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Abstract: Artificial membranes with conical pores and controllable thickness reveal ionic-transport
capabilities that are superior compared with those offered by cylindrical pores. By simulating the
translocation of an abstract chain-like body through a conical pore in a membrane with a variable
thickness, we formulate a statistical model of the translocation time τ. Our rough model encodes the
biochemical details of a given real chain-like molecule as evolving sequences of the allowed chain-like
body’s conformations. In our simulation experiments, we focus primarily on pore geometry and
kinetic aspects of the translocation process. We study the impact of the membrane thickness L, and
both conical-pore diameters φcis, φtrans on the probability distribution of τ. We have found that for all
considered simulation setups, the randomness of τ is accurately described by the family of Moyal
distributions while its expected value

〈
τ
〉

is proportional to Lξ , with ξ being dependent on φcis, φtrans.

Keywords: conical pore; solid-state nanopore; statistics; thick membrane; translocation

1. Introduction

A living cell, protected from the environment by a tiny membrane [1], fulfills actions
required by the organism to which it belongs due to an orchestrated transport of molecules
through membrane pores [2]. Although the protective role played by membranes is the
most crucial in nature, it is not, however, unique [3]. Natural and artificial membranes are
employed in life sciences, biochemistry and a variety of industrial processes [4,5]. Examples
are membranes functioning as parts of filtering systems that clean fluids from suspended
undesired particles [6–9]. Depending on particular needs, membranes have to provide and
preserve desired transportation capabilities [4,10] and service quality [11,12].

During a chain-molecule transfer along a pore residing inside of a given membrane,
the molecule and pore interact [13–16]. The measurable characteristics of such interaction
enable researchers to track information about the molecule [17,18]. From this point of view,
pores have grown into instruments, offering a wide spectrum of applications. Today, mem-
brane pores are situated at the centre of a technique called nanopore force spectroscopy [13],
i.e., they are engaged in detecting, identifying and sorting small molecules [9,19], including
the sensing of a single molecule [20].

Two classes of engineered nanopores are applied as tools in biotechnology: (i) naturally
occurring biological nanopores [19] and (ii) solid-state, artificial ones [21,22]. As biological
pores are assembled with the atomic precision and tuned through genetic modifications,
they are very small and sensitive to environmental changes, which may trigger problems
with their structural stabilities [13]. Solid-state nanopores are essentially resistant to their
environment, mechanically durable and admit tuning with sub-nanometric precision [12].

When dealing with artificial membranes that are expected to offer highly efficient
transport properties, pore shape [16,23–26] and membrane thickness [27–31] are the main
geometrical factors that should be carefully tuned in order to facilitate chain-bodies’ pas-
sage, prevent pore clogging [32] and guarantee the desired throughput [33]. The reported
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results of experiments show that: (i) conical pores strongly enhance the rate of trans-
port [12,16], and (ii) the translocation of ions through a synthetic membrane is affected
by the membrane’s thickness [30,31]. It is worth mentioning that among a multitude of
theoretical studies devoted to polymer passage through complex geometries, only a few
papers concentrate on conically-shaped pores, e.g., [34–37]. Interestingly, the conical shape
proves to also be beneficial with respect to the shape of an electric field assisting in the
field-driven passage of biomolecules along an insulating solid-state nanopore [33].

The present paper focuses on a chain-like-body translocation efficiency. We analyse,
statistically, how this efficiency changes when a cylindrical pore in a given thick membrane
is replaced by a conical one. The required data are collected from simulations carried out
with a sequential algorithm that enables us to mimic a chain-like-body transport along
a pore. Although our algorithm can be tuned in accordance with conditions imposed by
chemical constituents of both a chain-like-body and pore, in this study we employ its bare
version. The chain is viewed as an unbreakable sequence of self-avoiding segments and
the pore and membrane are treated as rigid structures. A small bias, with respect to the
direction of the random movement of the chain’s segments, is imposed inside the pore as
the only factor discriminating between the cis and trans sides of the membrane.

Our goal is to capture the most basic relations between conical pore diameters
(φcis, φtrans), membrane thickness (L) and translocation time (τ). Through extensive numeri-
cal simulations, we have explored a discrete set of representative values of conical pore
diameters jointly with membrane thicknesses in order to quantify characteristics of the
translocation process. The main results of our numerical experiment refer to: (i) probability
distributions ψ of translocation times τ and (ii) mean

〈
τ
〉
. Based on the simulation results,

we argue that ψ(τ) are accurately approximated by the family of Moyal distributions,
whereas

〈
τ
〉

and the membrane thickness (L) are related through a power law function
whose exponent depends on pore diameters (φcis, φtrans).

