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Abstract: Sensor networks have been used in a rapidly increasing number of applications in
many fields. This work generalizes a sensor deployment problem to place a minimum set of
wireless sensors at candidate locations in constrained 3D space to k-cover a given set of target
objects. By exhausting the combinations of discreteness/continuousness constraints on either sensor
locations or target objects, we formulate four classes of sensor deployment problems in 3D space:
deploy sensors at Discrete/Continuous Locations (D/CL) to cover Discrete/Continuous Targets
(D/CT). We begin with the design of an approximate algorithm for DLDT and then reduce DLCT,
CLDT, and CLCT to DLDT by discretizing continuous sensor locations or target objects into a set of
divisions without sacrificing sensing precision. Furthermore, we consider a connected version of each
problem where the deployed sensors must form a connected network, and design an approximation
algorithm to minimize the number of deployed sensors with connectivity guarantee. For performance
comparison, we design and implement an optimal solution and a genetic algorithm (GA)-based
approach. Extensive simulation results show that the proposed deployment algorithms consistently
outperform the GA-based heuristic and achieve a close-to-optimal performance in small-scale problem
instances and a significantly superior overall performance than the theoretical upper bound.

Keywords: sensor deployment; network connectivity; k-coverage; approximation algorithm

1. Introduction

Sensor networks have been widely used in many agricultural, military, and industrial applications.
The technological advances in both sensing and communication have significantly improved the quality
of sensors at a reduced cost, making it possible to deploy more sensors than before to achieve quality
through quantity. The redundancy in the deployment of sensors is often explored to cover targets of
interest with multiple sensors for fault tolerance and sustained operation.

Depending on the nature of the environment and the type of the application, sensors could
be deployed in either a deterministic or a stochastic manner. In the former, sensors are typically
mounted manually at some predetermined locations to meet a certain deployment objective; while
in the latter, sensors are not bound to any specific location and are oftentimes dropped randomly by
vehicles or airplanes to cover a large geographical region. In the past decade, a significant number
of research efforts have been made in both of the deployment scenarios for various purposes, e.g.,
to localize potential targets in the former [1] and maximize sensing coverage with network connectivity
in the latter [2].

In this paper, we consider a specific type of wireless sensor networks (WSNs) that are deployed in
challenged environments for microclimate monitoring, such as cultural heritage sites with historical
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frescos, sculpture paintings, or religionary statues, which are typically located on the 3D surface of
constrained space [3,4]. One important requirement on sensor deployment in such environments is
to provide a full coverage of target objects with a high level of sensing reliability for the purpose of
assuring their long-term conservation. Similar sensor network applications could be also found
in structured indoor environments such as a display cabinet or exhibition hall in a museum.
This requirement is commonly defined as the k-coverage problem, where the degree of coverage
is k such that every point in a target region is covered with at least k sensors.

This paper generalizes and investigates a sensor deployment problem in constrained 3D space to
achieve k-coverage for a given set of target objects with a minimal number of sensors whose deployments
are limited to some specific (candidate) locations. Note that the coverage problem on a 2D plane is a special
case of constrained 3D space. By exhausting the combinations of discreteness/continuousness constraints
on either candidate sensor locations or target objects in 3D space, we formulate four classes of problems
on sensor deployment: (i) discrete candidate sensor locations to cover discrete target objects (DLDT);
(ii) discrete candidate sensor locations to cover continuous target objects (DLCT); (iii) continuous
candidate sensor locations to cover discrete target objects (CLDT); and (iv) continuous candidate
sensor locations to cover continuous target objects (CLCT). We conduct an in-depth investigation into
the computational complexity of these problems and prove all of them to be NP-complete. We first
design a greedy strategy-based approach to DLDT and provide its approximation ratio of (ln n + 1),
where n is the number of target points, and then convert the other three problems to DLDT through
discretization. For DLCT, we first discretize the continuous target objects into a set of divisions, which
are treated as discrete points without sacrificing sensing precision, and then adapt the approximation
algorithm for DLDT to DLCT. We provide a rigorous proof that the number of divisions intersected by
m circles in a 2D plane is tightly upper bounded by (m2 −m + 1), and then prove that the algorithm
for DLCT has an approximation ratio of (ln(k · n ·m) + 1), where m denotes the number of candidate
locations for possible sensor deployment. For CLDT, we discretize the continuous candidate sensor
locations and design an approximate algorithm in a similar way with the same approximation ratio as
DLDT. Finally, for CLCT, we take a hexagon-based discretization approach to discretize the continuous
candidate sensor locations or target objects into a number of hexagons, and then covert this problem to
either DLCT or CLDT.

For each of these four problems, we further consider a connected version where all sensors
in the deployment region must be connected for communication, referred to as C-DLDT, C-DLCT,
C-CLDT, and C-CLCT. We first study a subproblem, i.e., Steiner Tree Problem with Minimum number
of Steiner Points on Constrained Locations (STP-MSPCL), and design an approximate algorithm based
on minimum spanning tree with an approximation ratio of 5 in a 2D plane and 12 in 3D space. We solve
C-DLDT using an approximate algorithm with an approximation ratio of (ln n + 13), which integrates
the greedy approach for DLDT and the approximate algorithm for STP-MSPCL. We design algorithms
for C-DLCT and C-CLDT, and derive their approximation ratios in a similar way.

We implement the proposed deployment algorithms and evaluate their performance in a
simulated setting. For performance comparison, we also design and implement an optimal solution
based on an integer linear programming (ILP) formulation, which is only meant for small-scale
problem instances, and a genetic algorithm (GA)-based approach. Extensive simulations show that
these algorithms consistently outperform the GA-based heuristic and achieve a close-to-optimal
performance in small-scale problem instances and a significantly superior overall performance than
the theoretical upper bound. These results shed light on the efficiency of the proposed deployment
schemes and their great potential for practical sensor network applications. For example, many
cultural relics in the world such as the ancient Great Wall and Terracotta Army in China are suffering
from serious environmental pollution and degradation. Deploying a network of sensors in the
constrained surroundings to measure environmental parameters such as humidity, temperature, and
lighting is a key component of a viable solution for protection from environment-related threats.
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The proposed algorithms could be used to produce cost-effective sensor deployment schemes in such
real-life scenarios.

Compared to the conference version [5], we have made substantial improvements to our work
and new contributions to the field as follows:

• We developed a method based on integer linear programming (ILP) to find the lower bound of
the optimal solution to the DLDT problem by formulating it as an ILP task.

• We derived a tighter approximation ratio of Algorithm 1 for DLDT based on the lower bound
OPTLP of OPT by solving the LP problem in advance.

• We provided a detailed rigorous proof on the upper bound on the number of divisions intersected
by m circles in a 2D plane.

• We derived a more accurate approximation ratio of the algorithm designed for DLCT with target
object discretization.

• We designed a completely new approach to CLCT, which first divides the CLCT problem into
two subproblems, and then converts the two subproblems to CLDT and DLCT, respectively.

• We implemented the proposed algorithms and evaluated the performance against the optimal
solution and a genetic algorithm-based approach through extensive simulations.

The rest of the paper is organized as follows. Section 2 describes related work. Section 3 defines
the problems on constrained sensor deployment in 3D space. The approximate algorithms with and
without the connectivity requirement are proposed in Sections 4 and 5, respectively. We evaluate the
performance of the proposed algorithms in Section 6 and conclude our work in Section 7.

2. Related Work

Sensor deployment for coverage and connectivity in 2D space has been investigated in-depth in
the literature. Many efficient techniques have been proposed, including several recent efforts based
on integer linear programming (ILP) models and artificial intelligence such as randomization-based
genetic algorithm [6,7]

as well as bee colony algorithm and particle swarm optimization [8]. We focus our survey on the
techniques that are directly related to our work, specifically targeting 3D space and considering both
coverage and connectivity.

The traditional 3D k-coverage problem is tackled by filling up the space with multiple
non-overlapping copies of an already k-covered 3D shape or model. Along this line of research, Ammari
proposed the Reuleaux tetrahedron model to characterize the 3D k-coverage problem and a sensor
deployment strategy to achieve full k-coverage of a 3D field [9]. These results were also published
in [10] where network connectivity is considered. More recently, Pal and Medhi designed a new shape
termed as Sixsoid to tessellate a 3D field of interest [11]. Our work is somewhat opposite to theirs in
that we attempt to k-cover the 3D surfaces of target objects in constrained space. Unaldi et al. proposed
a deployment strategy for 3D terrains based on wavelet transformation, where sensors are relocated
by the mutation operator of the genetic algorithms (GAs) [12]. Similar to many other heuristics, such
as artificial intelligence techniques do not ensure a performance bound.

