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Abstract

Motivation: Very large studies are required to provide sufficiently big sample sizes for adequately

powered association analyses. This can be an expensive undertaking and it is important that an ac-

curate sample size is identified. For more realistic sample size calculation and power analysis, the

impact of unmeasured aetiological determinants and the quality of measurement of both outcome

and explanatory variables should be taken into account. Conventional methods to analyse

power use closed-form solutions that are not flexible enough to cater for all of these elements eas-

ily. They often result in a potentially substantial overestimation of the actual power.

Results: In this article, we describe the Estimating Sample-size and Power in R by Exploring

Simulated Study Outcomes tool that allows assessment errors in power calculation under various

biomedical scenarios to be incorporated. We also report a real world analysis where we used this

tool to answer an important strategic question for an existing cohort.

Availability and implementation: The software is available for online calculation and downloads

at http://espresso-research.org. The code is freely available at https://github.com/ESPRESSO-

research.

Contact: louqman@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A critical question to answer when designing or extending large

scale studies and biobanks is what sample size is required to achieve

adequate statistical power (i.e. the ability to detect the true deter-

minants of the outcome). For a large study aimed at exploring weak

effects, the answer can have major implications for funding and re-

sources because the number of participants to be recruited (sample

size) depends critically on the desired level of power; the higher the

desired power, the larger the required sample size. Among other

things, the answer also depends on the quality of the measurements

of the variables of interest since assessment errors, in both outcome

and explanatory variables, can substantially reduce the power of as-

sociation studies (Wong et al., 2003). Failure to take account of

such assessment errors in power analyses at the design stage of a

study may lead to a serious over-estimation of its true statistical

power and result in a research platform that is critically underpow-

ered when it comes to analysis.

Most conventional approaches to estimating the sample size

required to achieve adequate statistical power fail to account

rigorously for the sensitivity and specificity of the assessment of

categorical outcome and explanatory variables or the reliability of

quantitative variables (Burton et al., 2009). Furthermore, proper in-

corporation of the impact of assessment error in multiple variables,

and of the analytic disturbance that may arise from variables that

have not been measured at all, generally demands non-trivial exten-

sion of the methods being used and so is not attempted. But given the
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magnitude of the sample sizes that may well be required, the vast

investment of time and resources that is needed, and the scientific

and financial costs associated with significantly misjudging required

study size, the failure to properly account for these factors can

seriously undermine strategic planning. These effects may be

substantial.

For example, having made entirely reasonable assumptions

about issues such as the measurement error in outcome and explana-

tory variables and heterogeneity in disease risk it has been shown

that, for a study with an intended statistical power of 80%, the

required sample size can easily more than double (Burton et al.,

2009). But, if a study designed to have a power of 80% to detect a

given effect at a (two-tailed) P-value of 0.01 is only half its required

size, it is straightforward to calculate that the actual power of that

study will be given by the cumulative standard normal standard dis-

tribution up to the quantile:

�0:159 ¼ 2:576þ 0:842ð Þ �
ffiffiffiffiffiffiffi
0:5
p� �

� 2:576
h i

Where 2.576 is the normal standard deviate corresponding to a two-

tailed P-value of 0.01, 0.842 is the deviate corresponding to a power

of 80%, and
ffiffiffiffiffiffiffi
0:5
p

reflects the shrinkage in the standard error if sam-

ple size doubles. This quantile (�0.159) corresponds to a real power

of 43.6% (rather than the intended 80%). Equivalent calculations

for candidate gene studies using a (two-tailed) P-value of P<10�4

or genome wide association studies using P<10�8 generate corres-

ponding powers of 29.3 and 13.9%, respectively.

ESPRESSO—Estimating Sample-size and Power in R by

Exploring Simulated Study Outcomes—(Burton et al., 2009) has

been developed to provide a way to incorporate key elements and

thereby to allow for more realistic power analysis and sample

size calculation for large-scale epidemiological studies. It is a soft-

ware tool, written in the R programming language (Ihaka and

Gentleman, 1996), providing a simulation-based approach to power

and sample size calculations for stand-alone studies, analyses nested

in cohort studies and consortium-based meta-analyses.

ESPRESSO is aimed primarily at researchers involved in design-

ing and setting up studies to investigate the genetic and/or environ-

mental basis of complex traits. In particular, it enables those designing

large cohorts and biobanks to better estimate the sample size

required to achieve adequate power. ESPRESSO can also allow for re-

viewers and funding bodies to verify the statistical power calculations

put forward by researchers in their grant applications, thereby helping

to ensure that resources are not wasted on incorrectly powered

studies.