In Section 2, we specify the model and computational framework. Section 3 pro-
vides the presentation and discussion of the simulation results. Finally, in Section 4, we
summarise our findings and formulate conclusions.

2. Model Description and Computational Framework

This section specifies our model of a chain-like body (CLB) together with the algorithm
that enables us to mimic a chain-like molecule’s motion. Our aim is to probe the extent of
time (τ) that the CLB spends in a given pore when traversing a thick membrane. Specifically,
we compare τ required by the CLB to pass through a conical pore to the time necessary to
translocate along a cylindrical pore by the same CLB.

The Sequential Algorithm and Monte Carlo Experiments

Numerous CLB-related research problems have been reported in the literature over
the last decades. Apart from biophysics and chemistry experiments, we are also presented
with a large number of studies involving computer simulation experiments. Computational
schemes used in the field of CLB dynamics generally fall into two classes: (i) molecular
dynamics (MD) and (ii) Monte Carlo (MC) simulations. Within the MD simulations, an
appropriate second-order differential equation of motion is developed and integrated over
time by some numerical methods [34,37]. In the MC approach, a set of probabilistic rules
for the stochastic generation of a sequence of CLB configurations is used to trace the system
trajectory in the configuration space. The former group of simulations is designed primarily
to model the configurations’ changes occurring locally, on the scale of a bond. The latter
one, in turn, is addressed to the global properties of the chain conformations when some
large-scale characteristics of the chain’s movements effectively become independent of
chemical details. This means that the chains can be mapped on coarse-grained models and
investigated via computer simulations—a principal goal of our study.

Algorithms that are frequently employed in the MC simulations are presented and
discussed in various papers and/or monographs, see e.g., [38,39]. Among the most popular
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algorithms, we find the self-avoiding walk (SAW), the bond–fluctuation model (BFM),
the slithering snake (SS) algorithm, the extended reptation algorithm (eRA), Rosenbluth–
Rosenbluth method (RR) and the pivot algorithm for the SAW. All these algorithms have
specific advantages and disadvantages that are reported in the literature. For instance,
algorithms that are based on local moves are too slow for systems with large numbers of
segments while those enabling non-local CLB updates (such as the PA) frequently produce
unacceptable configurations.

In our studies, we use a sequential algorithm (SA) that was introduced in [40,41]. When
comparing the SA to the above algorithms in the context of their structural similarities
and/or differences, one can observe that the SA comprises advantages of local and non-
local moves as well as a preliminary search of actually available configurations. It can
also be shown that by an appropriate choice of parameters we can simulate all the above
mentioned algorithms as the special cases of the SA. On the other hand, the SA includes a
built-in tension propagation mechanism and varying bond length.

A detailed description of the SA can be found in [40,41]. However, for the reader’s
convenience, we repeat the most important parts of the description of the algorithm in
the section Supplementary Materials. In this Subsection, we only briefly introduce those
notions and facts necessary for understanding the later-presented results.

An abstract position of the CLB is a finite sequence of points {ci}1≤i≤N located in
nodes of a 2D square lattice with the lattice constant a = 1. This means that ci are points
with integer coordinates, and the distance (Dis) between any pair of its consecutive elements
is bounded by given limits:

∆min ≤ Dis(ci, ci+1) ≤ ∆max (1)

The elements, ci, of such a CLB sequence are called segments, and their number, N, is
the length of the CLB. In our experiments ∆min = 2 and ∆max = 4, meaning that the shortest
possible bond consists of two segments and one empty node between them (obviously the
longest possible bond contains three empty nodes). We will refer to this fact later on while
discussing the simulation results.

Within our algorithm, any change of location, called a move, from one position of
the CLB to another is achieved via random allowable steps made by its segments [40]. By
making a step the segment may create tension in the CLB structure. Particularly, it may
happen when the distance between consecutive monomers does not satisfy the condition (1).
In such circumstances, consecutive segments make steps as long as the tension is sustained
in the structure. If the first step does not create any tension in the CLB structure, then the
move may consist of a single step only. Consequently, every move of the CLB is initialized
by a step of only one randomly selected segment and then its step is followed by a number
of steps of subsequent segments, reflecting the tension propagation through the CLB. Any
driving force [42,43] or other environmental [13] impacts on the CLB can be incorporated
into the simulation experiments by proper tuning of a bias on the probable directions of
random translocations of the segments, as well as on the choice of the segment initiating
the move. In the considered case, a small such bias was imposed to drag the CLB segments
along a pore between cis and trans sides of the membrane. Moreover, while selecting a
segment that initiates a single move, the ones inside the pore were slightly more probable.

