A) The significantly altered metabolic processes (left panel) and metabolism
each cell cluster in COVID-19 patients (Student’s t-test; P < 0.01). M-specific: the unique KEGG pathways that were significantly altered in patients with mild dise
unique KEGG pathways that were significantly altered in patients with severe disease compared to healthy controls. COVID-19: KEGG pathways that were signifi
disease compared to healthy controls. (B) The dot plot of selected DEGs that are involved in metabolic processes or metabolism-related signaling KEGG pathwa
level. “Pct.Exp.” indicates the percentage of cells expressing the corresponding genes. (C) Global maps of metabolic rewiring in COVID-19 patients according to
involved. The S-specific DEGs are shown in red, the M-specific DEGs in blue, and the DEGs in COVID-19 patients in black.
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signaling pathways regulating metabolic processes, including
the TGF-beta signaling pathway, HIF-1 signaling pathway,
FoxO signaling pathway, cAMP signaling pathway, and
PI3K-Akt signaling pathway, were mostly downregulated in
the subsets of CD4+ and CD8+ T cells in COVID-19 patients
(Figure 2A).

After analyzing the genes participating in the metabolic
processes and signaling pathways, we found that the immune
cells exhibited cell type-specific transcriptomic signatures at the
metabolic level (Figures 2B, C). Compared to HCs, patients with
mild COVID-19 showed downregulation of a PPP-related gene
(TKT), while patients in the severe COVID-19 group showed
upregulation of glycolysis-related genes (LDHA, PGD, PGAM1,
and PKM) and a fatty acid-related gene (HACD4) and
downregulation of lysine degradation-related genes (NSD1,
SETD2, KMT2C, KMT2E and KMT2A) in mono-CD14+ cells
(Figure 2B). The mono-CD14+CD16+ cells in patients with mild
COVID-19 expressed higher levels of a fatty acid-related gene
(FABP5), whereas in patients with severe COVID-19, these cells
expressed higher levels of glycolysis-related genes (PKM,
TALDO1, and LDHA), a PPP-related genes (PGD), a fatty
acid-related gene (ASCL1), a cysteine and methionine
metabolism-related gene (MAT2A), and an alanine, aspartate
and glutamate metabolic related gene (GLUL), as wells as lower
levels of lysine metabolism-related genes (KMT2C, SETD2,
KMT2E and NSD1). The CD16+ monocytes in the mild
COVID-19 group expressed higher levels of glycolysis-related
genes (PGAM1 and GAPDH), a fatty acid-related gene (HACD4),
and an arginine and proline metabolism-related gene (SAT2), as
well as lower levels of a cysteine and methionine metabolism-
related gene (AHCYL1) (Figure 2B). However, we found that
CD16+ monocytes in patients with severe COVID-19 expressed
higher levels of a PPP-related gene (PGD) and an arginine,
alanine, aspartate and glutamate metabolism-related gene
(GLUL), as well as lower levels of glycolysis-related genes
(HK1, PFKL, PGK1 , and ENO1), a fatty acid-related
gene (CPT1A) and lysine metabolism-related genes (ASH1L
and NSD1), an arginine and proline metabolism-related gene
(CKB), and a tyrosine and phenylalanine metabolism-related
gene (COMT) (Figure 2B). Genes involved in OXPHOS had
marked transcriptional changes in all three subtypes of
monocytes (Figure 2B). In CD14+ monocytes, HIF-1 signaling
may regulate LDHA, ALDOA, TIMP1, ELOB and IFNGR2, and
PPAR signaling may regulate UBC, RXRA, DBI and ACSL1 in
COVID-19 patients (Figure 2C). The detailed connections
between metabolic processes and signaling pathways are shown
in Figure 2B, C.

Based on these findings, a global metabolic reprogramming
map of the peripheral immune cells of COVID-19 patients was
constructed (Figure 2C). As shown, in COVID-19 patients,
glycolysis-related enzymes, including HK1/HK3, ALDOA, TPI1,
PGK1, GAPDH, ENO1, PKM2, and LDHA/LAHB, were
significantly upregulated by HIF-1 signaling; the fatty acid
metabolic genes ASCL1, ASCL4 and ASCL5 were upregulated
by PPAR signaling; and CPT1A was upregulated by AMPK
signaling. Thus, the metabolic transcriptome reprogramming
Frontiers in Immunology | www.frontiersin.org 7
in COVID-19 patients may be associated with immune
system dysfunction.
Dysfunction of Monocytes Was Connected
With Metabolic Reprogramming in COVID-
19 Patients
In this study, seven key biological processes involved in
monocyte dysfunction in COVID-19 patients (4, 19, 21) were
evaluated: aging, apoptosis, IFN response, inflammation, MHC
class II, migration, and S100 family. Each process was scored
using Seurat in each cell type in HCs, patients with mild COVID-
19 and patients with severe COVID-19. After performing
pairwise comparison using Student’s t-test, we found that
inflammation, IFN response, and S100 family were
significantly upregulated and apoptosis, migration, and MHC
class II were significantly downregulated in both mono-CD14+

and mono-CD14+CD16+ cells in COVID-19 patients compared
to the corresponding cells in HCs (Figure 3A). The IFN response
in severe COVID-19 depends on sampling time (24, 25). In our
cohort, severe COVID-19 with median 11.5 days from symptom
onset showed impaired IFN response compared to that in mild
COVID-19. Moreover, in these two cell types, patients with
severe COVID-19 showed enhanced inflammation, migration,
and S100 family and suppressed apoptosis and MHC class II
compared with patients with mild COVID-19 (Figure 3A).
Compared to patients with mild COVID-19, severely ill
patients showed downregulation of IFN response in mono-
CD14+ cells but upregulation of IFN response in mono-
CD14+CD16+ cells (Figure 3A). These functional changes were
consistent with previous reports (21).