There also exist a number of efforts on sensor deployment for k-coverage in 3D space where the
deployment of sensors is limited to some specific candidate locations or the entire region of interest.
In [13], Wang et al. conducted a study on cost minimization of sensor placement in a bounded 3D
region R comprised of discrete points. They consider several sensor types with different sensing ranges
and costs, and attempt to find a subset of points to place a selection of sensors to cover every point in
region R with at least k sensors with a minimal total cost. In [14], Andersen et al. studied the problem
of deploying identical sensors in a region R that constitutes continuous 3D space. Their approach is to
discretized R into grid points that are covered by sensors to be placed. Apparently, such a discretization
process would result in the loss of precision for continuous region coverage, which does not guarantee
k-coverage of the entire region R. In [15], Huang et al. proposed an algorithm to determine whether
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every point in the target area is covered by at least k sensors under the assumption that sensors are
already deployed. In [16], Zhao et al. proposed a surface coverage model where the target region is a
complex 3D surface and sensors can be only deployed at some discrete points on the surface.

In [17], Funke et al. proposed to select a set of deployed sensors of minimum cardinality to
achieve sensing coverage and maintain network connectivity. They designed a greedy approach,
which has an approximation ratio no better than O(logn), where n is the number of sensors. They also
proposed a solution to provide an approximate coverage in a specific case where the number of selected
sensors is limited by a constant factor far from the optimal value. Steiner tree algorithm has been used
in various contexts to connect deployed sensors that have already achieved the required coverage of
the region. Gupta et al. investigated the minimal connected cover set (MCCS) problem [18], which
has been shown to be NP-complete, where a minimal subset of connected nodes fully cover the entire
region. The time complexity of their solution is resolution dependent as they approximated the sensor
coverage area with a set of square units. Zhou et al. investigated the connected k-coverage problem
in [19] and designed a distributed greedy approach. Note that they treated the target object or query
region in the same manner as in [18], and did not discuss the computational complexity.

The problems we study in this paper differ from the aforementioned research efforts in several
aspects: (i) We consider a set of constrained sensor deployment problems in 3D space; (ii) We exhaust
the combinations of various deployment constraints posed on candidate sensor locations and target
objects, which can be either discrete points or continuous areas; (iii) We require the deployed sensors
to k-cover a given set of target objects and also maintain communication connectivity. We design a set
of efficient algorithms to discretize continuous candidate sensor locations or target objects without
loss of sensing precision. More importantly, we propose an approximation algorithm with a bounded
performance ratio for each of these problems, which have been proved to be NP-complete.

3. Problem Formulation

Our network model considers sensors with a certain sensing radius rs and communication
radius rc. The following definitions are provided on sensor coverage.

Definition 1. cover: a sensor s (or a sensor located at point l) covers a target object t if and only if the Euclidean
distance between s (or l) and any point on t is less than or equal to rs.

Definition 2. k-cover: A set S of sensors (or a set L of sensor locations) k-cover a target object t if there are at
least k sensors in S (or at least k sensor locations in L) that cover t.

We study the constrained sensor deployment problem in 3D space, which is formulated as an
optimization problem: Given a 3D convex region R (e.g., a cave on a historical relic site or an exhibition
room in a museum) with certain spatial constraints for sensor deployment and a set T of n separated
target objects within region R, our goal is to deploy a minimum number of sensors at the candidate
locations on the inner surface of R to achieve k-coverage for each target object. Due to the spatial
constraints, sensors can be only placed at a finite set L of m separated locations. According to the
type of location L and target T, we define four constrained sensor deployment problems in 3D space
as follows:

• Discrete L with Discrete T (DLDT), i.e., both the feasible sensor locations and the present target
objects are discrete points.

• Discrete L with Continuous T (DLCT), i.e., the feasible sensor locations are discrete points and
the 3D surfaces of the present target objects are composited by a finite set of continuous convex
2D areas.

• Continuous L with Discrete T (CLDT), i.e., the feasible sensor locations fall on a finite set of
continuous convex 2D areas in 3D space and the target objects are discrete points.
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• Continuous L with Continuous T (CLCT), i.e., both the feasible sensor locations and the surfaces
of the present target objects are a finite set of continuous convex 2D areas in 3D space.

Note that in the above problems, the convex 2D areas for continuous target objects and feasible
sensor locations could be positioned anywhere in 3D space (i.e., they may not be located on the same
plane). At each discrete point for sensor deployment, we can deploy at most one sensor. When a
feasible sensor location is a continuous 2D area, we can deploy a sensor at any position within that
area. Furthermore, we consider a connected version of each of the four sensor deployment problems
where all deployed sensors must be connected, referred to as C-DLDT, C-DLCT, C-CLDT, and C-CLCT.

4. Algorithm Design without Connectivity Requirement

We first prove the NP-completeness of DLDT and propose an approximate algorithm with an
approximation ratio of (ln n + 1) as a base solution. We use a discretization approach to covert DLCT,
CLDT, and CLCT to DLDT.

4.1. Algorithm Design for DLDT

We show that the known NP-complete Discrete Unit Disk Cover (DUDC) problem [20] is a special
case of DLDT. DUDC is a well-studied problem and is defined as follows: Given a set P of points in a
2D plane, and a set D of unit disks at some fixed locations, the goal is to find a minimum-cardinality
subset D′ ⊆ D to cover all points of P. Note that DUDC is essentially a geometric version of the set
cover problem, where the sets are defined as a collection of unit disks.

Theorem 1. The DLDT problem is NP-complete.

Proof. We can restrict DLDT to DUDC by allowing only those instances where k = 1, rs = 1, and L
and T are in the same 2D plane. The proof by restriction for NP-completeness is established in [21],
where the “restriction” should be imposed on the inputs (i.e., problem space), not the question. Since a
special case (DUDC) of DLDT is NP-complete, so is DLDT.

We develop a method based on integer linear programming (ILP) to find the lower bound of the
optimal solution to the DLDT problem by formulating it as an ILP task. Let variable xl represent the
decision of whether or not to deploy a sensor at a feasible sensor location l ∈ L: xl = 1 if a sensor
is deployed at location l; xl = 0, otherwise. For each target point t ∈ T, let S(t) denote the set of
candidate sensor locations in L that can cover target point t. The ILP task for the DLDT problem is
formulated as follows:

Objective : Min(∑
l∈L

xl), (1)

subject to
∀t ∈ T, ∑

l∈S(t)
xl ≥ k, (2)

∀l ∈ L, xl ∈ {0, 1}. (3)

In the above ILP task, the objective is to minimize the total number of sensors to be deployed.
The first constraint ensures that each target point is k-covered, and the second constraint requires that
each xl variable to be either 0 or 1. Since the ILP problem is NP-hard, this formulation does not help
solve the sensor deployment problem under study. However, the ILP formulation leads to a way of
finding the lower bound of the optimal solution through the LP-relaxation technique. We relax the
integer constraint of Equation (3) in the ILP formulation to obtain an LP formulation:

∀l ∈ L, 0 ≤ xl ≤ 1. (4)
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Let OPT and OPTLP be the optimal objective values of the ILP and LP problems, respectively.
We have OPTLP ≤ OPT, since the solution space for the LP problem is a superset of that for the ILP
problem. Therefore, OPTLP provides a lower bound to the optimal solution to the DLDT problem.
According to the k-coverage constraint in Equation (2), we have OPT ≥ k and OPTLP ≥ k.

Andersen et al. modified the greedy algorithm originally designed for the Set Cover problem [14]
to solve the sensor deployment problem with multiplicity k, but no approximation ratio was provided.
We adopt a similar greedy strategy to DLDT, referred to as GreedyDLDT, as shown in Algorithm 1,
whose output is a set L0 of candidate locations selected for sensor deployment. We use function
U(l, T, L0) to compute a set of target points in T, which are covered by l but not k-covered by L0.
GreedyDLDT follows an iterative procedure to select a candidate sensor location covering the largest
possible number of target points that are not k-covered at each stage, until all target points in T are
k-covered. GreedyDLDT has a time complexity of O(m2 · n) in the worst case. When k = 1, it is the
same as the approximate algorithm designed for the Set Cover problem, and Johnson already proved
that the approximation ratio of this algorithm is upper bounded by (ln n + 1) [22]. When k ≥ 1, we
shall prove that the approximation ratio of GreedyDLDT is also upper bounded by (ln n + 1), as stated
in Theorem 2.