In the numerical experiments presented in this paper, we study the translocation of a
CLB through a conical pore in a thick membrane, see Figure 1. In our simulation model the
pore geometry is characterised by the following quantities: the inlet and outlet diameters,
φcis and φtrans, respectively, and the pore length L.

We focus on the analysis of the impact of φcis, φtrans and L on translocation time
probabilistic characteristics.
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Figure 1. A schematic view of a chain-like body when passing through a conical pore.

3. Results and Discussion

We have carried out extensive simulations of the model specified in Section 2 to
gather data sets that are required by reliable statistics of translocation times. Specifically,
in all simulations we have employed a simple sample comprised of M = 103 initial
configurations of an N-segment CLB, each with the first segment placed in the entry of
the pore. We have collected data for different arrangements of values of φcis, φtrans by
varying pore length, L, while keeping a predetermined number, N, of the CLB segments.
Specifically, in our Monte Carlo experiments, the inlet and outlet diameters, φcis and φtrans,
respectively, assume values from the set {3, 4, 6, 8, 12}, whose elements are expressed as
the number of available nodes. More precisely, any combination of these diameters’ values
are taken into account. L varies within the set {5, 10, 15, 20, 25, 50, 75, 100}, representing the
numbers of available nodes, while the CLB consists of N = 100 segments.

When a CLB enters a pore its configuration is determined by the cis side of the
membrane. In order to initiate the translocation process, the CLB has to be captured by the
pore. During the early stages of translocation, however, it is frequently observed that the
CLB retracts from the pore. Due to that, multiple variants of electrostatic focusing [44,45]
are applied in the experiments to increase the rate at which polymers arrive and thread
into the channels.

A smart choice of initial bio-molecule position also increases the fraction of successful
capture events [13]. In our simulations, each CLB started from a configuration with the
CLB head exclusively placed in the pore opening. We have counted every CLB retraction
and were thus able to compute the resulting fraction q of successful capturing followed by
the threading of the CLB through a pore. In Figure 2 we display empirical values of q along
with the corresponding best fit.
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a-b·ⅇ-c·ϕ

a = 0.696±0.011

b = 1.766±0.151

c = 0.571±0.041
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q

Figure 2. Fraction q of successful capture events: open circles—data points; green line—the best fit.
The errors indicate 95% confidence intervals.

3.1. Probability Distribution of Translocation Time

We start with a search for the probability distribution that best approximates the
probability law that governs the randomness of the translocation time. For this purpose,
we have thoroughly examined all gathered data sets by applying a range of suitable
goodness-of-fit tests, among others, the Cramer–von Mises and Anderson–Darling ones [46].
Based on the results of those tests, we have found that the family of Moyal probability
distributions [47] provides the best fit to the collected empirical values of τ for all examined
setups of the geometric parameters of the conical pore. This conclusion extends our
previous observations related to a thin membrane [40] or a cylindrical pore [48]. The most
popular (and most elegant) form of the Moyal probability density function is as follows:

ψ(τ) =
1

s
√

2π
exp

[
−1

2
exp

(
−τ −m

s

)
− τ −m

2s

]
, (2)

where m is the peak’s ordinate and s is a scale parameter of the Moyal pdf.
The Moyal distribution may also be parameterized directly by its expected value

〈
τ
〉

and standard deviation σ. In such a case, in the above formula, the parameters m and s
should be replaced with the following linear expressions

m =
〈
τ
〉
− σ
√

2
π
· (ln 2 + γ), (3)

s =
σ
√

2
π

, (4)

where γ ≈ 0.577 denotes Euler’s constant. As it is much more convenient to study the
behaviour of the distribution moments than of the parameters m, s, in the remaining parts
of the paper we will refer to the

〈
τ
〉

and σ as the Moyal distribution parameters. In
Figure 3 we display empirical distributions of translocation time and their best fits given
by Equation (2) with parameters computed from collected data. It is worth mentioning that
the Moyal pdf and its inverse, the Lamber-W function, take part in models that refer to a
variety of biophysical systems [49,50].
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Figure 3. Empirical distributions of translocation time, τ, of a CLB with N = 100 segments computed
for increasing membrane thickness, L, and pore diameters φcis > φtrans. Solid lines follow Equation (2).
The inset shows respective mean values

〈
τ
〉
. The sample size is 103.