In this article, we provide a concise introduction to the new

ESPRESSO which is built as an R and web-based software. This

new version was used in recent analysis by Gaye et al. (2014), and in

this article, we illustrate its use by answering a question put through

to us by the Canadian Partnership for Tomorrow (CPT) cohort.

2 The new ESPRESSO and its implementation

This section reports concisely the work undertaken to produce the

new ESPRESSO version from the initial R script by Burton et al. The

new version was built with the aim to (i) provide a more comprehen-

sive and user friendly R tool accessible to a wider audience; (ii)

allow for analyses with quantitative outcomes and quantitative en-

vironmental exposures and (iii) extend the range of biomedical scen-

arios that can be investigated, particularly enabling more interaction

models.

2.1 From the precursor R script to fully fledged R libraries
The original version of ESPRESS0 (Burton et al., 2009) consisted of a

single R script which allowed for the fitting of a model with a binary

outcome and two covariates (one single nucleotide polymorphism

(SNP) and one binary environmental exposure) by calling a text file

that held the input parameters for the calculations. This programming

paradigm was fine for the initial project but a more flexible solution

was required for the analyses of the wider range of biomedical scen-

arios sought under the new version of the tool. Hence, it was neces-

sary to write functions to cope with the increased complexity. Whilst

the initial R script allowed for the investigation of five biomedical

scenarios, the newly build R packages (libraries) enable power and

sample size calculations for a total of 14 scenarios reported in

Table 1. Six R packages each with a dozen of functions were de-

veloped. The open source code of the packages, available freely from

GitHub (https://github.com/ESPRESSO-research), allows for users

proficient in the R programming language to download the tool and

use it as is, or modify the code in ways that best suit their needs.

2.2 The new parameters
The initial parameters of ESPRESSO have already been detailed by

Burton et al. (2009). Therefore, this section focuses on five new key

parameters that were required in the new version along with some of

the considerations for choosing how these parameters might be set.

In the new version of ESPRESSO, the outcome variable and

the environmental determinants can be modelled as quantitative.

Hence, the parameters ‘pheno.reliability’ and ‘env.reliability’ were

introduced to set the level of uncertainty on the outcome and covari-

ates measurements. These represent the reliability (test–retest reli-

ability) of the assessment of a quantitative variable, which is a

characteristic that reflects the consistency of the observed measure-

ment across several repeats.

The new version of the tool allows for users to model two SNPs

(rather than one in the initial script) as being in linkage disequilib-

rium (LD). To enable LD between the two SNPs, two new param-

eters (LD and targetLD) were added to the list of input parameters.

The parameter ‘LD’ is a binary indicator: set to 1 to introduce LD

between the two SNPs, and to 0 to generate two independent SNPs.

The correlated SNPs are generated using a multivariate normal dis-

tribution function and the method developed in the R package

HapSim (Montana, 2005). HapSim models a haplotype as a multi-

variate random variable with known marginal distributions and

pairwise correlation coefficients. The package allows for the simula-

tion of a SNP haplotype of several biallelic loci. In our implementa-

tion of the method for ESPRESSO, we limited the number of loci to

two because we generate only two SNPs in LD. Our implementation

of the method consists of two main steps: (i) we compute the covari-

ance matrix required to generate two correlated binary vectors of

length n (each vector represents one SNP and n is the number of ob-

servations) and (ii) we use the covariance computed in step (1) to

generate a matrix of data that follow a multivariate normal distribu-

tion. For two loci, there are four possible haplotypes; the sum of the

frequencies of the four possible haplotypes across the n simulated in-

dividual is 1 and the Lewontin’s D and Pearson’s r correlation values

calculated from the single frequencies of the four haplotypes is equal

to the target level of correlation (desired level of LD) specified in the

first step. If the number of individuals to simulate is large, the pro-

gramme runs more slowly. Because this setting (i.e. LD between the

two SNPs) could be time consuming, it is preferable to set the sam-

ple size and the number of simulations to low values for an initial

explorative analysis.

2692 A.Gaye et al.

https://github.com/ESPRESSO-research


The parameter ‘target LD’ represents the desired level of LD

between the two SNPs, if they are to be modelled as being LD.

The user should consider the minor allele frequencies (MAFs) of the

two SNPs when setting the desired level of LD. The minor allele fre-

quencies of the SNPs should not be markedly different. This, simply

because a prefect correlation (i.e. an absolute value of 1) cannot be

obtained if the SNPs have markedly different minor allele frequen-

cies as demonstrated mathematically in the Section 1.1 of the

Supplementary Material.