Algorithm 1 GreedyDLDT
Input: L, T, k
Output: A set L0 of selected sensor locations

1: L0 = ∅;

2: while L0 does not k-cover T do
3: l∗ = argmax

l∈L−L0

(|U(l, T, L0)|);

4: L0 = {l∗} ∪ L0;

5: return L0;

Theorem 2. The approximation ratio of Algorithm 1 is (ln n + 1).

Proof. Considering that each of n target points is covered by at least k sensors, there should be in
total k · n target points returned by U(l∗, T, L0) in GreedyDLDT in Algorithm 1, where each target
point has a multiplicity of k. We use T′ = {t′1, t′2, . . . , t′k·n} to denote the set of target points that are

numbered in the order they are covered, and use T′i = T′ − CAT j=i
j=1U(l∗j , T, L0), where CAT is defined

as an operation to concatenate multiple sets into a single one without removing duplicate elements,
to denote the set of target points that have not yet been covered after the i-th iteration, with T′0 = T′.

We use OPT to denote the minimum number of sensor locations selected to k-cover all target
points. When OPT = 1, it is obvious that k must be equal to 1 because there is only one selected
location for sensor deployment. There must exist a sensor location l∗ that can cover all n target points,
and hence this greedy procedure identifies l∗ in the first iteration and achieves the optimality in this
case. We consider OPT ≥ 2 in the rest of our proof.

After the i-th iteration, we know that the remaining target points T′i can be covered by at most

OPT sensor locations, and each location should cover |T
′
i |

OPT target points on average. The principle of
Pigeon Hole indicates that there must exist one sensor location l ∈ (L− L0), which can cover at least

d |T
′
i |

OPT e target points; otherwise, the OPT sensor locations cannot k-cover T′i . In this greedy method, we
always select the sensor location l∗i+1 that covers the largest number of target points in T′i . Therefore,

|T′i | − |T′i+1| ≥ d
|T′i |

OPT e ≥
|T′i |

OPT , or |T′i+1| ≤ (1− 1
OPT )|T′i |. Starting from |T′0| = k · n, an inductive

procedure leads to |T′i | as follows:

|T′i | ≤ (1− 1
OPT

)i · k · n. (5)
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We use q to denote the number of iterations this approach takes to satisfy the following equation:

(1− 1
OPT

)q · k · n = OPT. (6)

By rearranging (1− 1
OPT )

q and OPT, and taking natural logarithm on both sides of Equation (6),
we obtain:

ln(
k · n
OPT

) = q · ln(1 + 1
OPT − 1

). (7)

We consider a function f (x) = ln(1+ 1
x−1 )− 1

x . Since f (2) > 0, lim
x→+∞

f (x) = 0, and its first-order

derivative f ′(x) = −1
x2·(x−1) < 0, we know that f (x) is a monotonic decreasing function when x ≥ 2.

It follows that f (x) ≥ 0 or ln(1 + 1
x−1 ) ≥ 1

x when x ≥ 2, i.e., ln(1 + 1
OPT−1 ) ≥ 1

OPT when OPT ≥ 2.
Therefore, based on Equation (7), we obtain q ≤ OPT · ln(k · n/OPT).

In Algorithm 1, after q iterations, |T′q| ≤ (1− 1
OPT )

q · k · n = OPT, which means that only OPT
target points in T′ have not yet been covered. Since each iteration covers at least one target point in
T′, we can fully cover T′ after dqe+ OPT iterations, i.e., all n target points are k-covered. Algorithm 1
terminates after dqe+ OPT iterations, and produce the number |L0| of selected sensor locations as:

|L0| ≤ dqe+ OPT < OPT · (ln k · n
OPT

+ 1)

≤OPT · (ln n + 1).
(8)

The inequality in Equation (8) holds because OPT ≥ k, as shown by the constraint in Equation (2)
in the LP problem. Hence, the approximation ratio of GreedyDLDT in Algorithm 1 is upper bounded
by (ln n + 1).

We would like to point out that DLDT with k = 1 is exactly the Set Cover problem, which has
been proven to be inapproximable in polynomial time within a factor of O(ln n), unless P = NP [23].
Accordingly, O(ln n) is the best approximation ratio achievable for DLDT when k ≥ 1. However, we
are able to produce a tighter approximation ratio in Theorem 3 if we compute the lower bound OPTLP
of OPT by solving the LP problem in advance.

Theorem 3. Algorithm 1 has an approximation ratio of (ln k·n
OPTLP

+ 1), if the lower bound OPTLP of OPT
is pre-computed.

Proof. Since OPTLP ≤ OPT, from Equation (8), we have

|L0| ≤ OPT · (ln k · n
OPT

+ 1) ≤ OPT · (ln( k · n
OPTLP

) + 1). (9)

Hence, the approximation ratio of GreedyDLDT is upper bounded by (ln k·n
OPTLP

+ 1).

According to the constraint defined in Equation (2) for the LP problem, we have OPTLP ≥ k,
and ln k·n

OPTLP
+ 1 ≤ ln n + 1. Therefore, Theorem 3 provides a tighter upper bound than the one in

Theorem 2.

4.2. Algorithm Design for DLCT

In DLCT, the candidate sensor locations are given as a set of discrete points, and the surfaces
of the target objects are composited by a finite set of continuous 2D areas, in which, any point must
be k-covered. Obviously, a continuous area contains an infinite number of points, which makes it
infeasible to provide a direct formulation of this problem as an ILP task. In addition, there lack efficient
tools to tackle such complex geometric objects. In this section, we propose a discretization approach
to discretize a continuous target area into divisions in order to convert DLCT to DLDT without the
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loss of precision such that every point in each continuous target area is k-covered. The discretization
process takes three steps: (i) intersected circle calculation; (ii) division calculation; and (iii) covering
set calculation.

4.2.1. Intersected Circle Calculation

The first step for intersected circle calculation is to compute the sensing region within a continuous
target area t ∈ T of a sensor placed at a discrete sensor location l ∈ L. We first draw a 3D sphere of
radius rs centered at the sensor location l, and then compute the circle (or arc) intersected between
the sphere and the plane where the continuous target area t resides. This step is of time complexity
O(m · n). All points inside the intersected circle in the target area t must be covered by the sensor
location l. Note that a sphere may intersect with one or more target areas, while a target area may
also be intersected by multiple spheres. Therefore, there may be multiple intersected circles or arcs
of different radiuses that divide the continuous target area A into a number of subareas, referred to
as divisions. Note that a division contains at least two intersection points and is enclosed by at least
two arcs.

Definition 3. An intersection point is either an internal point (inside area A) intersected by two or more
circles, or a border point intersected by the border of area A and one or more circles.

Definition 4. A point of tangency is either an internal point (inside area A), at which two or more circles
are tangent, or a border point, at which the border of area A is tangent to one or more circles. Here, we do not
consider a point of tangency as an intersection point.

Definition 5. An arc is a minimum segment bounded by two intersection points (endpoints) on the rim of a
circle. Here, “minimum" means that there does not exist any intersection point between two endpoints.

Definition 6. A division is a minimum enclosed area bounded by a set of arcs or the segments of the boundary
of a continuous target area. Here, “minimum" means that there does not exist any arc inside a division, or a
division cannot be divided by any arc into smaller divisions.

4.2.2. Division Calculation

The second step for division calculation is to determine all divisions formed by the intersected
circles calculated at the previous step. This problem appears to be computationally challenging in
geometry, but it turns out that tracing all possible divisions can be done in polynomial time. In fact,
Huang et al. pointed out that the total number of intersected divisions could be as many as O(m2),
where m denotes the number of circles, but they did not provide a proof [15]. Here , we provide a
rigorous derivation for a tight upper bound on the total number of divisions intersected by m circles in
an infinite 2D plane. We shall start from the following lemmas.

Lemma 1. Given m circles in an infinite 2D plane, if a newly added circle maximizes the total number of
divisions, this new circle must not pass any intersection point created by the existing m circles.

Proof. We prove this lemma by reduction to absurdity. Assume that a newly added circle passes an
intersection point p, which is created by the intersection of some existing circles, and produces the
maximum number of divisions. We use o to denote the center of the newly added circle. If we move
this circle towards the direction ~po or ~op for a small distance of ε (ε > 0 is an arbitrarily small value)
without passing any other intersection points, we are able to increase the number of divisions at least
by 1, which is in conflict with the assumption. Hence, the newly added circle should not pass any
existing intersection point.
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Lemma 2. The number of divisions intersected by m circles in an infinite 2D plane is upper bounded by
(m2 −m + 1).

Proof. We prove this theorem using mathematical induction. Let P(m) = (m2 −m + 1). In the base
case where m = 2, we have P(2) = 3 and there are at most 3 divisions created by 2 circles. Obviously,
the theorem holds in this base case.

