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Aims Cardiovascular disease is a major threat to maternal health, with cardiomyopathy being among the most common
acquired cardiovascular diseases during pregnancy and the postpartum period. The aim of our study was to evalu-
ate the effectiveness of an electrocardiogram (ECG)-based deep learning model in identifying cardiomyopathy dur-
ing pregnancy and the postpartum period.

...................................................................................................................................................................................................
Methods
and results

We used an ECG-based deep learning model to detect cardiomyopathy in a cohort of women who were pregnant
or in the postpartum period seen at Mayo Clinic. Model performance was evaluated using the area under the re-
ceiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. We compared the diagnostic
probabilities of the deep learning model with natriuretic peptides and a multivariable model consisting of demo-
graphic and clinical parameters. The study cohort included 1807 women; 7%, 10%, and 13% had left ventricular
ejection fraction (LVEF) of 35% or less, <45%, and <50%, respectively. The ECG-based deep learning model identi-
fied cardiomyopathy with AUCs of 0.92 (LVEF <_ 35%), 0.89 (LVEF < 45%), and 0.87 (LVEF < 50%). For LVEF of
35% or less, AUC was higher in Black (0.95) and Hispanic (0.98) women compared to White (0.91). Natriuretic
peptides and the multivariable model had AUCs of 0.85 to 0.86 and 0.72, respectively.

...................................................................................................................................................................................................
Conclusions An ECG-based deep learning model effectively identifies cardiomyopathy during pregnancy and the postpartum

period and outperforms natriuretic peptides and traditional clinical parameters with the potential to become a
powerful initial screening tool for cardiomyopathy in the obstetric care setting.
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Introduction

Maternal morbidity and mortality in the USA exceeds other devel-
oped countries,1,2 with cardiovascular disease as the leading cause of
mortality during pregnancy and the postpartum period.3,4

Cardiovascular disease has been identified as a major threat to
motherhood and women’s health in the USA5 and UK,6 accounting
for approximately 33% of all pregnancy-related deaths7 and compli-
cating up to 160 000 pregnancies in the USA each year.5

Cardiomyopathy is among the most common acquired cardiovascu-
lar diseases during pregnancy and the postpartum period; however,
diagnosis is challenging due to overlap between pathologic cardiovas-
cular symptoms and those seen with normal pregnancy.8 A review of
maternal deaths in California from 2002 to 2006 found that a delay in
diagnosis, despite the presence of clinical warning signs, was respon-
sible for approximately half of all deaths attributed to cardiomyop-
athy in the peripartum period.8 Peripartum cardiomyopathy (PPCM)
is a well-described cause of left ventricular systolic dysfunction
(LVSD) and heart failure in this patient population.9 However, other
forms of cardiomyopathy with LVSD may present prior to, during, or
just after pregnancy with associated severe adverse effects.10

Current guidelines from the American College of Cardiology and the
American College of Obstetrics and Gynecology (ACOG) do not
recommend routine screening for cardiomyopathy in pregnant
women and those in the postpartum period. A recently developed
electrocardiogram (ECG)-based deep learning model has been dem-
onstrated to be effective in identifying cardiomyopathies in clinical

and non-clinical settings.11–13 Currently, there is no information on
its value in detecting pregnancy-related cardiomyopathies. This study
aims to evaluate the effectiveness of an ECG-based deep learning
model for diagnosing cardiomyopathies during pregnancy and the
postpartum period.