To identify potential immune-metabolic interactions, we
evaluated the Pearson correlation between the immune
function score and metabolism score. Only correlations with
P <0.05 and r>0.2 or r<-0.2 are displayed (Table S6 and Figure
3B). Arginine biosynthesis, arachidonic acid metabolism, and the
FoxO, Hippo, MAPK, PI3K-Akt, cAMP, cGMP-PKG, mTOR
and PPAR pathways were positively correlated with apoptosis in
mono-CD14+ cells, while phenylalanine, OXPHOS and purine
metabolism were negatively correlated with apoptosis in mono-
CD14+ cells. Moreover, glycolysis, PPP, OXPHOS and purine
metabolism were positively associated with the inflammatory
response and S100 family, whereas arginine biosynthesis, lysine
degradation, arachidonic acid metabolism, and the MAPK,
FoxO, PI3K-Akt, cAMP and cGMP-PGK pathways were
negatively associated with the inflammatory response and S100
family in mono-CD14+ cells (Figure 3B). We found that
tyrosine metabolism, glutathione metabolism, glycerolipid
metabolism, biosynthesis of unsaturated fatty acids and
pyrimidine metabolism were specifically positively correlated
with inflammation and the S100 family in mono-CD16+. In
addition, the correlations between lysine degradation and both
inflammation and the S100 family were much stronger in mono-
CD16+ cells than in mono-CD14+ cells. The correlations between
metabolic processes and immune functions in mono-
CD14+CD16+ cells are delineated in Figure 3B.
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Strong correlations between the DEGs were observed in
COVID-19 patients, especially in patients with severe disease,
and weak correlations were observed in HCs (Figure 3C),
suggesting that these genes may be activated after SARS-CoV-2
infection and that they tend to show a coordinated expression
pattern or participate in common or similar biological processes
(26). Specifically, three coexpression modules in COVID-19
patients were identified in mono-CD14+ cells (Figure 3C and
Table S7). In module 1, PKM, with the highest expression in
mono-CD14+ cells in patients with severe COVID-19, was found
Frontiers in Immunology | www.frontiersin.org 8
to be involved in glycolytic metabolism, which may suppress the
IFN response by mediating IFN-related genes, such as ILF3 (27),
OAS2 (28), and OAS3 (29) (Figures 3C, E). In addition, PKM
may participate in IFN response inhibition by suppressing MAPK
pathway activation for its antiviral activity (30). In module 2,
mono-CD14+ cells in patients with severe COVID-19 exhibited
higher expression levels of glycolysis-related genes (LDHA and
PKM) and PPP-related genes (PGD and TKT), which may be
involved in the proinflammatory response (upregulation of
S100A8, S100A9, S100A12, and IL1B) (Figures 3C, E).
A C

D

E

B

FIGURE 3 | Dysfunction of monocytes was connected with metabolic reprogramming in COVID-19 patients. (A) The selected functional changes in mono-CD14+,
mono-CD16+, and mono-CD14+CD16+ cells in patients with mild or severe disease (Student’s t-test; *P < 0.05; **P < 0.01; ****P < 0.0001). H, healthy controls;
M, patients with mild COVID-19, and S, patients with severe COVID-19. (B) The Pearson correlations between the scores of monocyte function and metabolic
processes and signaling pathways in mono-CD14+ (left panel), mono-CD16+ (middle panel) and mono-CD14+CD16+ (right panel) cells. “r” indicates the Pearson
correlation coefficient; only dots representing correlations with |r| > 0.2 and P < 0.05 are shown. (C, D) The coexpression modules of DEGs in mono-CD14+ and
mono-CD14+CD16+ cells. The metabolism-related genes are displayed. The coexpression modules in patients with mild and severe disease are shown in the lower
triangle and upper triangle, respectively. The coexpression modules in healthy controls are shown in the right panel. “r” indicates the Pearson correlation coefficient.
(E) The delineation of metabolism-immune response crosstalk in mono-CD14+ and mono-CD16+ cells in COVID-19 patients according to the DEGs and the KEGG
pathways in which they participate. The S-specific DEGs are shown in red. The M-specific DEGs are shown in blue. The DEGs in COVID-19 patients are shown
in black.
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Enhanced glycolysis via upregulation of LDHA and PKM can
promote inflammation via the HIF-1 signaling pathway (31)
and can also fuel the PPP (PGD and TKT), which is vital for
supporting the increased burden of protein, RNA and DNA
synthesis in inflamed macrophages (32) (Figures 3C, E). The
DEGs in module 3 were mainly involved in OXPHOS. These
genes were correlated in similar patterns in HCs, patients
with mild COVID-19 and patients with severe COVID-19
(Figure 3C).

For mono-CD16+ cells, we mainly analyzed modules 1 and 4
(Figure 3D and Table S7). In module 1, NSD1, KMT2E, and
SETD2, which are histone lysine methyltransferases involved in
cell development and differentiation (33), were expressed at
lower levels in COVID-19 patients. The genes that participate
in lysine degradation may inhibit the expression of genes related
to M2 macrophage polarization and differentiation, such as
MBD2 (34), GNAS (35), ATF4 (36), BRD2 (37), STAT6 (38),
and EMR2 (39), via the cAMP and MAPK signaling pathways
(Figures 3D, E). In addition, module 1 contained genes involved
in OXPHOS (ATP6V1B2, ATP5A1, ATP5E, and ATP5B), which
may lead to M2-like polarization via the PI3K, AKT and mTOR
signaling pathways (40, 41) (Figures 3D, E). These genes were
significantly downregulated in patients with severe COVID-19,
implying a limited ability for M2-like polarization. In module 4,
enhanced glycolysis (increased GAPDH and PGAM1 expression)
in patients with mild COVID-19 mediated proinflammatory
processes (such as S100 and TNF family) (42, 43) and the
IFN-mediated antiviral response (44) in macrophages (Figures
3D, E). Enhanced OXPHOS was also found in mono-CD16+

cells from patients with severe COVID-19, broadening its
physiological role as an antiviral agent (45).