Suppose that P(m) holds. Now we show that P(m + 1) also holds. We first prove that adding
a new circle c′ to the existing m circles {c1, c2, ..., cm} would increase the number of divisions by at
most 2m, assuming that c′ intersects with all existing circle ci, i ∈ [1, m]. Obviously, the number of new
intersection points on any existing circle ci is at most 2, and the increment of arcs on ci is also at most 2.
Since an arc is shared by at most two divisions (on both sides), the increment of divisions consisting
of 2 new arcs on ci is at most 4. Therefore, the total increment of divisions is at most 4m. Since each
new division contains at least one arc from ci, all new divisions have been counted in the division
increment of 4m including those covered by c′ only. However, the above calculation still contains some
duplicated divisions, which are addressed as follows.

According to Lemma 1, c′ only intersects the arcs on ci, and c′ does not go through any existing
intersection points on ci. The intersection between c′ and ci falls into one of the following two cases:
Case 1 where c′ intersects only one arc of ci, and Case 2 where c′ intersects two arcs of ci.

Case 1: c′ intersects only one arc of ci

In this case, an arc of ci is divided into three arcs by c′. An example is shown in Figure 1a, where
a boldly marked arc of c1, c2, or c3 is divided into three new arcs by c′ (marked by dashed lines).
We refer to the original arc as arc0(ci), and the three new arcs as arc1(ci), arc2(ci), and arc3(ci) in the
clockwise direction, respectively. We consider the following two intersection conditions: (i) c′ does
or does not intersect an arc of cj1 (j1 ∈ [1, m], j1 6= i) inside ci; (ii) c′ does or does not intersect an arc
of cj2 (j2 ∈ [1, m], j2 6= i) outside ci. By combining the above two intersection conditions, we have the
following 4 subcases of intersection.

• Subcase (1): c′ intersects an arc of cj1 (j1 ∈ [1, m], j1 6= i) inside ci and also intersects an arc of cj2
(j2 ∈ [1, m], j2 6= i) outside ci. This is the case for arc0(c2) in Figure 1a. Before adding c′, there are 2
divisions sharing arc0(ci): one division div1(ci) inside ci, and the other division div2(ci) outside ci.
After adding c′, arc0(ci) is divided into 3 new arcs, and both div1(ci) and div2(ci) are divided into
3 new divisions by c′, resulting in total 6 new divisions, each of which contains one of these 3 new
arcs. Therefore, the increment of divisions that share the new arcs of ci is 6− 2 = 4. For each of
these 6 new divisions, it consists of at least two new arcs: one new arc from ci and the other new
arc from cj1 or cj2 . Obviously, each of these 6 new divisions is duplicately counted by ci and cj1 or
cj2 . Therefore, the average increment of divisions sharing the new arcs of ci is 4/2 = 2.

• Subcase (2): c′ intersects an arc of cj1 (j1 ∈ [1, m], j1 6= i) inside ci but does not intersect any arc of
cj2 (j2 ∈ [1, m], j2 6= i) outside ci. This is the case for arc0(c3) in Figure 1a. Before adding c′, there is
one division div1(ci) sharing arc0(ci) inside ci, and there may or may not exist a division outside
ci. After adding c′, arc0(ci) is divided into 3 new arcs, and div1(ci) is divided into 3 new divisions.
Therefore, the increment of divisions inside ci sharing the new arcs of ci is 3− 1 = 2. For each of
these 3 new divisions inside ci, it contains at least two new arcs: one new arc from ci and the other
new arc from cj1 . Hence, the average increment of divisions inside ci sharing the new arcs of ci is
2/2 = 1. Whether or not there exists a division div2(ci) outside ci before adding c′, the increment
of divisions outside ci is always 1. Therefore, the average increment of divisions both inside and
outside ci sharing the new arcs of ci is 1 + 1 = 2.

• Subcase (3): c′ does not intersect any arc of cj1 (j1 ∈ [1, m], j1 6= i) inside ci but intersects an arc of
cj2 (j2 ∈ [1, m], j2 6= i) outside ci. This is the case for arc0(c1) in Figure 1a. Similar to the analysis
for Subcase (2), the average increment of divisions both inside and outside ci sharing the new arcs
of ci is 2.
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• Subcase (4): c′ does not intersect any arc of cj1 (j1 ∈ [1, m], j1 6= i) inside ci nor intersects any arc of
cj2 (j2 ∈ [1, m], j2 6= i) outside ci. An example of this case would be to add c′ that intersects only
one existing circle. Since the increment of divisions either inside or outside ci is 1, the average
increment of divisions both inside and outside ci is 2.

c2 c3 c

(a) (b)

c1

c2 c3c1

c

Figure 1. Illustration of two intersection cases between a new circle and the existing circles: (a) the
new circle c′ intersects only one arc of an existing circle; (b) the new circle c′ intersects two arcs of an
existing circle.

Case 2: c′ intersects two arcs of ci

In this case, two arcs of ci are divided into two new arcs by c′, respectively. An example is shown
in Figure 1b, where each of the two boldly marked arcs of c2 is divided into two new arcs by c′ (marked
by dashed lines). We consider one of the original arcs and refer to it as arc0(ci). Similar to Case 1, we
consider 4 subcases with different combinations of the following two intersection conditions: c′ does
or does not intersect an arc of cj1 (j1 ∈ [1, m], j1 6= i) inside ci and c′ does or does not intersect an arc of
cj2 (j2 ∈ [1, m], j2 6= i) outside ci. In each subcase, the average increment of divisions both inside and
outside ci sharing the new arcs (only from arc0(ci)) of ci is 1. Since there are two original arcs, the total
average increment of divisions both inside and outside ci sharing the new arcs of ci is 2.

In sum, the average increment of divisions for any existing circle ci is 2. Since there are total
m existing circles, the total increment of divisions is 2m. It follows that P(m + 1) = P(m) + 2m =

(m + 1)2 − (m + 1) + 1. Therefore, P(m + 1) holds. Since both the base and inductive steps are
validated, we conclude that Lemma 2 holds for all natural number m according to the theory of
mathematical induction.

According to Lemma 1, m circles should be placed in such a way that every intersection point is
created by only two circles in order to maximize the number of divisions. We show one tight example
of Lemma 2 in Figure 1, where the centers of all these circles of an identical radius are aligned along a
line, and every newly added circle intersects all existing circles.

We can represent a division using a sequence of component intersection points and arcs.
To facilitate division calculation, we provide below several definitions.

Definition 7. end1(arc) and end2(arc) are the endpoints of an arc in the clockwise direction, and mid(arc) is
the middle point of an arc.

Definition 8. The tangent of an arc at one endpoint p is defined as a tangent radial that is tangent to the arc at
p, and the angle between the tangent radial and the chord

−−−−−−→
p, mid(arc) is less than 90 degrees.

Definition 9. Suppose that arc arc1 and arc arc2 share one endpoint p. The angle from arc arc2 to arc arc1 is
defined as the angle from the tangent of arc2 at its endpoint p to the tangent of arc1 at its endpoint p in the
clockwise direction.

We design an algorithm in Algorithm 2 to determine all divisions in a continuous area A
intersected by m circles and the boundary Ā of A. In lines 5–6, it adds a new circle, which intersects
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with neither any other circles nor the boundary Ā, or is only tangent to one circle or Ā. In lines 10–18,
it traces a division outside the circle or A, to which arcsrc belongs. In lines 19–27, it traces a division that
is inside the circle or A, to which arcsrc belongs. It returns all possible divisions inside the continuous
area A. The computational complexity of Algorithm 2 is O(m3) in the worst case. An example of
Algorithm 2 is illustrated in Figure 2, where arcsrc is represented by a boldly marked arc, and the
divisions on both sides of arcsrc are denoted by div1 and div2. The curved arrows show the tracing
directions we follow to identify these two divisions.

Algorithm 2 Division Calculation
Input: A continuous area A, m circles {c1, c2, ..., cm} on A.
Output: All divisions within A.