Methods

Study population
We identified adult women aged 18–49 years evaluated at Mayo Clinic
(Phoenix, AZ, USA; Jacksonville, FL, USA; and Rochester, MN, USA) and
Mayo Clinic Health System hospitals who were pregnant or in the post-
partum period using pregnancy-related International Classification of
Diseases (ICD) 9 and 10 diagnosis codes, as well as the Hospital
International Classification of Disease Adapted (HICDA) codes, a modifi-
cation of ICD-8.14,15 The pregnancy-related diagnosis codes are available
through the Rochester Epidemiology Project, Data Exploration Portal.15

Women were included if they had a diagnosis date between 1 January
2000 and 31 December 2020, and had at least 1 standard 12-lead ECG
performed within 300 days following their diagnosis date and an echocar-
diogram (performed at the discretion of the managing physician) within
30 days following the ECG. This time interval was selected to include all
cardiomyopathies present or diagnosed during pregnancy and up to 1
year postpartum regardless of aetiology. This broad time period was
chosen because the Centers for Disease Control defines pregnancy-
related mortality as deaths occurring during or within 1 year of preg-
nancy.16 Given cardiomyopathy is the leading cause of pregnancy-related

Graphical Abstract

Detecting cardiomyopathies in pregnant and postpartum women. AUC, area under the receiver operating characteristic curve; ECG, electrocardiogram.
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..deaths, we intended to capture any cardiomyopathy occurring in preg-
nancy and through 12 months postpartum.

For patients with multiple echocardiograms, the earliest available within
the study period was selected. For patients with multiple ECGs during that
time frame, the closest ECG to the echocardiogram was selected. All
ECGs were acquired at a sampling rate of 500 Hz using a GE Marquette
ECG machine (GE Healthcare) and stored using the MUSE ECG data man-
agement system (GE Healthcare). Echocardiographic data were obtained
from a Mayo Clinic custom database (Echo Image Management System).
Left ventricular ejection fraction (LVEF) was calculated based on standards
recommended by the American Society of Echocardiography.17 LVEF val-
ues used were selected in order of priority: two-dimensional biplane
method of disks summation (modified Simpson method), two-dimensional
linear, M-mode, and visual estimation.

Exclusion
We identified women with congenital heart disease15 and excluded those
with complex congenital heart disease based on echocardiogram reports
and prespecified HICDA and ICD diagnosis codes (Supplementary

material online, Table S1). We also excluded echocardiograms performed
intraoperatively, during stress testing, or cardiac resynchronization ther-
apy atrioventricular optimization procedures. Our final study cohort
included 1807 patients (Figure 1). The study was approved by the Mayo
Clinic Institutional Review Board, including a waiver of informed consent.

Covariates
Data on demographic, clinical, and laboratory variables, including natri-
uretic peptides, were extracted from the electronic health record.
Additional clinical diagnosis/comorbid conditions were extracted if pre-
sent at any time prior through 30 days following the index ECG except
for pre-eclampsia/eclampsia. Pre-eclampsia/eclampsia was identified with-
in 100 days prior and up to 30 days following the echocardiogram in
order to capture its diagnosis within the index pregnancy and not subse-
quent pregnancies. Our goal was to compare the performance of the
ECG-deep learning model in predicting cardiomyopathy at predeter-
mined LVEF cut points compared to natriuretic peptides and a combin-
ation of clinical and demographic variables.

Figure 1 Study population flow diagram. AV, atrioventricular; ECG, electrocardiogram; EF, ejection fraction.
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..Outcomes
Our primary outcome was the identification of women with LVSD
defined as LVEF of 35% or less. Our secondary outcomes included two
additional LVEF cut points: LVEF <45% and LVEF <50%. All cut points
were selected due to their clinical relevance. Patients with an LVEF of
35% or less are considered to be at the highest risk for sudden cardiac
death from ventricular arrhythmias.18 Patients in the peripartum period
with an LVEF <45% without other aetiologies identified for systolic dys-
function are considered to have PPCM, a clinically distinct condition
unique to pregnant women and those in the postpartum period.9

Identification of individuals with an LVEF <50% is important as they often
meet clinical criteria for medical interventions to manage cardiomyop-
athy,18 and the most recent universal definition of heart failure classifies
this as reduced ejection fraction.19 For diagnostic accuracy assessment
the criterion standard test was LVEF, as measured on a two-dimensional
echocardiogram.