2.3 The web-based version of ESPRESSO
The development of R packages improved greatly the usability of

the tool and its maintenance (error tracking and debugging), but it

was mainly confined to the R community. In order to widen the use

of ESPRESSO it was important to make it accessible to non R users.

We hence built a website based on Joomla content management sys-

tem (Joomla, 2014) and embedded an online version of the tool

(http://www.espresso-research.org/). The website contains extensive

documentation about the tool and help information are available,

upon a click, for each item on the graphical user interface of the cal-

culator. The version of the ESPRESSO software running in the back-

ground of the page can be updated by simply installing the latest

packages on the server where the page is hosted.

2.4 Overview of the ESPRESSO algorithm
An ESPRESSO simulation essentially comprises five steps as sum-

marized graphically in Figure 1.

First (step 1 in Fig. 1), a series of input values required to set the

simulation (e.g. number of runs), outcome, genetic and/or environ-

mental determinant parameters are specified.

Then (step 2 Fig. 1); an error free dataset which contains the true

outcome and determinant values for each simulated individual is

generated. The word ‘true’ here refers not to the true value of some

real individual in the real world, but rather the true values (without

error) of each simulated variable in each simulated subject within

ESPRESSO. If the outcome is binary, the ‘true’ outcome may be per-

turbed by heterogeneity in the base-line risk of disease arising from

the impact of unmeasured determinants that do not themselves ap-

pear in the model.

At the next stage of the process (step 3 in Fig. 1) an error is gen-

erated and added to the true data to produce the ‘observed’ data.

This error, in effect, disturbs (or may disturb) the observed values of

the outcome variable and each of the covariates. The structure and

magnitude of the error depends on the input parameters—for ex-

ample, reflecting the presumed sensitivity and specificity of the as-

sessments of binary variables or of the reliability of quantitative

measures.

Then (step 4 in Fig. 1), the observed data generated in the simu-

lation stage are analysed by generalized linear modelling (GLM).

Steps 2, 3 and 4 are repeated for a number of times equal to the

number of runs specified at step 1. After each run, as shown graphic-

ally in Figure 2, a matrix, D, of observed data is generated and ana-

lysed by GLM, and the estimates (beta, standard error and z-score),

obtained from the GLM fit, are stored in three distinct vectors.

Finally (step 5 in Fig. 1), the sample size required to achieve the

desired power specified at step 1 and the empirical and theoretical

(modelled power achievable with the input sample size, also speci-

fied at step 1) are calculated.

The sample size required is the product of the relative change in

standard error needed to achieve the desired power by the input

sample size.

The empirical power is the proportion of runs in which the z-

statistic for the parameter of interest exceeds the z-statistic for the

desired level of statistical significance.

The theoretical power is the probability that the z-statistic ob-

tained from the GLM fit takes any value less than or equal to the

ratio of the mean beta coefficient to the mean standard error, i.e. it

is the cumulative distribution function associated with the z-statistic

obtained from the GLM fit.

Fig. 1. Flowchart that shows the main steps in an ESPRESSO process

Fig. 2. Graphical view of the GLM analysis in ESPRESSO. After each simula-

tion run a dataset of observed values is generated analysed and the beta coef-

ficient, standard error and z-statistic stored

Table 1. Overview of the models/scenarios that could be investigated with the initial ESPRESSO script (GA, GB, EB, EB�GA and EB�GB)

versus those that are enabled under the new R libraries (all other nine models)

Additive genetic

variant (GA)

Binary genetic

variant (GB)

Quantitative environmental

exposure (EQ)

Binary environmental

exposure (EB)

Additive genetic variant (GA) GA�GA

Binary genetic variant (GB) GB�GA GB�GB

Quantitative environmental exposure (EQ) EQ�GA EQ�GB EQ�EQ

Binary environmental exposure (EB) EB�GA EB�GB EB�EQ EB�EB

The main effect scenarios that can be investigated are on the cells in the first column whilst the interactions scenarios are in the inner cells of the table.
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The empirical power is not informative for extreme values of the

standard error of the log odds ratio; in such cases one should con-

sider the theoretical power.