1: Cirs = {c1, c2, ..., cm}, Arcs = ∅, Divs = ∅, DivCmps = ∅;
2: Calculate all the intersection points on ci ∈ Cirs and Ā, and record the list of intersection points on ci;
3: Add all the arcs in Ā to Arcs if Ā has intersection points;
4: for all ci ∈ Cirs do

5: if ci has no intersection point and is inside A then

6: Add ci to DivCmps and then to Divs;
7: else

8: Add all arcs on ci and inside A to Arcs;
9: for all arcsrc ∈ Arcs− Ā do

10: arccur = arcsrc;
11: repeat

12: Select arcnext ∈ Arcs such that arcnext share the endpoint end1(arccur) and the angle from arcnext to arccur

is minimized;
13: arccur = arcnext;
14: until (arccur == arcsrc)
15: if the chain d1 of arcs form the profile of multiple circles then

16: Add d1 to DivCmps if d1 /∈ DivCmps;
17: else

18: Add d1 to Divs if d1 /∈ Divs;
19: arccur = arcsrc;
20: repeat

21: Select arcnext ∈ Arcs such that arcnext share the endpoint end2(arccur) and the angle from arcnext to arccur

is minimized;
22: arccur = arcnext;
23: until (arccur == arcsrc)
24: if the chain d2 of arcs form the profile of multiple circles then

25: Add d2 to DivCmps if d2 /∈ DivCmps;
26: else

27: Add d2 to Divs if d2 /∈ Divs;
28: if there is no intersection point in Ā then

29: if Divs 6= ∅ or A is inside a circle then

30: Add Ā to Divs;
31: for all di ∈ DivCmps do

32: dmin = ∅;
33: for all dj ∈ Divs do

34: if dj encloses di and (dmin = ∅ or d encloses dj) then

35: dmin = dj;
36: Incorporate di into dmin and update dmin in Divs;
37: return Divs.
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Figure 2. An example of Algorithm 2.

We use Algorithm 2 to determine all divisions in each continuous target area t ∈ T divided by
the intersected circles resulted from the first step and the boundaries of t. With n continuous targets,
division calculation is of time complexity O(m3 · n).

4.2.3. Covering Set Calculation

The third step for covering set calculation is to determine the set of divisions a discrete sensor
location l ∈ L can cover. A discrete sensor location may cover the divisions from multiple continuous
targets, and may only cover a subset or the entire set of divisions from one target. Note that a
continuous target is k-covered if and only if every division within the target area is k-covered.
The following lemma is used to check if a sensor location can cover a division, and compute the
covering set of each sensor location l ∈ L. This step is of time complexity O(m3 · n).

Lemma 3. A discrete sensor location covers an arc if and only if the distance from each endpoint of the arc to the
sensor location is less than or equal to rs and the distance from the middle point of the arc to the sensor location is
also less than or equal to rs. A discrete sensor location covers a division if and only if it covers all the component
arcs of the division.

If a division contains a non-arc boundary segment of a target area, then the segment is covered by
a sensor if and only if the distance from each endpoint of the segment to the sensor location is less than
or equal to rs and the segment does not intersect with the covering circle of the sensor. If a division is
constituted by a single circle, we evenly divide the circle into two arcs and apply the above lemma to
check if a sensor covers a circular division.

The complexity of the entire discretization process is dominated by the complexity of the last two
steps, i.e., O(m3 · n). If we treat every target division as a discrete virtual target point, we are able to
convert DLCT to DLDT without the loss of any precision. Therefore, we adapt GreedyDLDT for DLDT
to DLCT, referred to as GreedyDLCT, after discretizing continuous target areas, and prove that the
performance of this adapted approach to DLCT is upper bounded by (ln nm2 + 1).

Theorem 4. The approximation ratio of GreedyDLCT with target object discretization for DLCT is
(ln nm2 + 1).

Proof. We compute the maximum total number of divisions in all continuous target areas. Since every
continuous target object is a convex area, Lemma 2 shows that the maximum number of divisions



Sensors 2017, 17, 2304 13 of 26

in one continuous target area is (m2 − m + 1). With n continuous target areas, the maximum total
number of divisions in all these areas is n · (m2 −m + 1). According to Equation (8), we have

|L0| ≤OPT · (ln k · n · (m2 −m + 1)
OPT

+ 1)

≤OPT · (ln k · n ·m2

OPT
+ 1)

≤OPT · (ln nm2 + 1).

(10)

Hence, the approximation ratio of GreedyDLCT is (ln nm2 + 1).

4.3. Algorithm Design for CLDT

In CLDT, the feasible sensor locations are given as a set of 2D continuous areas, and the target
objects are given as a set of discrete points. We may place sensors at any point within these continuous
areas for sensor deployment. The key idea for solving CLDT is to use a similar three-step discretization
process to discretize a continuous sensor location into divisions in order to convert CLDT to DLDT
without loss of precision, referred to as GreedyCLDT.

Similar to DLCT, during discretization in CLDT, the first step for intersected circle calculation is
to compute the valid sensor region within each continuous feasible sensor location l ∈ L that covers a
discrete target point t ∈ T. We first draw a 3D sphere of radius rs centered at a target point t, and then
compute the circle or arc intersected by the sphere and the continuous sensor location l. If a sensor is
placed within the intersected circle inside the sensor location l, it must cover t. In addition, a sphere
may intersect one or more sensor locations, and a feasible sensor location may also be intersected by
multiple spheres. Multiple intersected circles or arcs of different radiuses may exist at every feasible
sensor location.

The second step for division calculation is to use Algorithm 2 to determine all possible divisions
at every continuous sensor location l ∈ L divided by the intersected circles resulted from the first step
and the boundaries of l. Note that a valid division must be inside an intersected circle such that a
sensor deployed within this division can cover at least one discrete target point. However, not all the
divisions returned by Algorithm 2 are valid. We show one division example in Figure 3, where the
surrounding rectangle is a continuous sensor location, and it is divided into a number of divisions by
the intersected circles or arcs. In Figure 3, divisions A and C are valid, while divisions B and D are
invalid. We first compute all divisions at every sensor location l ∈ L, and then remove any invalid
divisions. Every valid division can be treated as a discrete candidate sensor location because we
can place a sensor at any point within the division while achieving the same coverage performance.
Obviously, we can deploy at most k sensors within a valid division.Version October 2, 2017 submitted to Sensors 14 of 27
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The second step for division calculation is to use Algorithm 2 to determine all possible divisions
at every continuous sensor location l ∈ L divided by the intersected circles resulted from the first step
and the boundaries of l. Note that a valid division must be inside an intersected circle such that a
sensor deployed within this division can cover at least one discrete target point. However, not all the
divisions returned by Algorithm 2 are valid. We show one division example in Figure 3, where the
surrounding rectangle is a continuous sensor location, and it is divided into a number of divisions by
the intersected circles or arcs. In Figure 3, divisions A and C are valid, while divisions B and D are
invalid. We first compute all divisions at every sensor location l ∈ L, and then remove any invalid
divisions. Every valid division can be treated as a discrete candidate sensor location because we
can place a sensor at any point within the division while achieving the same coverage performance.
Obviously, we can deploy at most k sensors within a valid division.

We choose k discrete points within a division as follows. Let arc1 and arc2 be two arcs of a division
that share an intersection point p. We compute the tangents of arcs arc1 and arc2 at point p, respectively,
and the bisector of the angle formed by these two tangents. Suppose that the angle bisector intersects
one of the arcs of the division at point q. We can evenly lay out k points along line segment pq, which
are used to represent the division. All the sensors placed at these k points within the same division
have an identical coverage performance. We provide an example of computing k points within a
division in Figure 3, where we use k points on line segment p1 p3 to represent division A. We calculate
k discrete points within every valid division at each sensor location l ∈ L.

The third step for covering set calculation is to compute the set of discrete target points that every
discrete point resulted from the previous step can cover. The above three-step discretization process
converts CLDT to DLDT, and the time complexity of this transformation is O(n3 ·m · k). We then apply
GreedyDLDT to compute a solution to CLDT. As the number of target points remains the same, the
approximation ratio of GreedyCLDT is (ln n + 1).

4.4. Algorithm Design for CLCT

In CLCT, both sensor locations and target objects are given as continuous 2D areas. This problem is
more challenging to tackle because we can not directly convert it to DLDT using the same discretization
method for DLCT and CLDT. We propose to first divide CLCT into two subproblems, and then
convert the two subproblems to CLDT and DLCT, respectively. Based on this approach, we design an
approximate algorithm for CLCT.

4.4.1. Problem Decomposition

Let S denote the enclosed 3D space that is collectively covered by all sensor locations with sensing
radius rs and S̄ denote the surface of S.

There are four cases in the CLCT problem.

• Case 1: At least a target point exists outside S. In this case, there is no feasible solution to the
CLCT problem, and hence is ignored.

• Case 2: No target point is outside S, but S̄ and target areas have intersected points whose
neighbourhoods within the target areas can not be covered by finite sensor location points. In this
case, the minimal number of selected sensor location points to cover all the targets is infinitely
large. Therefore, we do not need to consider this case.