Metabolic Rewiring Correlate With the
Differentiation, Immunoglobin Secretion
and Survival of PCs and for the
Differentiation of Memory B Cells in
COVID-19 Patients
The regulatory roles of metabolic reprogramming in B cell
function in COVID-19 patients were assessed, and functional
alterations (aging, apoptosis, activation, differentiation, the IFN
response, chemotaxis and proliferation) in PCs and memory B
cells according to gene expression levels are summarized in
Figure 4A. Also, pairwise comparisons using Student’s t-test
revealed that genes involved in aging, activation, differentiation,
and the IFN response were transcribed at higher levels in PCs of
patients with mild and severe COVID-19 than in those of HCs,
while genes related to proliferation were dramatically
downregulated in COVID-19 patients (Figure 4A). Moreover,
genes related to aging, activation, and differentiation were
transcribed at higher levels in patients with severe COVID-19
than in patients with mild COVID-19, whereas genes involved in
the IFN response were transcribed at lower levels (Figure 4A).
The memory B cells of COVID-19 patients had enhanced aging
and IFN response but reduced activation, chemotaxis, and
proliferation compared to those of HCs (Figure 4A). Among
patients with COVID-19, the severely ill group showed lower
Frontiers in Immunology | www.frontiersin.org 9
levels of genes related to activation, chemotaxis, the IFN response
and proliferation (Figure 4A) than the mildly ill group.

We also calculated the correlation coefficients between these
immune functions and the 48 metabolic processes in PCs and
memory B cells (Figure 4B and Table S8). Here, we only show
correlations with a P < 0.05 and r > 0.15 or r < -0.15. Lysine
degradation and the FoxO and MAPK signaling pathways were
positively correlated with the activation of memory B cells and
PCs, and purine metabolism, tyrosine metabolism,
phenylalanine metabolism and OXPHOS were negatively
correlated with the activation of these two cell types. Tyrosine
metabolism, phenylalanine metabolism and OXPHOS showed a
negative correlation with apoptosis in PCs and memory B cells.
Metabolic signaling pathways, e.g., the Hippo, HIF-1, FoxO,
cAMP, cGMP-PKG, PI3K-Akt, mTOR and MAPK signaling
pathways, were found to be positively correlated with apoptosis
in PCs and memory B cells. Of note, OXPHOS was positively
correlated with cell differentiation specifically in PCs.

Gene coexpression analysis revealed that module 1 and
module 2 had few metabolic changes in PCs in COVID-19
patients (Table S9 and Figure 4C). Hence, we only analyzed
module 3. In module 3, the OXPHOS-related gene (ATP13A3)
was found to be positively correlated with genes encoding
immunoglobin chains (IGHJ6, IGHG1, and IGHG4) and X-Box
Binding Protein 1 (XBP1), which is required for plasmacytic
differentiation and crucial for the plasma cell secretory program
in patients with severe COVID-19 (Figures 4C, E) (46). The
significant elevation of XBP1 in patients with severe COVID-19
is important for the provision of additional extracellular amino
acids, mitochondrial anaplerosis and cataplerosis, and
subsequent sustained antibody secretion (47, 48). Enhanced
OXPHOS was also linked to the expression of genes related to
PC survival (apoptosis inhibition) (SGK1 (49), GAS5 (50), and
FAIM3 (51) (Figure 4C). Additionally, we found that PCs in
patients with severe COVID-19 had higher expression levels of
inflammation genes (TNFSF10, S100A9, and S100A8) and
chemokine-related genes (CCR2 and ITGB7) than those in
patients with mild COVID-19. In memory B cells, module 1
and module 3 had few metabolic changes in COVID-19 patients,
so we mainly analyzed module 2 (Table S9 and Figure 4D). In
module 2, enhanced expression of glycolysis (GAPDH and TPI1)
and IFN response (IFITM2, IFITM1, IFITM3, IFNGR2, and
ISG20) genes in human COVID-19 patients, particularly
severely ill patients, may promote the differentiation of
unswitched memory B cells into plasmablasts (Figures 4D, E)
(52). In addition, elevated levels of OXPHOS-related genes,
especially in patients with severe disease, may facilitate the
differentiation of memory B cells into plasma cells (Figures
4D, E) (53).

Metabolic Changes in T Cells in COVID-19
Patients Showed Common Characteristics
We scored the T cell functions, including the activation, aging,
apoptosis, differentiation, IFN response and proliferation of T
cells, in each T cell type. CD4-FOXP3 and CD4-ICOS cells
showed downregulated apoptosis and differentiation and an
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upregulated IFN response in COVID-19 patients compared to
HCs (Figure S2A). CD8-CCR7 and CD8-GZMB cells showed
upregulated apoptosis and downregulated activation, differentiation,
and proliferation in severely ill patients compared to HCs (Figure
S2A). Consistent with the observations in monocytes, we found that
patients with mild COVID-19 had a higher IFN response in these T
cells than did patients with severe COVID-19 (Figure S2A). A
correlation between metabolic processes and T cell immune
functions was commonly observed in these T cell subtypes (Table
S10 and Figure S2B). The correlations with a P < 0.05 and r > 0.2
or r < -0.2 are highlighted. In brief, OXPHOS, tyrosine metabolism
and phenylalanine metabolism were negatively correlated with T
cell activation, apoptosis and differentiation. The MAPK, cAMP,
FoxO and PI3K−Akt metabolic signaling pathways, were positively
correlated with these functions. These data suggest that metabolic
processes of T cells may be uniformly altered in COVID-19 patients.
Hence, it is difficult to identify the metabolic rewiring responsible
for the functional changes in a specific T cell type using single-cell
RNA sequencing.
DISCUSSION