3 Case study: analysis of the power of CPT cohort
project to study quantitative traits

3.1 The CPT project
The CPT is a pan-Canadian initiative funded by the Canadian

Partnership Against Cancer (CPAC). It aims to create a national bio-

bank/bio-repository to provide a platform for future research on

common chronic disease including cancer and cardiovascular disease

(Borugian et al., 2010). CPT is based on the integration of five large

provincial cohorts each recruiting several tens of thousands of mid-

dle-aged participants. The planned (target), current and projected

final recruitment numbers for the CPT project (at the time of this

analysis) are outlined in Table 2 (Borugian et al., 2010). The re-

search team was aiming for a final sample size somewhere in the

range 110 000–180 000 but was uncertain what inferential benefits

would accrue from being towards the top of that range rather than

towards the bottom.

3.2 Aim of the analysis and rational for using

ESPRESSO
The aim of this analysis was to assess the statistical power of CPT as

a platform for research projects exploring quantitative traits as out-

comes, given its ultimate sample size. The analysis was requested by

CPT to inform the primary (and immediate) strategic decisions to be

made by CPAC on whether to continue recruitment at a rate that

was likely to produce a total of approximately 110 000 participants

by the end of March 2012, or alternatively to prioritise and step up

recruitment with the aim of recruiting as many as 180 000. The

ESPRESSO platform was used to carry out the calculations because

unlike standard approaches it takes account of uncertainties around

outcome and covariates measurements as mentioned in the introduc-

tory section of the article.

3.3 The outcome variables investigated
The exploration of the power profiles of CPT for quantitative

outcomes was based on the estimates of participant-to-participant

variation (standard deviation) for an extensive range of critical dis-

ease-related traits. These traits were originally drawn up for the

power calculations of the CARTaGENE project (CARTaGENE,

2008) carried out under the direction of P. R. Burton. Forty-three

outcome variables were investigated; they are either physical meas-

ures or biochemical and haematological parameters. An analysis of

biochemical and haematological parameters on fresh blood is useful

because: (i) it provides a series of valuable quantitative traits which

are meaningful in their own right as complex traits that are worthy

of aetiological study; (ii) it provides a series of quantitative traits

that reflect intermediate traits that lie on the causal pathways lead-

ing to a number of complex binary traits that are of scientific inter-

est; (iii) it includes a number of ‘health screening’ parameters that

are of interest to potential recruits and therefore provide a tangible

‘return’ for agreeing to participate. The scientific rationale that justi-

fied the inclusion of each of the 43 variables in this study are the

same as those that justified their inclusion in the CARTaGENE pro-

ject (CARTaGENE, 2008). The rationale and the assumed distribu-

tion (mean and standard deviation) of each of the variables are

available from earlier work (CARTaGENE, 2008; Gaye, 2012).

This section serves mainly as an illustration of one of the possible

uses of ESPRESSO, so the results are restricted to two outcome vari-

ables [systolic blood pressure (SBP) and a generic standardized vari-

able]. The analyses of the other variables were conducted using the

same strategy with full results reported elsewhere (Gaye, 2012).

3.4 Methods
3.4.1 The biomedical scenarios investigated and the strategy

The power profiles of CPT were analysed for the six scenarios sum-

marized in Table 3. Because the fitted model is linear (i.e. continu-

ous outcome), it is easy to mathematically calculate the minimum

estimated effects from the first effect obtained empirically; however,

we deliberately chose to obtain all the minimum estimated effects

empirically. For each outcome and under each scenario, an iterative

approach was used in ESPRESSO to determine the minimum esti-

mated effect that can be detected with an empirical power of

80 6 2% using the probable final samples sizes of CPT (110 000 and

180 000). The iterative approach consisted of looping through a

range of effect sizes until reaching the smallest effect that ensures a

power of 80%; these minimum effects were referred to as minimum

detectable effect sizes (MDESs).

For each of the six scenarios in Table 3, the outcome, exposures

and simulation parameters are described under Section 2 of the

Supplementary Material and the values these parameters were set at

are available under Section 4 of the Supplementary Material.

3.4.2 Analytic assumptions about the outcome and the genetic and

environmental determinants

For each of the scenarios 1, 2 and 3 in Table 3, the GLM model fit-

ted in ESPRESSO consists of one outcome (the quantitative trait

being analysed) and one covariate; the three scenarios were analysed

twice, once with a SNP as covariate and once with an environmental

factor as covariate.

The genetic determinants were modelled as SNPs using an addi-

tive genetic model, as is now most commonly used (Wellcome Trust

Case Control et al., 2010): thus, the covariate was effectively mod-

elled linearly as an ordinal variable taking a value 0, 1 or 2 indicat-

ing the number of minor alleles carried by each simulated subject.