3.2. Dependence of the Mean Translocation Time on the Membrane Thickness

In accordance with the results of our numerical experiment, we observe that a power
law relation 〈

τ
〉
= a + b · Lξ (5)

best fits the mean time,
〈
τ
〉
, spent by CLBs when they passed pores in membranes with

growing thicknesses of L. The parameters a, b and the index ξ depend on φcis and φtrans.
An illustrative example of relation (5) is presented in Figure 4.

ϕcis = 3, ϕtrans = 6

a = 20507±788
b=38.28±6.15
ξ=1.484±0.268

log[(〈τ〉-a)/b]

1.5 2.0 2.5 4.0 4.5 5.0log(L)

3

4

5

6

7

Figure 4. Illustration of the power law relation given by Equation (5).
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More detailed information about the relations between
〈
τ
〉
, L, φcis, φtrans is provided

in Figure 5 along with that referring to corresponding cylindrical pores.
When comparing the mean translocation times displayed in Figure 5 for different

arrangements of pore diameters, it is clearly seen that
〈
τ
〉

differs only slightly when the
direction of translocation is reversed. Obviously, such a difference will grow if membrane
thickness increases. This is because

〈
τ
〉

and L are related through Equation (5) and the
estimated values of the corresponding exponents, ξ, differ; see the data displayed in the
left and right panels. When comparing values of ξ for a given pair of φcis, φtrans, it is
seen that

〈
τ
〉

referring to φcis < φtrans is smaller than that related to φcis > φtrans. Such a
slowing-down appears when φcis > φtrans, because then the average speed of the segments
that leave the pore is less than that at which the remaining segments enter the opening, so
the segments tend to get grouped inside the pore.

〈τ〉~Lξ (ϕtrans)

ξ(3)=1.657±0.301

ξ(4)=1.556±0.062

ξ(6)=1.496±0.133

ξ(8)=1.484±0.014

ξ(12)=1.366±0.117

ϕcis = 6

ϕtrans = 3

ϕtrans = 4

ϕtrans = 6 (cylindrical pore)

ϕtrans = 8

ϕtrans = 12

10 20 40 80 100L
1

2

3

4

6

[×104]

〈τ〉

〈τ〉~Lξ (ϕcis)

ξ(3)=1.484±0.268

ξ(4)=1.506±0.196

ξ(6)=1.496±0.133

ξ(8)=1.400±0.145

ξ(12)=1.372±0.211

ϕtrans = 6

ϕcis = 3

ϕcis = 4

ϕcis = 6 (cylindrical pore)

ϕcis = 8

ϕcis = 12

20 40 80 100L
1

2

3

4

6

[×104]

〈τ〉

Figure 5. Empirical mean translocation time
〈
τ
〉

vs. membrane thickness L for a CLB passing through
conical pores. Left panel: φcis = const.; right panel: φtrans =const. Lines are given by Equation (5)
with parameters estimated from the data.

Translocation times through pores with other diameters than those presented in
Figure 5 were also examined, and the respective results are shown in Figure 6. An obvious
feature concerns a shortening (lengthening) of translocation time due to an increasing
(decreasing) difference between values of φcis and φtrans.

Additionally, Figure 7 displays
〈
τ
〉

corresponding to the CLB translocations through
cylindrical pores of length L ≤ 150. A part of this data was displayed in Figures 5 and 6 as
data points and respective dashed lines.

A more in-depth analysis of how and to what extent pore diameters affect
〈
τ
〉
, in ref-

erence to membrane thicknesses, is presented in the next section.
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Figure 6. The same as in Figure 4. Each panel corresponds to φcis = const. and growing φtrans.

〈τ〉~Lξ (ϕ)ϕcis = ϕtrans = ϕ

ξ(2)=1.488±0.081
ξ(3)=1.215±0.040
ξ(4)=1.638±0.128
ξ(6)=1.496±0.133
ξ(8)=1.484±0.014
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Figure 7. Empirical mean translocation time
〈
τ
〉

vs. membrane thickness L for CLB passing through
cylindrical pores with exemplary values of φ.
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3.3. The Regression Models for the Translocation–Time-Distribution Parameters in Relation to
Pore Diameter

In this part of the paper, we present the regression models relating the pore length
L and the diameters φcis, φtrans with the Moyal distribution parameters

〈
τ
〉
, σ. These

particular models presented here are developed based on the data obtained for the CLB
consisting of N = 100 segments. In our research, however, qualitatively similar results have
been observed for other lengths of the CLBs.