Deep learning model
We employed a previously developed and validated ECG-based deep
learning model for the identification of LVEF of 35% or less11,20 with no
additional training or optimization. This model employed a convolutional
neural network trained with Keras with a Tensorflow (Google LLC) and
specifics of the model derivation have been previously published.11,20 The
patient population used in the initial development of the model included
97 829 patients who had an ECG and echocardiogram performed within
a 2-week interval.11 Patient data used in training the original model were
excluded from this analysis.

Statistical analysis
Model performance was evaluated using the area under the receiver
operating characteristic curve (AUC), estimated by modelling the
prediction probabilities for LVSD generated by the deep learning
model to categorized echocardiographic LVEF assessment. The cat-
egorization of LVEF at 35% or less was of primary interest since it
matched the original model development; however, less severe
degrees of LVSD were considered by categorizing LVEF at <45% and
<50% for secondary analyses of the model’s performance. Measures
of diagnostic performance (i.e. accuracy, sensitivity, specificity, posi-
tive predictive value, and negative predictive value) were calculated
using the previously determined threshold of 0.256 or less, which
indicates a positive screen. Ninety-five percent exact confidence
intervals (CIs) were calculated for measures of diagnostic perform-
ance with large sample approximation of the DeLong method,21

with optimization by Sun and Xu.22 Stratified analyses were also con-
ducted by race, ethnicity, age, and hypertension status.

To further evaluate the utility of the deep learning model through
benchmarking performance, additional exploratory analyses were
conducted. This deep learning model’s performance was compared
to B-type natriuretic peptide (BNP) or N-terminal pro-BNP (NT-
proBNP) among patients who had these measured within 30 days
prior to their echocardiogram. AUC values for BNP and NT-
proBNP were evaluated alone and in combination with the deep
learning model. Although natriuretic peptide levels may increase up
to two-fold in normal pregnancy, values have been noted to remain
within normal range.5 AUC was also evaluated for a multivariable
model including demographic, clinical, and laboratory variables. All
95% CIs and P-values reported are two-sided. A P-value of <0.05 was
considered statistically significant. Statistical analysis was conducted
using R, version 3.6.2.23

Results

Study population characteristics
A total of 1807 women were included in the study. Overall, the me-
dian (interquartile range) age of patients was 30.5 (26.4–35.1) years;
most were White [1428 (79.0%)]. One hundred and twenty-seven
(7.0%), 184 (10.2%), and 230 (12.7%) had LVEF of 35% or less, <45%,
and <50%, respectively. Two hundred and sixty (14.4%) had natri-
uretic peptide levels measured within the prespecified 30-day win-
dow prior to selected echocardiogram. Additional demographic and
clinical characteristics are shown in Table 1.

Primary outcome: detection of
cardiomyopathy at LVEF of 35% or less
Detection of an LVEF of 35% or less using the deep learning model
achieved an AUC of 0.920 (95% CI 0.880–0.950) with an accuracy of
94.0% (95% CI 92.8–95.1). Sensitivity, specificity, positive predictive
value, and negative predictive value were 70.1%, 95.8%, 56.0%, and
97.7%, respectively (Figure 2A and B). Among those with a false-
positive screen (n = 70), 22 (31.4%) had an LVEF <45%, and 31
(44.3%) had an LVEF <50%. The median (interquartile range) LVEF
for patients with a false-positive screen was 51.5% (43.0–59.8%),
which is below the ejection fraction range (54–74%) classified as nor-
mal for women based on the American Society of Echocardiography
guidelines.17

Secondary outcomes: detection of
cardiomyopathy at LVEF <45% and <50%
For LVEF <45%, the deep learning model achieved an AUC of 0.890
(95% CI 0.861–0.919), with an accuracy of 93.3% (95% CI 92.1–94.4).
Sensitivity, specificity, positive predictive value, and negative predict-
ive values were 60.3%, 97.0%, 69.8%, and 95.6%, respectively (Figure
2C and D). For LVEF <50%, the deep learning model achieved an
AUC of 0.867 (95% CI 0.838–0.896), with an accuracy of 91.8% (95%
CI 90.4–93.0). Sensitivity, specificity, positive predictive value, and
negative predictive value were 52.2%, 97.5%, 75.5%, and 93.3%, re-
spectively (Figure 2E and F).