A hyperinflammatory status and impaired IFN response in
mono-CD14+ cells and a decreased proportion and pathological
inflammatory response of mono-CD16+ cells have been associated
with the pathogenesis of severe COVID-19 (5, 54). However, the
underlying metabolism-related mechanisms of these responses
remain unclear. This study presents evidence of immunometabolic
rewiring occurring in immune cells of COVID-19 patients. The
transcriptional changes in genes in 36 metabolic processes and 12
metabolism-related signaling pathways were comprehensively
explored and scored. Metabolic processes were mostly upregulated,
with some upregulated metabolism-related signaling pathways, in
COVID-19 patients.

The massive increase in mono-CD14+ cells in patients with
severe COVID-19 could incite cytokine storm along with an
impaired IFN response (6). However, the interferon response of
severe COVID-19 depends on sampling time (24, 25). Severe
COVID-19 tend to exhibit impaired IFN response in the early
infection stage. In this study, we found that severe COVID-19
with median 11.5 days from symptom onset showed impaired
IFN response compared to that in mild COVID-19. We analyzed
the metabolic changes that were correlated with the impaired
IFN response in severe COVID-19 in our cohort. Our results
showed that the increased expression of PKM in monocytes of
severely ill patients may suppress the expression of IFN-related
genes, such as ILF3, OAS2 and OAS3, by suppressing MAPK
pathway activation (30). Moreover, we found enhanced
glycolysis and PPP activity in mono-CD14+ cells of patients
with severe COVID-19, which may be responsible for these
inflammatory responses (55, 56). Additionally, mono-CD14+

cells in mildly ill COVID-19 patients showed enhanced
glycolysis, which promoted their proinflammatory functions
(42, 43) and IFN-mediated antiviral response. These findings
Frontiers in Immunology | www.frontiersin.org 11
suggest that metabolic remodeling contributes to hyperinflammation
and impaired IFN response phenotypes in monocytes of patients
with severe COVID-19. Future studies on association between
metabolic changes and IFN response in other disease progression
stages or in dynamic queues in COVID-19 patients are needed.
Unlike mono-CD14+ cells, mono-CD16+ cells exhibit distinct
motility within the vasculature and are considered patrolling
monocytes. Both our study and previous studies observed that the
fraction of mono-CD16+ cells was decreased in patients with severe
COVID-19 compared with patients with mild disease or healthy
controls (57). Inmono-CD16+ cells in COVID-19 patients, we found
reduced lysine degradation (downregulation of NSD1, KMT2E, and
SETD2) and enhanced OXPHOS, which may inhibit M2
macrophage polarization and differentiation through the cAMP
and MAPK signaling pathways or the PI3K, AKT and mTOR
signaling pathways (40, 41). The observed enhancement of
OXPHOS in patients with severe COVID-19 may broaden the
pathological role of mono-CD16+ cells. Overall, these data indicate
that metabolic changes play critical roles in the dysfunction of
monocytes in COVID-19 patients. Further studies focusing on
these crucial metabolism-related molecules, e.g., PKM, LDHA,
PGAM1, PGD, TKT, NSD1, KMT2E, SETD2 and OXPHOS-related
genes, are required to determine the benefits of ameliorating the
monocyte-induced inflammatory response and inflammatory injury
during SARS-CoV-2 infection.

The B cells of COVID-19 patients also showed enhanced
OXPHOS and glycolysis. B cells from patients with severe disease
showed obvious clonal expansion compared with those from
patients with mild disease or healthy controls, indicating that B
cell activity and humoral immune responses are strongly
activated in patients with severe disease (58). Upon antigen
recognition, B cells become activated, which requires increased
glucose uptake (59, 60). Naïve B cells depend on OXPHOS for
their survival (61), indicating that these metabolic adaptations
can support the proliferation and activation of naïve B cells. The
observed enhancement of OXPHOS in PCs could promote the
processes of differentiation, antibody secretion, and cell survival
in patients with severe disease (46, 62). It is worth noting that we
found that enhanced OXPHOS was positively correlated with the
expression of XBP1, whose transcription in PCs of patients with
severe disease could significantly increase mitochondrial mass
and mitochondrial respiration (63) and is essential for
maintaining energy homeostasis and durable humoral
immunity (47). In addition, increased respiratory capacity
characterized by enhanced OXPHOS is also required for the
long-term survival of PCs (47). Additionally, we found that PCs
produced many inflammatory factors. Because RBD-specific
IgG1 and IgG3 dominate the humoral response against SARS-
CoV-2 infection and are positively associated with inflammation
(64), future studies should address the roles of metabolic
adaptations in PCs in the promotion of IgG1 production and
the exacerbation of the disease. In memory B cells, we identified
several potential genes related to OXPHOS that may facilitate the
differentiation of memory B cells into plasma cells in COVID-19
patients, especially those with severe disease (52). Future studies
should focus on OXPHOS-associated antibody production and
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Qi et al. Metabolic Remodeling Controls PBMC Function
proinflammatory processes in PCs of patients with severe
COVID-19.

The subsets of CD4+ and CD8+ T cells in COVID-19 patients
also exhibited an increased demand for OXPHOS and amino acid
metabolism, indicating their involvement in T cell maturation and
proliferation (65) However, we did not find unique metabolic
characteristics in any of the T cell subtypes, implying the limited
power of this approach to analyze metabolism in T cells of
COVID-19 patients. More technologies or strategies are needed
to analyze immunometabolic rewiring in T cells after
SARS-COV-2 infection.