We start with the models for the expected value
〈
τ
〉
. In the model-building process, we

have taken into account various potentially interesting and naturally interpretable shapes
of the functional dependency between

〈
τ
〉

and the above pore-parameters. It turns out,
on the basis of the analysis of the models’ quality characteristics, that the best-estimated
model function is the following:

〈
τ
〉
= b0 + b1φcis + b2φtrans + b3

φcis
φtrans

(6)

with bi’s being the estimates of the regression coefficients. Their values along with some
important model quality characteristics are presented in Table 1. The symbol R2, as usual,
denotes the coefficient of determination, i.e., the most popular goodness-of-fit statistic.
Other presented characteristics of the model quality are the so-called model standard
error (MSE) and the coefficient of variation (CoV) i.e., the well-known measure of relative
dispersion of the observations around the model response surface. Apart from these
values, we also present the p-values related to particular estimates, bi—they are placed
below the estimates’ values. Roughly speaking, they tell us what the probability is that a
given/related explanatory variable is unnecessary in the model.

Table 1. Estimated regression models (6) for selected pore lengths L.

Pore
Length b0 b1 b2 b3 R2 MSE CoV

L = 10 27637.8 −522.2 −687.7 −614.9 0.837 1196.3 0.064
p-values: 0.0000 0.0058 0.0002 0.3951

L = 25 30,857.6 −791.3 −589.9 204.0 0.875 1143.9 0.051
p-values: 0.0000 0.0001 0.0005 0.7656

L = 50 39,421.5 −1271.9 −567.7 1566.3 0.888 1417.9 0.048
p values: 0.0000 0.0000 0.0043 0.0787

L = 75 52,573.9 −1843.9 −787.6 3123.7 0.943 1392.3 0.035
p values: 0.0000 0.0000 0.0002 0.0015

L = 100 70,436.7 −2700.8 −1266.1 4632.9 0.922 2502.7 0.049
p values: 0.0000 0.0000 0.0006 0.0062

First, let us note that the developed models, being quite simple and natural, manifest
very good compatibility with the data—the coefficients of determination are high; in all
cases, above 83%. Moreover, both the quality characteristics MSE and CoV also indicate
good quality and high reliability of the models, especially CoV, which amounts only to
about 5%.

Looking at the regression coefficients of the models provided in Table 1, we can
instantly see that they confirm the expected relation: the bigger the openings, the shorter
time of the CLB translocation, see Figure 5.

However, a slightly deeper analysis of the results also reveals a much less obvious fact.
Let us look at the provided p values. We see that the ones associated with the estimates
b0, b1, b2 are very small, indicating that the related explanatory variables (i.e., the intercept,
φcis, and φtrans) are undoubtedly very significant in all these models. Now let us focus on
the coefficient b3, which reflects the impact of the ratio φcis

φtrans
on the passage time. We see
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that for relatively thin membranes (L = 10, 25) the p-values are very high (0.3951, 0.7656),
whilst for the thicker ones the p-values are really very small (0.0299, 0.0015, 0.0062). At this
point, we should note that, from the standpoint of the art of regression model building, for
thin membranes the last component should be removed from the models (6), whilst for thick
membranes, only this component is particularly important. This is really interesting because
it tells us that for thin membranes, the diameters φcis, φtrans affect the translocation time
independently, i.e., the impact of the change of one of these diameters does not significantly
depend on the actual size of the other diameter. In contrast, for thick membranes we
observe the interaction effect—the impact (on the translocation time) of the size-change of
one diameter depends on the size of the other opening.

The possible explanation for such an observation is that for longer pores the chance
of segments clustering increases, especially when φcis > φtrans. Obviously, each cluster of
segments slows down the whole CLB-translocation process, and the thicker the membrane,
the more clusters can be created inside the pore.