Subpopulations
We evaluated the effectiveness of the deep learning model at all
LVEF cut points by ethnicity, race, age group, and hypertension status
(including hypertensive disease of pregnancy) (Figure 3). AUCs for
LVEF of 35% or less, <45%, and <50% were higher among Hispanic
women (0.98, 0.95, and 0.88, respectively), Black women (0.95, 0.94,
and 0.93), women older than 35 years (0.94, 0.92, and 0.91), and
women without hypertension (0.93, 0.89, and 0.87). AUC values
otherwise remained stable in all subgroups for all prespecified LVEF
cut points.

Exploratory analysis: multivariable
model, natriuretic peptides, optimal cut
points
A multivariable logistic regression model in a subset of the study popu-
lation without missing values (n = 1248) included age, race, ethnicity,
and clinical parameters (serum creatinine, congenital heart disease,

Evaluating cardiomyopathy in pregnancy with ECG 589
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..hypertension, ischaemic heart disease, and valvular heart disease).
These variables were selected based on a significant association with
the left ventricular dysfunction in Table 1. Age was also included
(although not significant in Table 1) due to prior literature demonstrat-
ing a higher risk of cardiomyopathy with advancing maternal age. This
model was able to identify LVEFs of 35% or less with an AUC of 0.72
(Table 2). The associations seen in Table 2 are consistent with current
literature demonstrating higher odds of cardiomyopathy among Black
(odds ratio 3.58; 95% CI 2.14–5.89) and Hispanic (odds ratio 2.29; 95%

CI 1.04–4.68) women, as well as women with ischaemic heart disease
(odds ratio 3.83; 95% CI 1.81–7.71). It is important to note that the
deep learning model does not require a detailed knowledge of the
patient’s medical history and clearly outperforms this model.

Among the 14% of our study population who had BNP or NT-
proBNP values measured within 30 days prior to their echocardio-
gram, NT-proBNP and BNP identified LVSD (LVEF <_35%) with
AUCs of 0.85 (95% CI 0.79–0.91) and 0.86 (95% CI 0.69–1.00), re-
spectively. The deep learning model had an AUC of 0.90 in this subset

....................................................................................................................................................................................................................

Table 1 Demographic and clinical characteristics of study populationa

Characteristics LVEF >35%
(n 5 1680)

LVEF �35%
(n 5 127)

Overall

(N 5 1807)

P-valueb

Age, years, median (IQR) 30.5 (26.4–35.0) 31.3 (26.5–36.7) 30.5 (26.4–35.1) 0.29

Weight, BMI, kg/m2 0.53

Normal weight (18.5–24.9) 254 (27.2) 11 (20.8) 265 (26.8)

Underweight (<18.5) 14 (1.5) 1 (1.9) 15 (1.5)

Overweight (25.0–29.9) 249 (26.6) 12 (22.6) 261 (26.4)

Obese (>_30) 418 (44.7) 29 (54.7) 447 (45.2)

Race

White 1350 (80.4) 78 (61.4) 1428 (79.0) <0.001

Black 139 (8.3) 34 (26.8) 173 (9.6)

Other/unknown 191 (11.4) 15 (11.8) 206 (11.4)

Ethnicity 0.01

Hispanic or Latino 81 (5.2) 12 (10.8) 94 (5.7)

Not Hispanic or Latino 1469 (94.7) 99 (89.2) 1568 (94.3)