Taken together, these data provide a landscape of the
dysfunctional metabolic reprogramming in peripheral immune
cells, revealing the potential metabolic mechanisms responsible
for the immune response in COVID-19. However, metabolite-
based experimental technologies are needed to verify our
findings in future studies.
CONCLUSIONS

The metabolic landscape of peripheral immune cells during
SARS-CoV-2 infection was comprehensively mapped and
assessed. We found that enhanced glycolysis and PPP activity
are potential metabolic mechanisms underlying the impaired
IFN response and hyperinflammation in mono-CD14+ cells. In
addition, the inhibited lysine degradation and enhanced
OXPHOS in mono-CD16+ cells might inhibit M2 macrophage
polarization and differentiation. The enhanced OXPHOS and
glycolysis in plasma cells were also explored and found to play
critical roles in antibody production and survival of PCs. These
metabolic adaptations in immune cells are important in the
immune hyperactivation and immunopathogenesis of
COVID-19.
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Supplementary Figure 1 | The coexpression gene modules in mono-
CD14+CD16+ cells. The metabolism-related genes are displayed. The coexpression
modules in patients with mild and severe disease are shown in the lower triangle and
upper triangle, respectively. The coexpression modules in healthy controls are
shown in the right panel. “r” indicates the Pearson correlation coefficient.

Supplementary Figure 2 | Metabolic changes in T cells in COVID-19 patients
showed common characteristics. (A) The selected functional changes in CD4-
ICOS, CD4-FOXP3, CD8-CCR7, and CD8-GZMB cells in COVID-19 patients
(Student’s t-test; *P < 0.05; **P < 0.01; ***P < 0.001); H: healthy controls, M:
patients with mild COVID-19, S: patients with severe COVID-19. (B) The Pearson
correlations between the scores of T cell function and metabolic processes and
signaling pathways in CD4-ICOS, CD4-FOXP3, CD8-CCR7, and CD8-GZMB cells.
“r” indicates the Pearson correlation coefficient. Only dots representing correlations
with |r| > 0.2 and P < 0.05 are shown.
REFERENCES

1. Sheervalilou R, Shirvaliloo M, Dadashzadeh N, Shirvalilou S, Shahraki O,
Pilehvar-Soltanahmadi Y, et al. COVID-19 under spotlight: A close look at
the origin, transmission, diagnosis, and treatment of the 2019-nCoV disease.
J Cell Physiol (2020) 235:8873–924. doi: 10.1002/jcp.29735

2. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of
138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia
in Wuhan, China. JAMA (2020) 323:1061–9. doi: 10.1001/jama.2020.1585
3. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al.
Transmission of 2019-nCoV Infection from an Asymptomatic Contact in
Germany. N Engl J Med (2020) 382:970–1. doi: 10.1056/NEJMc2001468

4. Zhang JY, Wang XM, Xing X, Xu Z, Zhang C, Song JW, et al. Single-cell
landscape of immunological responses in patients with COVID-19. Nat
Immunol (2020) 21:1107–18. doi: 10.1038/s41590-020-0762-x

5. Schulte-Schrepping J, Reusch N, Paclik D, Bassler K, Schlickeiser S, Zhang B,
et al. Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell
Compartment. Cell (2020) 182:1419–40.e23. doi: 10.1016/j.cell.2020.08.001
April 2021 | Volume 12 | Article 651656

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://bigd.big.ac.cn/gsa/
https://www.frontiersin.org/articles/10.3389/fimmu.2021.651656/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.651656/full#supplementary-material
https://doi.org/10.1002/jcp.29735
https://doi.org/10.1001/jama.2020.1585
https://doi.org/10.1056/NEJMc2001468
https://doi.org/10.1038/s41590-020-0762-x
https://doi.org/10.1016/j.cell.2020.08.001
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Qi et al. Metabolic Remodeling Controls PBMC Function
6. Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al.
Impaired type I interferon activity and inflammatory responses in severe
COVID-19 patients. Science (2020) 369:718–24. doi: 10.1126/science.abc6027

7. Meffre E, Iwasaki A. Interferon deficiency can lead to severe COVID. Nature
(2020) 587:374–6. doi: 10.1038/d41586-020-03070-1

8. Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang YQ, et al. Lymphopenia
predicts disease severity of COVID-19: a descriptive and predictive study.
Signal Transduct Target Ther (2020) 5:33. doi: 10.1038/s41392-020-0159-1

9. Cao X. COVID-19: immunopathology and its implications for therapy.
Nat Rev Immunol (2020) 20:269–70. doi: 10.1038/s41577-020-0308-3

10. Shi R, Shan C, Duan X, Chen Z, Liu P, Song J, et al. A human neutralizing
antibody targets the receptor-binding site of SARS-CoV-2. Nature (2020)
584:120–4. doi: 10.1038/s41586-020-2381-y

11. Larsen MD, de Graaf EL, Sonneveld ME, Plomp HR, Nouta J, Hoepel W, et al.
Afucosylated IgG characterizes enveloped viral responses and correlates with
COVID-19 severity. Science (2021) 371:6532. doi: 10.1126/science.abc8378

12. Barbi J, Pardoll D, Pan F. Metabolic control of the Treg/Th17 axis. Immunol
Rev (2013) 252:52–77. doi: 10.1111/imr.12029

13. Codo AC, Davanzo GG, Monteiro LB, de Souza GF, Muraro SP, Virgilio-da-
Silva JV, et al. Elevated Glucose Levels Favor SARS-CoV-2 Infection and
Monocyte Response through a HIF-1alpha/Glycolysis-Dependent Axis. Cell
Metab (2020) 32:437–46.e5. doi: 10.2139/ssrn.3606770