• Case 3: No target point is outside S, and the neighbourhood of any point intersected by S̄ and a
target area can be covered by finite sensor location points. In this case, for each sensor location
l covering a target point in S̄, we draw a sphere of radius rs centered at l. A target area may be
intersected by multiple spheres. In every target area, there may be multiple intersected arcs that
divide the target area into several divisions. Then, temporarily remove all the divisions adjacent
to a target point in S̄. The minimum distance between S̄ and all the points in the rest target areas
is denoted by d (d > 0).
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• Case 4: All the target areas are in the inner side of S. In this case, there is no target point in S̄.
The minimal distance between S̄ and the points in the target areas is denoted by d (d > 0).

Let S1 represent the enclosed 3D space that is collectively covered by all sensor locations with
sensing radius (rs − d). Let S2 = S− S1. Then, we divide the CLCT problem into two subproblems
as follows:

• Subproblem 1: Given m convex sensor location areas and convex target areas in S1, deploy a
minimum number of sensors with sensing radius rs to k-cover all the target areas in S1, referred to
as SubOPT1.

• Subproblem 2: Given m convex sensor location areas and continuous target areas in S2, deploy a
minimum number of sensors with sensing radius rs to k-cover all the target areas in S2, referred to
as SubOPT2.

Note that in Case 4, the CLCT problem is the same as Subproblem 1.

4.4.2. Coverage over Internal Targets

We first tessellate 3D region R by cubes with edge of a = d/
√

3. Each target area may cut some
cubes. In each cut cube, we arbitrarily select a point in a target area in S1, and obtain n1 discrete target
points. Then, we construct two CLDT problems.

• Problem 1: Given m convex sensor location areas and n1 target points, deploy a minimum number
of sensors with sensing radius rs to k-cover n1 target points, referred to as CLDTOPT1.

• Problem 2: Given m convex sensor location areas and n1 target points, deploy a minimum number
of sensors with sensing radius (rs − d) to k-cover n1 target points, referred to as CLDTOPT2.

Problem 2 is a CLDT problem with an approximation algorithm, so that we can use the
approximate solution CLDTAS2 to Problem 2 as the approximate solution SubAS1 to Subproblem 1.

Definition 10. Critical sensor location points: All the sensor location points that can cover a target point
in S̄ are referred to as a set Lc of critical sensor location points.

In Problem 2, if selected location divisions contain a point in Lc, the location point will be selected
to represent the location division.

Lemma 4. The approximation ratio of the algorithm for Subproblem 1 is f
( rs

d
)
(ln n + 1), where f (p) =

36
√

3π
(

p− 1
2

)2
+ 27
√

3π + 1.

Proof. Obviously, a set of sensors k-covering all the target areas in S1 can k-cover n1 target points.
In addition, if a set of sensors with sensing radius (rs − d) that can k-cover n1 target points have
sensing radius rs, they can also k-cover all the target areas in S1. Hence, |CLDTOPT1| ≤ |SubOPT1| ≤
|CLDTOPT2|.

Since the approximation ratio of GreedyCLDT is (ln n + 1),

|SubAS1|
|SubOPT1|

≤ |CLDTAS2|
|CLDTOPT1|

≤ |CLDTOPT2| · (ln n + 1)
|CLDTOPT1|

. (11)

Since we can deploy |CLDTOPT1| sensors with sensing radius rs to k-cover all the discrete target
points, we firstly deploy |CLDTOPT1| sensors with sensing radius (rs − d) in the same locations.
For each sensor location, only target points between the two concentric spheres with radii rs and
(rs − d) lose a coverage due to the decrease of the sensing radius. Fortunately, the number of target
points in the region has an upper bound, denoted by l, in that there is at most one target point
in a cube with edge a. In other words, each sensor causes no more than l target points to lose a
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coverage. Totally, l · |CLDTOPT1| coverage disappears. Then, additional l · CLDTOPT1 sensors
are sufficient to provide k-coverage over all the target points. Therefore, we can deploy no more
than (l + 1) · |CLDTOPT1| sensors with sensing radius (rs − d) to k-cover all the target points, i.e.,
|CLDTOPT2| ≤ (l + 1) · |CLDTOPT1|.

|CLDTAS2|
|SubOPT1|

≤ |CLDTOPT2| · (ln n + 1)
|CLDTOPT1|

≤ (l + 1) · (ln n + 1). (12)

We provide the upper bound l. On one hand, all the cubes that can be intersected by a full
sphere with radius rs can be completely contained in a sphere with radius (rs + d), so there are at

most 4
3 π(rs + d)3

/(
d
/√

3
)3

= 4
√

3π
( rs

d + 1
)3 cubes. On the other hand, the 3D region composed

of all the cubes that can necessarily be contained but not intersected by a sphere with radius (rs − d)
regardless of their locations relative to the sphere can contain a sphere with radius (rs − 2d), so the

number of cubes is at least 4
3 π(rs − 2d)3

/(
d
/√

3
)3

= 4
√

3π
( rs

d − 2
)3. Hence,

l ≤ 4
√

3π
( rs

d
+ 1
)3
− 4
√

3π
( rs

d
− 2
)3

. (13)

According to Equations (12) and (13), we have

|CLDTAS2|
|SubOPT1|

≤
[

36
√

3π

(
rs

d
− 1

2

)2
+ 27
√

3π + 1

]
· (ln n + 1). (14)

4.4.3. Coverage over Targets on the Border

We construct a DLCT problem as follows: Given a set Lc of sensor location points and target areas
in S2, deploy a minimum number of sensors with sensing radius rs at location points in Lc to k-cover
all the target areas in S2, referred to as DLCTOPT.

Lemma 5. |DLCTOPT| = |SubOPT2|.

Proof. Consider the DLCT problem. For each sensor location l in Lc, draw a sphere with radius rs

centered at l. All the spheres and all the target areas in S2 may intersect at multiple arcs. The arcs
divide the target areas in S2 into some divisions, which are all adjacent to at least a target point in S̄.
Assume that there exist a division that can be covered by a set L1 of finite sensor locations in L− Lc.
The division is adjacent to the target point t in S̄. Let d′ be the minimum distance between t and all the
sensor location points in L1. Since d′ > d, the target points less than (d′ − d) far from t in the division
cannot be covered by any points in L1, which contradicts with the assumption that the division can be
covered by L1. Hence, no division can be covered by finite sensor locations in L− Lc.

Based on the definition of S2, all the location points in Lc can collectively cover all the target areas
in S2, so the DLCT problem has at least a feasible solution. Since Lc ⊆ L, |DLCTOPT| ≥ |SubOPT2|.
Assume that |DLCTOPT| > |SubOPT2|. Then, there exists at least one sensor in (DLCTOPT− SubOPT).
If the sensors in (DLCTOPT − SubOPT) are all moved out of DLCTOPT, there must be a target
division, in which no internal point is k-covered by SubOPT2 ∩ Lc, because (SubOPT2 ∩ Lc) ⊆ Lc and
|SubOPT2 ∩ Lc| < |DLCTOPT|. Since SubOPT2 is a feasible solution, the entire target division can
be covered by no more than |SubOPT2| sensors located at L − Lc, which contradicts with the fact
that the finite sensor location points in L− Lc cannot cover any target division in S2. It follows that
|DLCTOPT| ≤ |SubOPT2|. Hence, |DLCTOPT| = |SubOPT2|.
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By converting Subproblem 2 to DLCT that is solved by an approximation algorithm, we can
obtain an approximation solution SubAS2 to Subproblem 2. In Subproblem 2, if some divisions in the
target areas have been completely covered by the set of sensors selected in Subproblem 1, the number
of required covers over the divisions can be reduced correspondingly in order to decrease the number
of deployed sensors.

There are only two existing forms for the points intersected by S̄ and target areas:

• Case 1: an isolated point in S̄.
• Case 2: a set of concyclic points, all of which only one or two sensor location points can cover.

If all the target areas can be k-covered by finite sensors, the total number of isolated points and
sets of concyclic points intersected by S̄ and target areas must be a finite number, denoted by n2.

Lemma 6. The approximation ratio of the greedy algorithm for Subproblem 2 is (ln mn2
2 + 1), where m is the

number of sensor location areas.

Proof. Assume that in a sensor location area, there exist two location points l1 and l2 covering the
same target point t in S̄. Then, their distances to t are

∣∣∣l1t
∣∣∣ = ∣∣∣l2t

∣∣∣ = rs. Because the sensor location area

is convex, any point l on the line segment l1l2 is in the location area. Since l ∈ l1l2 and
∣∣∣l1t
∣∣∣ = ∣∣∣l2t

∣∣∣ = rs,

the distance
∣∣∣lt∣∣∣ is less than the sensing distance rs, which contradicts with the assumption of t ∈ S̄.