Family history of heart disease

All relatives 440 (45.5) 21 (44.7) 461 (45.5) 0.91

First degree relatives 215 (22.3) 12 (25.5) 227 (22.4) 0.60

Time between ECG and echocardiogram, days, median (IQR) 1.0 (0.0–6.0) 0.0 (0.0–1.0) 1.0 (0.0–5.0) <0.001

Serum creatinine, mg/dL, median (IQR)c 0.7 (0.6–0.8) 0.9 (0.7–1.1) 0.7 (0.6–0.9) <0.001

Serum haemoglobin, g/dL, median (IQR)c 11.8 (10.4–12.9) 11.7 (9.6–13.1) 11.8 (10.4–13.0) 0.86

NT-ProBNP, pg/mL, median (IQR)c 229.2 (77.2–899.7) 3264.0 (1035.0–5644.8) 430.0 (93.0–1554.0) <0.001

BNP, pg/mL, median (IQR)c 128.0 (25.0–341.0) 864.0 (463.2–1054.0) 145.0 (29.0–401.5) <0.001

Aortic aneurysm 27 (1.6) 1 (0.8) 28 (1.5) 0.47

Cardiac arrhythmia 776 (46.2) 48 (37.8) 824 (45.6) 0.067

Chronic pulmonary disease 96 (5.7) 10 (7.9) 106 (5.9) 0.32

Diabetes 239 (14.2) 19 (15.0) 258 (14.3) 0.82

Cerebrovascular disease 80 (4.8) 7 (5.5) 87 (4.8) 0.70

Congenital heart disease 117 (7.0) 3 (2.4) 120 (6.6) 0.045

Chronic kidney disease 50 (3.0) 4 (3.1) 54 (3.0) 0.91

Hypertension 401 (23.9) 44 (34.6) 445 (24.6) 0.007

Ischaemic heart disease 52 (3.1) 16 (12.6) 68 (3.8) <0.001

Preeclampsia/eclampsia 147 (8.8) 16 (12.6) 163 (9.0) 0.14

Superficial/deep vein thrombosis 122 (7.3) 12 (9.4) 134 (7.4) 0.36

Valvular heart disease 288 (17.1) 35 (27.6) 323 (17.9) 0.003

The bold face values are considered statistically significant given they are less than 0.05.
BMI, body mass index; BNP, B-type natriuretic peptide; ECG, electrocardiogram; IQR, interquartile range; LVEF, left ventricular ejection fraction; NT-ProBNP, N-terminal Pro
B-type natriuretic peptide.
aData summarized as no. (%) unless otherwise indicated. Percentages may not total 100 due to rounding and missing/unknown data not displayed. Weight (missing n = 819),
Ethnicity (missing n = 145), serum creatinine (missing n = 460), serum haemoglobin (missing n = 369), NT-proBNP (missing n = 1598), BNP (missing n = 1756).
bP-values presented are from Fisher’s exact test for count data and Wilcoxon rank sum tests for numeric variables.
cEffective sample size for laboratory values: serum creatinine = 1347; haemoglobin = 1438; NT-proBNP = 209; BNP = 51.
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and outperformed natriuretic peptides at all prespecified LVEF cut
points, demonstrating an advantage of the deep learning model be-
yond its non-invasive nature. The addition of NT-proBNP to the
deep learning model did not add a statistically significant incremental
value with improvement in AUC from 0.90 to 0.94 (P = 0.10; DeLong
test for correlated AUCs) for LVEF of 35% or less (Figure 4).

We evaluated multiple cut points for the deep learning model’s
prediction probabilities to fully assess the change in diagnostic proba-
bilities that might be optimal for a screening test (Supplementary ma-
terial online, Table S2) where a higher sensitivity and negative
predictive value may be beneficial. Given the associated risk of a false-
positive test is obtaining an echocardiogram, a non-invasive test, this
is an acceptable risk. At a threshold value of 0.10 or greater, sensitiv-
ity, specificity, and positive and negative predictive values of the deep
learning model were 77%, 92%, 41%, and 98.2%, respectively.
Changing this threshold value to 0.45 or greater, sensitivity, specifi-
city, and positive and negative predictive values were 59%, 97%, 61%,
and 97%, respectively.