14. Widjaja CE, Olvera JG, Metz PJ, Phan AT, Savas JN, de Bruin G, et al.
Proteasome activity regulates CD8+ T lymphocyte metabolism and fate
specification. J Clin Invest (2017) 127:3609–23. doi: 10.1172/JCI90895

15. Shirai T, Nazarewicz RR,Wallis BB, Yanes RE,Watanabe R, Hilhorst M, et al. The
glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in
coronary artery disease. J Exp Med (2016) 213:337–54. doi: 10.1084/jem.20150900

16. de Las Heras N, Martin Gimenez VM, Ferder L, Manucha W, Lahera V.
Implications of Oxidative Stress and Potential Role of Mitochondrial
Dysfunction in COVID-19: Therapeutic Effects of Vitamin D. Antioxidants
(Basel) (2020) 9(9):897. doi: 10.3390/antiox9090897

17. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O,
et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and
inflammation. J Clin Invest (2015) 125:194–207. doi: 10.1172/JCI76012

18. Mahan AE, Jennewein MF, Suscovich T, Dionne K, Tedesco J, Chung AW,
et al. Antigen-Specific Antibody Glycosylation Is Regulated via Vaccination.
PLoS Pathog (2016) 12:e1005456. doi: 10.1371/journal.ppat.1005456

19. Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martinez-Colon GJ, McKechnie JL, et al.
A single-cell atlas of the peripheral immune response in patients with severe
COVID-19. Nat Med (2020) 26:1070–6. doi: 10.1038/s41591-020-0944-y

20. Lee JS, Park S, Jeong HW, Ahn JY, Choi SJ, Lee H, et al. Immunophenotyping
of COVID-19 and influenza highlights the role of type I interferons in
development of severe COVID-19. Sci Immunol (2020) 5(49):eabd1554.
doi: 10.1126/sciimmunol.abd1554

21. Xu G, Qi F, Li H, Yang Q, Wang H, Wang X, et al. The differential immune
responses to COVID-19 in peripheral and lung revealed by single-cell RNA
sequencing. Cell Discov (2020) 6:73. doi: 10.1038/s41421-020-00225-2

22. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM3rd3rd,
et al. Comprehensive Integration of Single-Cell Data. Cell (2019) 177:1888–
902.e21. doi: 10.1016/j.cell.2019.05.031

23. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing
biological themes among gene clusters. OMICS (2012) 16:284–7. doi: 10.1089/
omi.2011.0118

24. Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, et al.
Longitudinal analyses reveal immunological misfiring in severe COVID-19.
Nature (2020) 584:463–9. doi: 10.1038/s41586-020-2588-y

25. Schultze JL, Aschenbrenner AC. COVID-19 and the human innate immune
system. Cell (2021) 184(7):1671–92. doi: 10.1016/j.cell.2021.02.029

26. Galan-Vasquez E, Perez-Rueda E. Identification of Modules With Similar
Gene Regulation and Metabolic Functions Based on Co-expression Data.
Front Mol Biosci (2019) 6:139. doi: 10.3389/fmolb.2019.00139

27. Watson SF, Bellora N, Macias S. ILF3 contributes to the establishment of the
antiviral type I interferon program. Nucleic Acids Res (2020) 48:116–29.
doi: 10.1093/nar/gkz1060

28. Prasad K, Khatoon F, Rashid S, Ali N, AlAsmari AF, Ahmed MZ, et al.
Targeting hub genes and pathways of innate immune response in COVID-19:
Frontiers in Immunology | www.frontiersin.org 13
A network biology perspective. Int J Biol Macromol (2020) 163:1–8.
doi: 10.1016/j.ijbiomac.2020.06.228

29. Li Y, Banerjee S, Wang Y, Goldstein SA, Dong B, Gaughan C, et al. Activation
of RNase L is dependent on OAS3 expression during infection with diverse
human viruses. Proc Natl Acad Sci USA (2016) 113:2241–6. doi: 10.1073/
pnas.1519657113

30. Takaoka A, Tanaka N, Mitani Y, Miyazaki T, Fujii H, Sato M, et al. Protein
tyrosine kinase Pyk2 mediates the Jak-dependent activation of MAPK and
Stat1 in IFN-gamma, but not IFN-alpha, signaling. EMBO J (1999) 18:2480–8.
doi: 10.1093/emboj/18.9.2480

31. Tawakol A, Singh P, Mojena M, Pimentel-Santillana M, Emami H, MacNabb
M, et al. HIF-1alpha and PFKFB3 Mediate a Tight Relationship Between
Proinflammatory Activation and Anerobic Metabolism in Atherosclerotic
Macrophages. Arterioscler Thromb Vasc Biol (2015) 35:1463–71. doi: 10.1161/
ATVBAHA.115.305551

32. van Tuijl J, Joosten LAB, Netea MG, Bekkering S, Riksen NP.
Immunometabolism orchestrates training of innate immunity in
atherosclerosis. Cardiovasc Res (2019) 115:1416–24. doi: 10.1093/cvr/cvz107

33. Jang Y, Broun A, Wang C, Park YK, Zhuang L, Lee JE, et al. H3.3K4M
destabilizes enhancer H3K4 methyltransferases MLL3/MLL4 and impairs
adipose tissue development. Nucleic Acids Res (2019) 47:607–20.
doi: 10.1093/nar/gky982

34. Wang Y, Zhang L, Wu GR, Zhou Q, Yue H, Rao LZ, et al. MBD2 serves as a
viable target against pulmonary fibrosis by inhibiting macrophage M2
program. Sci Adv (2021) 7(1):eabb6075. doi: 10.1126/sciadv.abb6075

35. Li Z, Feng C, Guo J, Hu X, Xie D. GNAS-AS1/miR-4319/NECAB3 axis
promotes migration and invasion of non-small cell lung cancer cells by
altering macrophage polarization. Funct Integr Genomics (2020) 20:17–28.
doi: 10.1007/s10142-019-00696-x