The genotyping error is generated as follows: we consider an

observed marker that is not in complete LD with an unobserved

causal variant (r2<1); hence, the observed marker does not carry all

of the information held by the unobserved causal variant. When the

observed marker is typed, it is as if the unobserved causal variant

has been typed with some error whose magnitude increases with

decreasing LD. It is this error that we consider as the genotyping

error. In other words, the genotyping error was taken as being

Table 2. Configuration of the CPT cohort: sample size at the time of

this analysis and target sample size

Name Age-range at

recruitment

Target

sample

size

Sample size

by the time

of this analysis

Atlantic cohort 40–69 years 30 000 15 000–25 000

British Columbia cohort 40–69 years 40 000 15 000–25 000

CARTaGENE (Quebec) 35–69 years 20 000 20 000

Ontario health survey

(Ontario)

35–69 years 15 0 000 35 000–70 000

The tomorrow project

(Alberta)

40–69 years 50 000 25 000–40 000

CPT project overall Predominantly

35–69 years

250 000 110 000–180 000
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equivalent to the error that arises when the genotype at a locus of

interest is inferred from the genotype of an observed marker (with

the same allelic distribution) that is in LD with the unobserved

causal variant at the same locus of interest with an r2 value of 0.8.

This corresponds to the weakest LD with HapMap 2 markers on the

Affymetrix 500 K chip (Barrett and Cardon, 2006).

The environmental determinants were modelled as binary, and

the measurement error was introduced by assuming an underlying

latent variable with a reliability of 0.7. This reflects a moderate level

of measurement error corresponding, for example, to blood pressure

measurement in the Intersalt Study (Dyer et al., 1994).

Gene-environment interactions were modelled using product

terms again assuming an additive genetic model. Significance tests

for genetic main effects and interactions were based on

P-value<0.0001 (i.e. assuming vague candidate genes) or

P-value<10�7 (genome wide association studies); these P-values

are considered conservative enough for genetic determinants

(Pearson and Manolio, 2008; Pharoah et al., 2004; Risch and

Merikangas, 1996; Storey and Tibshirani, 2003). Non-genetic ef-

fects were tested at P-value<0.01, a P-value more stringent than

0.05 the value widely used in association studies (Burton et al.,

2009; Ioannidis, 2005).

Unless otherwise specified, power estimation was based on the

standard deviation and on the measurement reliability of the trait

being considered as obtained from the analysis of the CARTaGENE

optimization phase. When no firm evidence to the contrary was

available to determine the likely measurement reliability of the

quantitative trait being considered, it was taken to be 0.7.

3.5 Results
It is important to understand how the MDES should be interpreted.

To illustrate the interpretation, consider Table 4 which provides an

abstract of the power profile of CPT to investigate SBP as a quanti-

tative outcome measured conventionally in a clinic setting (the re-

sults for all the scenarios on Table 3 are reported under Section 3 of

the Supplementary Material). Conventional (peripheral) blood pres-

sure is measured as the mean of three measurements. The device

chosen (Colin Prodigy II Vital Signs Monitor OM-2200) is an auto-

mated device that uses the oscillometric method for assessing blood

pressure.

The population distribution of the variable reported in Table 4

(SBP) is: mean¼126 mm/Hg and SD¼18.2. In the body of the

table, the MDES for the environmental main effect for the moder-

ately common exposure was reported as 0.8123 mm/Hg. This scen-

ario (Table 3) invokes a binary environmental exposure with a

prevalence of 0.2 (20%). The reported results therefore imply that

if the final sample size of CPT was 110 000 participants, if conven-

tional clinic blood pressure was measured using the standard oper-

ating protocol (SOP) outlined in the first paragraph above, and if

scientific interest focused on the impact of a binary environmental

exposure which had realistic characteristics corresponding to those

outlined in Section 3.4.2, the power calculations would indicate

that there was an 80% chance of detecting, at P-value<0.01, a

real effect of that environmental determinant corresponding to an

increase (or decrease) in SBP of 0.8123 mm/Hg, on average.

Similarly, if interest were focused on a moderately common SNP in

a genome wide association study (GWAS) there would be an 80%

chance of detecting the effect of a SNP with a minor allele fre-

quency of 0.10 (10%) at P-value<10�7 (for genome-wide infer-

ence) if that SNP really increased or decreased SBP by at least

1.0433 mm/Hg.