Discussion

This study provides preliminary evidence that an ECG-based deep
learning model can be an effective instrument to screen for LVSD
among pregnant women and those in the postpartum period and lays
the groundwork to support its application in routine obstetric care.

We also demonstrate that the deep learning model outperforms cur-
rent practice using natriuretic peptides, demographic, and clinical
parameters for predicting cardiomyopathy. This study also shows the
effectiveness of the deep learning model in populations with dispro-
portionately high maternal mortality rates (Black and Hispanic); how-
ever, larger studies with more diverse cohorts are needed to confirm
these findings.

Cardiovascular disease is the leading cause of maternal deaths
in the USA and is now estimated to be responsible for 33% of all
pregnancy-related deaths based on data from the Centers for
Disease Control and Prevention Pregnancy Mortality
Surveillance System from 2007 to 20167 and 23% of indirect ma-
ternal deaths in the UK based on a 2016 to 2018 study.6 As such,
early identification of cardiovascular disease in the pregnant and
postpartum period is essential and provides a unique opportunity
for timely initiation of appropriate medical management18 and
monitoring, with the ultimate goal of reducing associated mater-
nal morbidity and mortality. Notable disparities in maternal out-
comes also exist, with higher rates of morbidity and mortality
among non-White women of lower socioeconomic status and
those over 40 years of age.5,24 Failure to identify cardiovascular
disease symptoms and delays in diagnosis are believed to be con-
tributing to this critical health inequity.5 Cardiomyopathy occur-
ring in pregnancy and the postpartum period is difficult to
diagnose due to the similarity in symptoms seen with normal

Figure 2 (A–F) Receiver operating characteristic curves and confusion matrices for identification of cardiomyopathy among pregnant and postpar-
tum women at pre-specified ejection fraction values. (A and B) Ejection fraction <_35%; (C and D) ejection fraction <45%; and (E and F) ejection fraction
<50%. AUC, area under the receiver operating characteristic curve.
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Figure 3 Forest plots showing deep learning model performance for identification of left ventricular systolic dysfunction stratified by subgroups. (A)
Ejection fraction <_35%; (B) ejection fraction <45%; and (C) ejection fraction <50%. AUC, area under the receiver operating characteristic curve.
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pregnancy.8 The field of cardio-obstetrics is now an emerging
multidisciplinary specialty due to recognized interactions be-
tween pregnancy and cardiovascular disease.4,25–27

The 2019 ACOG guidelines,5 2018 European Society of
Cardiology guidelines,10 and 2020 scientific statement from the
American Heart Association4 endorse obtaining additional testing
(including ECG and echocardiography) in pregnant women and those
in the postpartum period with history or physical examination fea-
tures suggestive of cardiovascular disease. However, it remains un-
clear which patients with symptoms (sometimes indistinguishable
from normal pregnancy-related symptoms) will benefit from add-
itional testing. These guidelines also acknowledge that diagnosing car-
diomyopathy in this population is challenging, making them an ideal
group for targeted screening. A 12-lead ECG is available in most clin-
ical settings and can be performed rapidly with minimal training. In
addition, an ECG is inexpensive compared to echocardiography,
making it an attractive option as a screening tool. Although echocar-
diography remains the criterion-standard test to evaluate LVSD,17 it
requires additional expertise to perform and interpret and may not
be available in standard obstetric settings.28