36. Stone AEL, Green R, Wilkins C, Hemann EA, Gale MJr. RIG-I-like receptors
direct inflammatory macrophage polarization against West Nile virus
infection. Nat Commun (2019) 10:3649. doi: 10.1038/s41467-019-11250-5

37. Cheung KL, Zhang F, Jaganathan A, Sharma R, Zhang Q, Konuma T, et al.
Distinct Roles of Brd2 and Brd4 in Potentiating the Transcriptional Program
for Th17 Cell Differentiation. Mol Cell (2017) 65:1068–80.e5. doi: 10.1016/
j.molcel.2016.12.022

38. Yu T, Gan S, Zhu Q, Dai D, Li N, Wang H, et al. Modulation of M2
macrophage polarization by the crosstalk between Stat6 and Trim24. Nat
Commun (2019) 10:4353. doi: 10.1038/s41467-019-12384-2

39. I KY, Huang YS, Hu CH, Tseng WY, Cheng CH, Stacey M, et al. Activation of
Adhesion GPCR EMR2/ADGRE2 Induces Macrophage Differentiation and
Inflammatory Responses via Galpha16/Akt/MAPK/NF-kappaB Signaling
Pathways. Front Immunol (2017) 8:373. doi: 10.3389/fimmu.2017.00373

40. Jung SB, Choi MJ, Ryu D, Yi HS, Lee SE, Chang JY, et al. Reduced oxidative
capacity in macrophages results in systemic insulin resistance. Nat Commun
(2018) 9:1551. doi: 10.1038/s41467-018-03998-z

41. Covarrubias AJ, Aksoylar HI, Yu J, Snyder NW, Worth AJ, Iyer SS, et al. Akt-
mTORC1 signaling regulates Acly to integrate metabolic input to control of
macrophage activation. Elife (2016) 5:e11612. doi: 10.7554/eLife.11612

42. Moon JS, Hisata S, Park MA, DeNicola GM, Ryter SW, Nakahira K, et al.
mTORC1-Induced HK1-Dependent Glycolysis Regulates NLRP3
Inflammasome Activation. Cell Rep (2015) 12:102–15. doi: 10.1016/
j.celrep.2015.05.046

43. Millet P, Vachharajani V, McPhail L, Yoza B, McCall CE. GAPDH Binding to
TNF-alpha mRNAContributes to Posttranscriptional Repression inMonocytes:
A Novel Mechanism of Communication between Inflammation and
Metabolism. J Immunol (2016) 196:2541–51. doi: 10.4049/jimmunol.1501345

44. Jiang H, Shi H, Sun M, Wang Y, Meng Q, Guo P, et al. PFKFB3-Driven
Macrophage Glycolytic Metabolism Is a Crucial Component of Innate
Antiviral Defense. J Immunol (2016) 197:2880–90. doi: 10.4049/
jimmunol.1600474

45. Baldanta S, Fernandez-Escobar M, Acin-Perez R, Albert M, Camafeita E, Jorge I,
et al. ISG15 governs mitochondrial function in macrophages following vaccinia
virus infection. PloS Pathog (2017) 13:e1006651. doi: 10.1371/journal.ppat.
1006651

46. Shapiro-Shelef M, Calame K. Regulation of plasma-cell development. Nat Rev
Immunol (2005) 5:230–42. doi: 10.1038/nri1572
April 2021 | Volume 12 | Article 651656

https://doi.org/10.1126/science.abc6027
https://doi.org/10.1038/d41586-020-03070-1
https://doi.org/10.1038/s41392-020-0159-1
https://doi.org/10.1038/s41577-020-0308-3
https://doi.org/10.1038/s41586-020-2381-y
https://doi.org/10.1126/science.abc8378
https://doi.org/10.1111/imr.12029
https://doi.org/10.2139/ssrn.3606770
https://doi.org/10.1172/JCI90895
https://doi.org/10.1084/jem.20150900
https://doi.org/10.3390/antiox9090897
https://doi.org/10.1172/JCI76012
https://doi.org/10.1371/journal.ppat.1005456
https://doi.org/10.1038/s41591-020-0944-y
https://doi.org/10.1126/sciimmunol.abd1554
https://doi.org/10.1038/s41421-020-00225-2
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/s41586-020-2588-y
https://doi.org/10.1016/j.cell.2021.02.029
https://doi.org/10.3389/fmolb.2019.00139
https://doi.org/10.1093/nar/gkz1060
https://doi.org/10.1016/j.ijbiomac.2020.06.228
https://doi.org/10.1073/pnas.1519657113
https://doi.org/10.1073/pnas.1519657113
https://doi.org/10.1093/emboj/18.9.2480
https://doi.org/10.1161/ATVBAHA.115.305551
https://doi.org/10.1161/ATVBAHA.115.305551
https://doi.org/10.1093/cvr/cvz107
https://doi.org/10.1093/nar/gky982
https://doi.org/10.1126/sciadv.abb6075
https://doi.org/10.1007/s10142-019-00696-x
https://doi.org/10.1038/s41467-019-11250-5
https://doi.org/10.1016/j.molcel.2016.12.022
https://doi.org/10.1016/j.molcel.2016.12.022
https://doi.org/10.1038/s41467-019-12384-2
https://doi.org/10.3389/fimmu.2017.00373
https://doi.org/10.1038/s41467-018-03998-z
https://doi.org/10.7554/eLife.11612
https://doi.org/10.1016/j.celrep.2015.05.046
https://doi.org/10.1016/j.celrep.2015.05.046
https://doi.org/10.4049/jimmunol.1501345
https://doi.org/10.4049/jimmunol.1600474
https://doi.org/10.4049/jimmunol.1600474
https://doi.org/10.1371/journal.ppat.1006651
https://doi.org/10.1371/journal.ppat.1006651
https://doi.org/10.1038/nri1572
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Qi et al. Metabolic Remodeling Controls PBMC Function
47. Lam WY, Becker AM, Kennerly KM, Wong R, Curtis JD, Llufrio EM, et al.
Mitochondrial Pyruvate Import Promotes Long-Term Survival of Antibody-
Secreting Plasma Cells. Immunity (2016) 45:60–73. doi: 10.1016/
j.immuni.2016.06.011