At this point, it is a good moment to report on yet another observation that is related
to the previous one. This remark refers to the case where φtrans = 2. In our research,
this value of the outlet diameter was also taken into account. However, it turned out
that for L > 20, within about 10% of all such cases, the CLB gets stuck in the pore for
good (we had to stop the simulations for computation time reasons). Moreover, in the
remaining (i.e. successful) transitions, the passage time varied dramatically; from several
thousands to millions of steps, indicating that very often the CLB was “almost stuck” in the
pore. It is worth mentioning, here, that for the cylindrical pores with identical diameters
(φcis = φtrans = φ = 2) the translocation time is the shortest one, when comparing with〈

τ
〉
, which refers to pores with 2 < φ < 8 and L > 100, see Figure 7 and for other details

refer to [48]. We see that the conical geometry of the pore is very significant in these cases.
Recall that φtrans = 2 means that only two lattice-nodes are available for CLB segments
while passing this opening. However, one of the assumed restrictions imposed on the CLB
structures is ∆min = 2, meaning that the shortest possible bond needs 3 available nodes.
This fact can be the possible reason for such behaviors of the CLB while passing through the
pore—if the pore is cylindrical, then no clustering of the CLB segments is possible, because
the diameter is too small. Hence, the CLB moves always in a “head-to-tail” fashion. On the
other hand, in the conical pores, if the diameter φtrans = 2 then the tempo of the segments
that leave the pore is too small in comparison to the speed at which the further segments
enter the opening with φcis ≥ 3. As a consequence, the segments inside the pore tend to
gather in big clusters that cannot move at all, as is seen in Figure 8. What is also interesting,
for the conical pores with φtrans > 2, no CLBs that are stuck in the pore have been observed
clearly, suggesting that the relation between ∆min and φtrans plays an important role in the
described phenomenon.

Now we present models for the second of the Moyal distribution parameters: the
standard deviation σ. However, in this case, it turns out that it is better to model the
behavior of log(σ)—so we obtain the so-called log-linear models. The adopted model
functions are the following:

l̂og(σ) = d0 + d1φcis + d2φtrans + d3
φcis

φtrans
(7)

The estimates di, i = 0, 1, 2, 3 of the regression coefficients as well as the model
characteristics are provided in Table 2.
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Figure 8. A schematic view of CLB translocations along narrow pores: conical vs. cylindrical.

Table 2. Estimated regression models (7) for selected pore lengths L.

Pore
Length d0 d1 d2 d3 R2 MSE CoV

L = 10 8.9963 −0.08894 −0.09771 −0.06807 0.874 0.158 0.020
p values: 0.0000 0.0008 0.0001 0.4751

L = 25 9.1615 −0.1368 −0.0535 0.1113 0.932 0.115 0.014
p values: 0.0000 0.0000 0.0014 0.1213

L = 50 9.1120 −0.1946 0.0060 0.4452 0.857 0.178 0.021
p values: 0.0000 0.0000 0.7816 0.0006

L = 75 9.6473 −0.2338 −0.0083 0.5692 0.860 0.220 0.025
p values: 0.0000 0.0000 0.7575 0.0004

L = 100 8.9997 −0.3043 0.0870 1.1313 0.766 0.342 0.037
p values: 0.0000 0.0000 0.0051 0.0000

The characteristics presented in the last three columns of this table indicate the good
quality of the developed models. It can also be seen again that the p values confirm our
observation that was discussed above: the longer the pore, the greater the impact of the
ratio of the diameters on the translocation–time distribution.

4. Final Remarks

By employing a sequential algorithm, we investigated the translocations of CLBs
through conical pores in membranes whose thicknesses were comparable with the CLB
lengths. Our simulations were focused on the analysis of the impact of the pore geometrical
parameters on the translocation process. As a result of the analysis of the experimental
results, we identified the Moyal probability distribution as a good probabilistic model for
the translocation time in all considered setups. Next, we developed regression models that
described the relationship between the parameters of the distribution and the geometric
parameters of the conical pore. It appeared that the only model component that reflected
the interaction between both diameters was the ratio φcis

φtrans
. Moreover, these models showed

that this interaction is significant only for membranes that are thick enough. One of our
future research tasks will be a more in-depth simulation study of this interesting issue and,
possibly, the detection of these crucial relationships (between geometric parameters of the
pore and of the CLBs) that result in the segments becoming clustered rapidly enough to
significantly slow down or even stop the translocation process.
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We are aware that our probabilistic approach neglects the biochemical characteristics of
bio-molecules which, in turn, are included in algorithms relying on large-scale simulations.
Our minimal model, however, is sufficiently efficient and effective to mimic a variety of
chain-like body translocation phenomena from the mechanical point of view.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes12020138/s1, Sequential Algorithm Description.
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