The American College of Cardiology and American Heart
Association heart failure guidelines endorse the use of natriuretic
peptides for screening the general population for heart failure29;
however, evidence of their utility in the pregnant and postpartum
population remains limited. Some studies with relatively small sam-
ples have evaluated the use of natriuretic peptides in the pregnant
and postpartum population and demonstrated its effectiveness at the
standard cut points, but also noted that certain pregnancy-related
changes and conditions, such as pre-eclampsia, can affect natriuretic
peptide levels, necessitating the use of a different cut point.30,31 In
addition, pre-eclampsia is known to be a risk factor for PPCM.9 This
suggests the misclassification rate with natriuretic peptides in this
population might be higher than the range (14–29%) reported in the
general population.32 In addition to the pregnant state and associated
conditions, other factors such as body mass index, comorbidities (e.g.
renal failure, pulmonary hypertension, infections, arrhythmias), and
use of angiotensin receptor neprilysin inhibitor29,33–38 can alter natri-
uretic peptide levels. Compared to the limitations associated with
using natriuretic peptides, the diagnostic accuracy of the ECG-based
deep learning model has been demonstrated to be robust in detect-
ing LVSD across different age groups, sex, and race/ethnicity,11,39

highlighting its potential as a much more effective screening tool.

Pregnancy-related cardiomyopathies
PPCM is a unique phenotype defined as LVEF <45% occurring in the
last month of pregnancy or within 5 months postpartum without pre-
viously known structural heart disease and in the absence of an alter-
nate explanation.40,41 Although this condition is considered rare,
with a reported incidence of approximately 1 in 1000 live births na-
tionally, there has been an upward trend of occurrence from 8.5 to
11.8 per 10 000 live births from 2004 to 2011.42 It has also been sug-
gested that many cases may be missed and the true incidence rate
remains unknown.9 PPCM is strongly associated with age, with more
than 50% of cases occurring in women older than 30 years and a 10-
fold increase in odds among women older than 40 years compared
to women younger than 20 years.41,42 PPCM is also known to dispro-
portionately affect Black women, who tend to present with more
advanced disease and more impaired LVSD, with a corresponding
lower rate of LVEF recovery and a higher risk of death.42–45 Some

.................................................................................................

Table 2 Multivariable model evaluating demographic
and clinical parameters for predicting cardiomyopathy
(LVEF �35%)a

Characteristics Odds ratio 95% CI P-value

Ethnicity

Not Hispanic or Latino Ref Ref 1.00

Hispanic or Latino 2.29 1.04–4.68 0.029

Race

White Ref Ref 1.00

Black 3.58 2.14–5.89 <0.001

Other or unknown 1.00 0.44–2.06 >0.90

Age, years

18–24 Ref Ref 1.00

25–29 1.22 0.64–2.38 0.50

30–34 1.07 0.56–2.08 0.80

35–49 1.08 0.57–2.09 0.80

Serum creatinine 1.23 1.04–1.45 0.01

Congenital heart disease 0.35 0.08–1.03 0.09

Hypertension 1.12 0.70–1.75 0.60

Ischaemic heart disease 3.83 1.81–7.71 <0.001

Valvular heart disease 1.68 0.98–2.78 0.05

AUC, area under the receiver operating characteristic curve; LVEF, left ventricu-
lar ejection fraction; Ref, reference.
aModel AUC = 0.72.

Figure 4 Receiver operating characteristic curves for identifica-
tion of left ventricular ejection fraction <35% among pregnant and
postpartum women who had NT-ProBNP Measured. AI, artificial in-
telligence; NT-ProBNP, N-terminal pro B-type natriuretic peptide.
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..studies have demonstrated a three- to four-fold increase to as much
as a 16-fold higher risk of PPCM in Black women compared to White
women.46–48 In addition, studies have shown Black women have a
10-fold higher risk of death related to cardiovascular disease (preg-
nancy-related mortality rate of 16.3 deaths per 100 000 live births)
compared with other racial and ethnic groups.49 The clinical presen-
tation and outcomes of PPCM is also known to vary by region and
the largest study of PPCM published found almost 70% of women
had an ejection fraction <_35% at diagnosis.50 We demonstrate that
the deep learning model performs well across multiple subgroups
and its performance is highest among higher-risk women (Black,
Hispanic, and >_35 years of age) at all LVEF cut points. This screening
tool can potentially aid early and appropriate diagnosis in Black and
Hispanic women, narrowing the disparities gap.