3.6 Conclusions
Given the magnitudes of the effect sizes that could be detected using

the entire data of the CPT project, the cohort has a good potential to

study the aetiological architecture of quantitative traits. Scrutiny of

the power profiles of the quantitative variables tabulated individu-

ally demonstrates that given a sample size of 110 000 or 180 000,

genetic and environmental main effects associated with any quanti-

tative variables that are collected across the whole CPT project can

potentially be studied with substantial power—effect sizes as small

as 1/12th of a standard deviation will be reliably detectable even

under the most challenging scenario (uncommon genotype, i.e.

MAF¼0.05, with testing at P-value<10�7 under GWAS) (Bansal

et al., 2010; Bodmer and Bonilla, 2008; Burton et al., 2009). But, as

would be anticipated (Burton et al., 2009; Wong et al., 2003) the

power to detect gene-environment interactions is considerably less

strong. Given the central relevance of such interactions, it is import-

ant to note that a sample size of 180 000 rather than 110 000 would

markedly enhance the capacity to study gene-environment inter-

actions when the interacting determinants are both other than com-

mon. The larger sample size will also allow additional scope for

data sub-setting.

4 Discussions

The ESPRESSO software allows for elements that are not taken into

account in conventional power calculators to be included more readily

in the power and sample size calculations for stand-alone case-control

and cohort studies as well as for case-control analyses nested in cohort

Table 3. The six scenarios explored to construct each power profile

Scenario Minor

allele

frequency

Prevalence

of ‘at risk’

environmental

exposure

Mathematical

model

1. Common

determinants

0.30 0.50 Main effects only

2. Moderately

common

determinants

0.10 0.20 Main effects only

3. Uncommon

determinants

0.05 0.10 Main effects only

4. Common

determinants

0.30 0.50 Main effectsþ interaction

5. Moderately

common

determinants

0.10 0.20 Main effectsþ interaction

6. Uncommon

determinants

0.05 0.10 Main effectsþ interaction

Table 4. Minimal detectable effect sizes for SBP with 110 000

participants

Genetic

main effect

Environment

main effect

P-value 10�7 (GWAS) 0.01

Moderately common determinants 1.0433 0.8123

The classification of the determinants as moderately common refers to the

MAF of the genetic determinant (0.1) and the prevalence of the environmental

(0.2), respectively, as reported on Table 3.
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studies. The new version of ESPRESSO is implemented as open source

R packages to allow researchers proficient in the R programming lan-

guage to use it in a flexible way and give them the ability to access

and alter the code to answer further scientific questions that require

some modification to the downloadable version. This new version

comes also with an online, menu-driven, interface for non R users or

for those who just prefer a Graphic User Interface.

With the current version of ESPRESSO, it is not possible to

carry out power calculations, for genetic association studies, that

precisely represent reality, i.e. when an analysis might choose to

model a substantive number of genetic variants at the same time.

This is because the current version of the tool currently allows for

the modelling of no more than two genetic exposures and two

environment/life style exposures at one time. However, given

Mendelian randomization which ensures that SNPs must be closely

located to be correlated because of LD, and given the large number

of participants in most studies in which ESPRESSO might be used,

which means that the residual error structure will be affected very

little by the degrees of freedom used up by including even tens of

genetic covariates, we feel this is not a serious problem. There

would only be a problem if the inferences based on using just two

SNPs in isolation were to differ substantially from those derived if

all SNPs were to be considered together and in many settings there

is no substantial difference at all. For example, if a GWAS analysis

deals sequentially with one million separate variant-disease associ-

ations, it is perfectly acceptable to model one of those associations

in isolation.

4.1 Limitations and future work
The version of ESPRESSO presented here does not allow for power

and sample size calculation where the genetic component is a com-

plex haplotypes (i.e. several loci in LD). With the current version at

most only two loci in LD can be modelled and this is not very realis-

tic representation of haplotype blocks. So the current ESPRESSO ap-

proach is potentially restrictive in this regard. It is therefore

desirable to extend the software by implementing additional meth-

ods that do enable the joint consideration of a larger number of

SNPs in LD. This could potentially be done by adapting the method

developed by Montana in the R package Hapsim (Montana, 2005)

which we mentioned in Section 2.2.

In the current version of the tool, the process consists of simulat-

ing a dataset with a number of specific characteristics and seeing in

what proportion of the simulations the effect of interest is detected.

As part of further work, we consider exploiting this feature to build

in a function that allows for the estimation of false discovery rate

(FDR) by first determining the proportion of false discoveries among

all the discoveries and then calculating the FDR as defined by

Benjamini and Hochberg (Benjamini and Hochberg, 1995).
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