Therefore, for each target point in S̄, there is at most one valid location point in a sensor location area.
Since the total number of isolated target points and sets of concyclic target points in S̄ is no more
than n2, |Lc| ≤ m · n2. According to Theorem 4, the approximation ratio of the greedy algorithm for
Subproblem 2 is (ln mn2

2 + 1).

4.4.4. Approximation Ratio

Theorem 5. The approximation ratio of the algorithm for CLCT is[
36
√

3π
(

rs
d − 1

2

)2
+ 27
√

3π + 1
]
(ln n1 + 1) + ln mn2

2 + 1.

Proof. Let AS be the approximate solution to the original CLCT problem with optimal solution OPT.
We have

|AS|
|OPT| ≤

|SubAS1|
|OPT| +

|SubAS2|
|OPT| ≤

|SubAS1|
|SubOPT1|

+
|SubAS2|
|SubOPT2|

. (15)

Based on Equation (15) and Lemma 4 and 6, the approximation ratio of the algorithm for CLCT
can be computed as follows:

|AS|
|OPT| ≤

[
36
√

3π
(

rs
d − 1

2

)2
+ 27
√

3π + 1
]
(ln n1 + 1)

+ ln kmn2
2 + 1.

(16)

5. Algorithm Design with Connectivity Requirement

We consider another set of four connected deployment problems by imposing a requirement
on the sensor network connectivity: C-DLDT, C-DLCT, C-CLDT, and C-CLCT. Obviously, all these
problems are still NP-complete since their corresponding version without the connectivity requirement
is a special case where every sensor has a sufficiently large communication radius.

We design an approximate algorithm for each of these connected sensor deployment problems.
We use C-DLDT as an example to explain the algorithm design, which is based on the result of DLDT
returned by Algorithm 1. Suppose that the set of sensor locations from Algorithm 1 for DLDT is L0,
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L0 ⊆ L. C-DLDT is to select a minimum number of candidate sensor locations from L− L0 and add
them to L0 such that all the sensors in L0 are connected, which is similar to the Steiner Tree Problem
with Minimum number of Steiner Points and Bounded Edge-Length (STP-MSPBEL) in [24]. They differ
in that the candidate Steiner points are limited to a set of given locations in C-DLDT. We define a
subproblem, Steiner Tree Problem with Minimum number of Steiner Points at Constrained Locations
(STP-MSPCL): given a set L of discrete points, a subset L0 of L, and a communication radius rc, the
problem is to add a minimum number of points from L− L0 to L0 such that all the points in L0 are
connected. Note that two sensors are connected by a wireless link if and only if the Euclidean distance
between them is no more than communication radius rc. Here, we use L0 to denote the set of terminal
points and use L− L0 to denote the set of Steiner points.

We propose an approximate algorithm for STP-MSPCL based on the minimum spanning tree
algorithm in Algorithm 3, which solves the node-weighted Steiner tree problem by reducing it to the
edge-weighted Steiner tree problem. In lines 1–9, it assigns a weight to every link. If both of the end
points of a link belong to L0, then we the weight of this link to be 0; otherwise, we set the weight of this
link to be 1. Hence, every connected subset of L0 can be treated as a super point, because the length
of the path between any two points in the connected subset of L0 is 0. In lines 10–13, it computes
the shortest path between any two points in L0, which is used to build the spanning tree in line 14.
Those points that are in the spanning tree but do not belong to L0 are Steiner points that have already
been added to L0 in order to make L0 form a connected network. Algorithm 3 is of time complexity
O(m3) in the worst case.

Algorithm 3 Approximation Algorithm for STP-MSPCL
Input: L, L0, rc
Output: A set C of Steiner points, C ⊆ L− L0

1: for all li, lj ∈ L, i 6= j do

2: if distance(li, lj) ≤ rc then

3: if li ∈ L0 and lj ∈ L0 then

4: w(li ,lj)
= 0;

5: else

6: w(li ,lj)
= 1;

7: for all li, lj ∈ L0, i 6= j do

8: Compute the shortest path P between li and lj;
9: w(li ,lj)

= length(P);
10: Compute a minimum spanning tree MST(L0) on L0;
11: Let C be the set of locations l ∈ L− L0 on the shortest path between any two locations in MST(L0);

12: return C.

For STP-MSPCL in 2D space where L are distributed in a 2D area, we prove that the number of
Steiner points in C ⊆ L− L0 returned by the approximate algorithm is at most 5 times the number
of Steiner points in an optimal solution. In [24], Lin et al. showed that there exists a shortest-length
optimal Steiner tree for SMT-MSPBEL such that every Steiner point has a degree of at most 5.

Theorem 6. The approximation ratio of Algorithm 3 for STP-MSPCL in 2D space is 5.

Proof. We first show that the degree of a Steiner point is at most 5. Assume that a Steiner point
l ∈ L has a degree of 6, connecting to 6 terminal points, and the distance between l and each of these
6 terminal points is less than or equal to rc. There must exist at least two terminal points, the distance
between which is less than or equal to rc. If the terminal points at most rc away from each other
are considered as one single virtual terminal point (since they are connected), a Steiner point can
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make at most five separated terminal points connected. In our approximate algorithm, every selected
Steiner point is on the shortest path between two terminal points. Hence, the number of Steiner points
returned by Algorithm 3 is at most five times the number of Steiner points in an optimal solution.

We provide a tight example of Theorem 6 in Figure 4, where five terminal points are located at the
corners of a pentagon (dashed lines) with an edge length greater than rc. One Steiner point is located
at the center and five other Steiner points are located outside the pentagon. The distance between any
two terminal points is greater than rc, and the distance from any terminal point to the central Steiner
point is less than rc. An optimal solution should add the central Steiner point to the set L0 of terminal
points, but Algorithm 3 may add the other five Steiner points to L0.

Figure 4. A tight example of Theorem 6.

Before further analyzing STP-MSPCL in 3D space, we would like to describe a long-debated
historical “thirteen spheres” problem, which asks if 13 non-overlapping spheres of an identical size
can touch the surface of another (central) sphere in 3D space. In a symmetrical configuration, we can
place 12 spheres at those positions corresponding to the vertices of a regular icosahedron concentric
with the central sphere. As these 12 spheres do not touch each other, there was a conjecture that a 13-th
sphere may be added, which was the subject of the famous discussion between Isaac Newton and
David Gregory in 1694, and it was finally proved in 1953 that at most 12 spheres can touch the central
sphere [25]. For STP-MSPCL where L are distributed in 3D space, we shall prove that the number of
Steiner points in C ⊆ L− L0 returned by the approximate algorithm is at most 12 times the number of
Steiner points in an optimal solution.

Theorem 7. The approximation ratio of Algorithm 3 for STP-MSPCL in 3D space is 12.

Proof. We set the radius of each sphere to be rc/2 in the “thirteen spheres” problem. We can place
at most 12 spheres around the central sphere without touching each other. The distance between the
centers of any two outer spheres is greater than rc, and the distance from the center of any outer sphere
to the center of the central sphere is equal to rc. If we deploy a terminal point at the center of each
outer sphere and deploy a Steiner point at the center of the central sphere, such a Steiner point can
make at most 12 separated terminal points connected. Similar to the proof of Theorem 6, the number
of Steiner points returned by the approximate algorithm is at most 12 times the number of Steiner
points obtained by an optimal solution.

The algorithm for C-DLDT is a two-stage algorithm: (i) use the approximation algorithm with
an approximation ratio of (ln n + 1) for DLDT to achieve coverage, and (ii) use the approximation
algorithm with an approximation ratio of 12 for STP-MSPCL to achieve connectivity. For rc ≥ 2rs,
this two-stage algorithm for C-DLDT yields a combined approximation ratio of (ln n + 1 + 12) =

(ln n + 13), which can be proved in a similar way for bounding the approximation ratio of a two-stage
algorithm in [26]. We solve the other three connected deployment problems, i.e., C-CLDT, C-DLCT,
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and C-CLCT, in the same way we solve C-DLDT using a similar two-stage process. Similarly, for
rc ≥ 2rs in constrained 3D space, the combined approximation ratio of the algorithm for C-DLCT is
(ln(k · n ·m) + 13) and the combined approximation ratio of the algorithm for C-CLDT is (ln n + 13).

6. Performance Evaluation

We conduct simulation-based performance evaluation on the proposed algorithms for constrained
sensor deployment in 3D space using a set of randomly generated problem instances.