Other forms of cardiomyopathy have also been reported to occur
during prepartum, peripartum, and postpartum periods, including
dilated cardiomyopathy and acquired cardiomyopathy due to myo-
carditis, hypertension, valvular heart disease, ischaemia, stress, or
toxins.4 Regardless of the aetiology of the cardiomyopathy in preg-
nancy and the postpartum period, the associated risk of adverse
effects remains high. Unfortunately, the incidence and prevalence of
any cardiomyopathy with LVSD among pregnant or reproductive age
women in the USA remains unknown. Some international studies in
predominantly Black populations have reported an incidence of 1 per
299 livebirths51 and prevalence rates of 6–10% in the peripartum
period.52 Large scale prospective studies and registries are needed to
address this important question. In addition, the ECG-based deep
learning model is easily scalable and could potentially be employed
for screening in large population-based studies.

This study addresses multiple key recommendations from the
American Heart Association and ACOG Presidential Advisory,
including enhancement of screening for cardiovascular disease in
women, leveraging technology to improve cardiovascular health in
women, and bridging collaborations between the disciplines of cardi-
ology and obstetrics and gynaecology.53

Limitations
Since patients were identified for inclusion based on HICDA and ICD
diagnosis codes, it is possible that some patients may have been
missed or inappropriately included. In addition, we retrospectively
evaluated and only included patients who had both an ECG and
echocardiogram performed which likely excludes a large portion of
patients seen in routine obstetric care and can affect estimated diag-
nostic probabilities due to selection bias. The study sample included
few minority women and assessment of body mass index was
obtained with weights recorded on echocardiography reports, which
were performed during pregnancy for some patients, and as such,
may not accurately reflect pre-pregnancy weight. Lastly, the sample
size for the multivariable model and natriuretic peptides analysis was
restricted relative to the overall sample size on account of missing la-
boratory data (obtained through retrospective chart review) for
many of the patients. No imputation was performed, and results
need to be evaluated as hypothesis generating.

Strengths
A major strength of this study is the effectiveness and robustness of
the deep learning model in a unique patient population of women
who were pregnant or in the postpartum period who would likely
greatly benefit from screening. This study further adds to the litera-
ture regarding use of artificial intelligence (AI)-based tools in clinical
practice and bridges the gap between cardiovascular medicine and
obstetrics.

Conclusion and future directions

An ECG-based deep learning model can effectively identify LVSD
among women who are pregnant or in the postpartum period. The
use of this model for screening purposes in routine obstetric practice
can facilitate early identification of high-risk patients. Further studies
are needed to confirm the feasibility and value of this model in diverse
patient populations, especially among Black women who are
reported to have the highest risk, as well as its association with clinical
outcomes. Efforts are currently underway to validate the AI-ECG in a
separate patient population external to the current institution where
this model was derived. Of note, the AI-ECG was recently evaluated
in a pragmatic clinical trial and was found to increase the diagnosis of
low ejection fraction in the primary care setting.54 Subsequent plans
include prospective studies in pregnant and postpartum women to
evaluate the effectiveness of the AI-ECG and its impact on clinical
outcomes. With the advent of wearables and smart devices, there is
a potential opportunity to obtain personalized ECGs in nonclinical
settings. If models using smartphone compatible portable ECG device
technology are successful, they can be rapidly deployed across the
entire world regardless of an elaborate healthcare infrastructure,
with the potential for early disease detection and prevention of ad-
verse outcomes for the mother and her unborn child.

Supplementary material

Supplementary material is available at European Heart Journal – Digital
Health online.
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