48. Chernova I, Jones DD, Wilmore JR, Bortnick A, Yucel M, Hershberg U, et al.
Lasting antibody responses are mediated by a combination of newly formed
and established bone marrow plasma cells drawn from clonally distinct
precursors. J Immunol (2014) 193:4971–9. doi: 10.4049/jimmunol.1401264

49. Liu W, Wang X, Liu Z, Wang Y, Yin B, Yu P, et al. SGK1 inhibition induces
autophagy-dependent apoptosis via the mTOR-Foxo3a pathway. Br J Cancer
(2017) 117:1139–53. doi: 10.1038/bjc.2017.293

50. He X, Wang S, Li M, Zhong L, Zheng H, Sun Y, et al. Long noncoding RNA
GAS5 induces abdominal aortic aneurysm formation by promoting smooth
muscle apoptosis. Theranostics (2019) 9:5558–76. doi: 10.7150/thno.34463

51. Kubagawa H, Carroll MC, Jacob CO, Lang KS, Lee KH, Mak T, et al.
Nomenclature of Toso, Fas apoptosis inhibitory molecule 3, and IgM FcR.
J Immunol (2015) 194:4055–7. doi: 10.4049/jimmunol.1500222

52. Torigoe M, Iwata S, Nakayamada S, Sakata K, Zhang M, Hajime M, et al.
Metabolic Reprogramming Commits Differentiation of Human CD27(+)IgD
(+) B Cells to Plasmablasts or CD27(-)IgD(-) Cells. J Immunol (2017)
199:425–34. doi: 10.4049/jimmunol.1601908

53. Price MJ, Scharer CD, Kania AK, Randall TD, Boss JM. Conserved Epigenetic
Programming and Enhanced Heme Metabolism Drive Memory B Cell
Reactivation. J Immunol (2021) 206(7):1493–504. doi: 10.1101/2021.01.20.427446

54. Sanchez-Cerrillo I, Landete P, Aldave B, Sanchez-Alonso S, Sanchez-Azofra A,
Marcos-Jimenez A, et al. COVID-19 severity associates with pulmonary
redistribution of CD1c+ DCs and inflammatory transitional and nonclassical
monocytes. J Clin Invest (2020) 130:6290–300. doi: 10.1172/JCI140335

55. Lee MKS, Al-Sharea A, Shihata WA, Bertuzzo Veiga C, Cooney OD,
Fleetwood AJ, et al. Glycolysis Is Required for LPS-Induced Activation and
Adhesion of Human CD14(+)CD16(-) Monocytes. Front Immunol (2019)
10:2054. doi: 10.3389/fimmu.2019.02054

56. Yamada KJ, Heim CE, Xi X, Attri KS, Wang D, Zhang W, et al. Monocyte
metabolic reprogramming promotes pro-inflammatory activity and
Staphylococcus aureus biofilm clearance. PLoS Pathog (2020) 16:e1008354.
doi: 10.1371/journal.ppat.1008354

57. Silvin A, Chapuis N, Dunsmore G, Goubet AG, Dubuisson A, Derosa L, et al.
Elevated Calprotectin and Abnormal Myeloid Cell Subsets Discriminate Severe
fromMild COVID-19. Cell (2020) 182:1401–18.e18. doi: 10.1016/j.cell.2020.08.002
Frontiers in Immunology | www.frontiersin.org 14
58. Schultheiss C, Paschold L, Simnica D, Mohme M, Willscher E, von
Wenserski L, et al. Next-Generation Sequencing of T and B Cell Receptor
Repertoires from COVID-19 Patients Showed Signatures Associated with
Severity of Disease. Immunity (2020) 53:442–55.e4. doi: 10.1016/
j.immuni.2020.06.024

59. Jellusova J. Cross-talk between signal transduction and metabolism in B cells.
Immunol Lett (2018) 201:1–13. doi: 10.1016/j.imlet.2018.11.003

60. Caro-Maldonado A, Wang R, Nichols AG, Kuraoka M, Milasta S, Sun LD,
et al. Metabolic reprogramming is required for antibody production that is
suppressed in anergic but exaggerated in chronically BAFF-exposed B cells.
J Immunol (2014) 192:3626–36. doi: 10.4049/jimmunol.1302062

61. Kunisawa J, Sugiura Y, Wake T, Nagatake T, Suzuki H, Nagasawa R, et al.
Mode of Bioenergetic Metabolism during B Cell Differentiation in the
Intestine Determines the Distinct Requirement for Vitamin B1. Cell Rep
(2015) 13:122–31. doi: 10.1016/j.celrep.2015.08.063

62. Tellier J, Nutt SL. Plasma cells: The programming of an antibody-secreting
machine. Eur J Immunol (2019) 49:30–7. doi: 10.1002/eji.201847517

63. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H, et al.
XBP1, downstream of Blimp-1, expands the secretory apparatus and other
organelles, and increases protein synthesis in plasma cell differentiation.
Immunity (2004) 21:81–93. doi: 10.1016/j.immuni.2004.06.010

64. de Campos Mata L, Piñero J, Vaquero ST, Tachó-Piñot R, Kuksin M, Aldea
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