We would like to make an emphasis that the proposed methods for sensor deployment are
approximate algorithms in nature, which are essentially different from heuristic approaches without
any performance bound. In particular, we focus on the performance evaluation of the algorithm
designed for DLDT (Algorithm 1) because it serves as the base of the solutions to the other
problems, and the performance of this algorithm is a direct reflection of the performance of the
other proposed algorithms.

6.1. Simulation Setting

In the simulation, we consider a 3D cube of dimensions 100 m × 100 m × 100 m as the region
of interest, where a given number of discrete sensor locations and target points are randomly placed.
Each sensor has a sensing diameter of 25 m (rs = 12.5 m) covering a spherical space. We conduct two
sets of experiments. In the first set of experiments, we fix both the number of sensor locations and the
degree of coverage, and vary the number of target points; while in the second set of experiments, we fix
both the number of sensor locations and the number of target points, and vary the degree of coverage.
Note that each experiment is repeated 20 times with different random seeds and the average number of
required sensors with a standard deviation is measured for comparison between different algorithms.

6.2. Performance Evaluation of DLDT

For the evaluation of an approximate algorithm with an approximation ratio, one important
aspect is to examine how it actually performs within the proven performance bound in different
scenarios. For that purpose, we compare GreedyDLDT with an optimal solution, which is obtained by
using the GNU Linear Programming Kit (GLPK) package to solve DLDT under the ILP formulation.
Also, for a more practical evaluation of the performance, we compare GreedyDLDT with a genetic
algorithm (GA)-based heuristic approach for sensor deployment, which mainly follows the design and
implementation of the genetic operators (i.e., crossover, translocation, and mutation) in [27] with the
following adaptations:

• The surveillance region is extended from a 2D plane to a 3D space, and divided into a number of
uniform contiguous voxels of unit size.

• The sensing model is changed from probabilistic sensing to Definite Range Law Approximation
(Cookie Cutter) [28].

• The sensor type is changed from heterogeneous to homogeneous, and accordingly, no priority is
given to any sensor during the population initialization.

• The cost function considers the number of target points that have been sufficiently covered and is
penalized against the total number of target points multiplied by k, which is the required degree
of coverage.

• The fitness function is redesigned to minimize the number of deployed sensors under the
constraint imposed from the cost function.

In the first set of experiments, we set the number of discrete sensor locations to 100 and set k
to 2, and compare the average performance of GreedyDLDT with the GA-based approach and the
optimal solution as the number of given target points varies from 20 to 200, as shown in Figure 5.
The increasing trend in these performance curves indicates that more sensors need to be deployed
to cover more target points. We observe that GreedyDLDT consistently outperforms the GA-based
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approach, and the number of deployed sensors computed by GreedyDLDT is close to that computed
by the optimal solution. Also, GreedyDLDT exhibits a very stable performance as indicated by a small
standard deviation in each problem size.

Based on the number of deployed sensors computed by GreedyDLDT and the optimal solution,
we are able to measure the actual approximation ratio of GreedyDLDT. We plot in Figure 6 the
measured average approximation ratio in comparison with the theoretical one. We observe that
the actual approximation ratio of GreedyDLDT is much smaller than the upper bound (ln n + 1)
defined in Theorem 2, where n is the number of target points. These results shed light on the
promising performance of the proposed method in solving such sensor deployment problems in
practical applications.
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Figure 5. Comparison of the average performance with the standard deviation between GreedyDLDT
(Greedy), Genetic Algorithm (GA), and Optimal Algorithm (OPT) for DLDT in response to a varying
number of target points.
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Figure 6. Measured average approximation ratio of GreedyDLDT for DLDT in response to a varying
number of target points.

In the second set of experiments, we set the number of discrete sensor locations to 200 and
the number of target points to 100, and compare GreedyDLDT with the GA-based approach and
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the optimal solution with different k coverage values (the degree of coverage) varying from 1 to 8.
As shown in Figure 7, the increasing trend in these performance curves indicates that more sensors
need to be deployed to k-cover all target points as k increases. Again, we observe that GreedyDLDT
consistently outperforms the GA-based approach, and exhibits a close-to-optimal performance with a
high stability.

Similarly, based on the number of deployed sensors computed by GreedyDLDT and the optimal
solution, we are able to measure the actual approximation ratio in comparison with the theoretical
one, as plotted in Figure 8. We observe that the actual approximation ratio of GreedyDLDT is no more
than 1.3 in all the cases, while the upper bound in this set of experiments is about 5.4 in the worst case,
which again strongly indicates the effectiveness of GreedyDLDT in practical use and its great potential
for real-life deployment.
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Figure 7. Comparison of the average performance with the standard deviation between GreedyDLDT
(Greedy), Genetic Algorithm (GA), and Optimal Algorithm (OPT) for DLDT in response to varying
k values.
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Figure 8. Measured average approximation ratio of GreedyDLDT for DLDT in response to varying
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6.3. Performance Evaluation of GreedyDLDT in Practical Settings

In order to evaluate the performance of GreedyDLDT with realistic deployment constraints, we
consider an exhibition hall at Zhejiang Provincial Museum, Hangzhou, China [29]. This two-story
exhibition hall is roughly estimated to be 40 m × 60 m × 15 m, where surveillance sensors with a
sensing distance of 5 m are constrained to certain locations with accessible mounting boards to achieve
a 2-coverage for a varying number of exhibition items placed on exhibition stands scattered across
the hall.

We run the proposed GreedyDLDT algorithm, the GA-based approach, and the optimal solution
to determine the sensor deployment scheme in this exhibition hall as the number of exhibition items
are increased from 5 to 50 at an interval of 5 items. The performance measurements in Figure 9 show
that GreedyDLDT requires about only half of the sensors compared with GA to provide the same
sensing quality and achieves a close-to-optimal performance in all the cases. Although the surveillance
region in this exhibition hall is smaller than the cubic volume in the previous simulations and there
are less target points (exhibition items) to be covered, we observe that even more sensors are actually
required for coverage due to the particular constraints on sensor locations and the regular layout of
exhibition stands.
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Figure 9. Performance comparison of GreedyDLDT (Greedy), Genetic Algorithm (GA), and Optimal
Algorithm (OPT) for a museum exhibition hall with sensor mounting constraints in response to a
varying number of exhibition items.

6.4. Performance Evaluation of C-DLDT

Similarly, we focus on the performance evaluation of C-DLDT because it serves as the base of the
solutions to the connected version of the other three problems. We also run the proposed two-stage
(first coverage and then connectivity) Greedy algorithm, the GA-based approach, and the optimal
solution for C-DLDT to solve the two sets of problem instances created in Section 6.2. Note that
in the GA-based approach, we incorporate connectivity (the percentage of connected sensors) as a
penalty into the constraint. We plot the corresponding performance measurements in Figures 10 and 11.
We observe that the performances of these algorithms for C-DLDT are qualitatively similar to those
for DLDT and C-DLDT requires more sensors to be deployed than DLDT, especially when there are
only a limited number of sensors deployed for coverage. Furthermore, the performance curves for
C-DLDT appear more flattened out than those for DLDT because it would require less extra sensors to
be deployed for connectivity as the number of sensors that have been deployed for coverage increases.
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Figure 10. Comparison of the average performance with the standard deviation between the 2-stage
Greedy Algorithm, Genetic Algorithm (GA), and the Optimal Algorithm (OPT) for C-DLDT in response
to a varying number of target points.
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Figure 11. Comparison of the average performance with the standard deviation between the 2-stage
Greedy Algorithm, Genetic Algorithm (GA), and the Optimal Algorithm (OPT) for C-DLDT in response
to varying k values.

7. Conclusions

We generalized and investigated a class of problems to deploy a minimum set of wireless sensors
at candidate locations in constrained 3D space to achieve k-coverage of given target objects such that
every point in the target objects is covered by at least k sensors. With different constraints on sensor
locations and target objects, we formulated four sensor deployment problems: DLDT, DLCT, CLDT,
and CLCT, which have been proved to be NP-complete.

We designed an approximate algorithm for DLDT with an approximation ratio of (ln n + 1),
and converted the other three problems to DLDT by using a discretization process. We proved that
the number of divisions intersected by m circles in an infinite 2D area is tightly upper bounded by
(m2−m + 1), which is used to compute the approximation ratio of the algorithm for DLCT. We further
considered the connected version of these constrained sensor deployment problems where all deployed
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sensors must form a connected network. An approximate algorithm was also designed for each of
these connected deployment problems.

The simulation results show that the proposed deployment algorithms consistently outperform a
genetic algorithm-based approach and achieve a close-to-optimal performance in small-scale problem
instances. The measured approximation ratios in the simulations are generally much less than the
theoretical upper bounds derived for the worst cases, which illustrates the efficacy of these algorithms
in practical applications.
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