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Simple Summary: Compared to BLUP, in single-step genomic BLUP, G−1 − A−1
22 is added to the

inverse of the pedigree relationship matrix (A−1), forming H−1, where G is the genomic relationship
matrix, and A22 is the block of A for genotyped animals. Incompatibility between G and A may cause
inflated genetic variance. Blending and tuning G with A22 partially solves the problem. However,
conditioning H−1 might still be needed, which is usually performed via τG−1 − ωA−1

22 . This may
violate the properties upon which H is built. Alternative ways of weighting the H−1 components are
presented to prevent/minimise violations of the properties of H.

Abstract: The single-step genomic BLUP (ssGBLUP) is used worldwide for the simultaneous genetic
evaluation of genotyped and non-genotyped animals. It is easily extendible to all BLUP models by
replacing the pedigree-based additive genetic relationship matrix (A) with an augmented pedigree–
genomic relationship matrix (H). Theoretically, H does not introduce any artificially inflated variance.
However, inflated genetic variances have been observed due to the incomparability between the ge-
nomic relationship matrix (G) and A used in H. Usually, G is blended and tuned with A22 (the block of
A for genotyped animals) to improve its numerical condition and compatibility. If deflation/inflation
is still needed, a common approach is weighting G−1 −A−1

22 in the form of τG−1 − ωA−1
22 , added

to A−1 to form H−1. In some situations, this can violate the conditional properties upon which H
is built. Different ways of weighting the H−1 components (A−1, G−1, A−1

22 , and H−1 itself) were
studied to avoid/minimise the violations of the conditional properties of H. Data were simulated on
ten populations and twenty generations. Responses to weighting different components of H−1 were
measured in terms of the regression of phenotypes on the estimated breeding values (the lower the
slope, the higher the inflation) and the correlation between phenotypes and the estimated breeding
values (predictive ability). Increasing the weight on H−1 increased the inflation. The responses to
weighting G−1 were similar to those for H−1. Increasing the weight on A−1 (together with A−1

22 ) was
not influential and slightly increased the inflation. Predictive ability is a direct function of the slope
of the regression line and followed similar trends. Responses to weighting G−1 −A−1

22 depend on
the inflation/deflation of evaluations from A−1 to H−1 and the compatibility of the two matrices
with the heritability used in the model. One possibility is a combination of weighting G−1 −A−1

22
and weighting H−1. Given recent advances in ssGBLUP, conditioning H−1 might become an interim
solution from the past and then not be needed in the future.

Keywords: conditional property; inflated; relationship matrix; single-step GBLUP; weighting

1. Introduction

The unified genetic evaluation of genotyped and non-genotyped animals has been of
great interest. In an initial attempt, Misztal et al. [1] suggested a unified pedigree (A) and
genomic (G) relationship matrix (Hini), in which genomic relationships between genotyped
animals replaced their pedigree relationship coefficients in A. Denoting non-genotyped
and genotyped animals with 1 and 2:
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Hini =

[
A11 A12
A21 G

]
= A +

[
0 0
0 G−A22

]
. (1)

This relationship matrix did not condition the distributions of breeding values for
genotyped and non-genotyped animals on each other, leading to incoherencies in the joint
distribution of genetic values for genotyped and non-genotyped animals. Legarra et al. [2]
presented an augmented (A and G) relationship matrix in which the genetic values of
non-genotyped animals were conditioned to the genetic values of genotyped animals. The
resulting matrix was:

H =

[
H11 H12
H21 H22

]
=

[
A11 + A12A−1

22 (G−A22)A−1
22 A21 A12A−1

22 G
GA−1

22 A21 G

]
= A +

[
A12A−1

22 (G−A22)A−1
22 A21 A12A−1

22 (G−A22)

(G−A22)A−1
22 A21 G−A22

]
,

(2)

which can be simplified to any of the following:

H =

[
A11 −A12A−1

22 A21 0
0 0

]
+

[
A12A−1

22
I

]
G
[

A−1
22 A21

I

]
, (3)

H =

[
(A11)−1 0

0 0

]
+

[
A12A−1

22
I

]
G
[

A−1
22 A21

I

]
, (4)

H = A +

[
A12A−1

22
I

](
G−A22

)[A−1
22 A21

I

]
. (5)

In matrix H, the genomic information in G influences the relationships between non-
genotyped and genotyped animals and among non-genotyped animals. Later, it was
discovered that H−1 can be indirectly obtained without forming and inverting H [3,4].

H−1 =

[
H11 H12

H21 H22

]
=

[
A11 A12

A21 H22

]
= A−1 +

[
0 0
0 G−1 −A−1

22

]
. (6)

Note that:

G−1 −A−1
22 = H−1

22 −A−1
22

= H22 −H21
(

H11
)−1

H12 −A22 + A21
(

A11
)−1

A12

= H22 −A21
(

A11
)−1

A12 −A22 + A21
(

A11
)−1

A12

= H22 −A22.

Matrix G is not always full-rank (e.g., when the number of genotyped animals is
greater than the number of loci or when there are duplicated genotypes, such as for
identical twins). To force G to be positive-definite and avoid large diagonal values of G−1

due to the bad numerical condition of G, the first step of conditioning G often involves
blending it with A22, which is always positive-definite (except in the existence of identical
twins or clones [5]) and of good numerical conditions (i.e., G← (1− k)G + kA22, 0 < k < 1).
Blending introduces residual polygenic effects (genetic effects not captured by genetic
markers) to the evaluation model without explicitly modelling it, where the scalar k is the
ratio of the polygenic to the total additive genetic variance [6].

It is theoretically true that no artificially inflated variance is introduced via the H
matrix [2]. However, inflated genetic variances have been observed due to incompatibilities
between G and A22 [6–9]. Incompatible G and A22 lead to incorrectly weighted pedigree
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and genomic information [7,8]. Besides different distributions of G and A22 elements,
incomplete and incorrect pedigree information, and genotyping and imputation errors,
incompatibilities between G and A22 can be due to the non-random selection of genotyped
animals [10], and the different bases and scales of the two matrices [7]. Matrices A22 and G
regress data to different means. Matrix A22 regresses solutions towards pedigree founders,
animals in the pedigree with unknown parents or genetic groups if considered in the
pedigree. On the other hand, G regresses solutions toward a founder population comprising
genotyped animals [5,10] since the real allele frequencies in the founder population are
unknown. The average genetic merit of genotyped animals can be different from founders,
especially in the presence of selection. Different approaches (referred to as tuning) have
been used for correcting the base difference between G and A22 [7,11] and rebasing and
scaling G to improve its consistency with A22 [10]. Those approaches were tested by
Nilforooshan [9] on New Zealand Romney sheep. Christensen [8] and Gao et al. [6] tuned
G by regressing its averages to the averages of A22 (Equations (7) and (8), respectively).{

µ(diag(G))β + α = µ(diag(A22))
µ(G)β + α = µ(A22)

(7){
µ(diag(G))β + α = µ(diag(A22))
µ(offdiag(G))β + α = µ(offdiag(A22))

(8)

The α and β scalars obtained by solving either of the equations above are used for
transforming G into βG + α11′. Another solution proposed to tackle the problem of
inflated genomic evaluations (i.e., an increased variance of genomic predictions) as a result
of incorrectly scaled genomic and pedigree information was scaling G−1 − A−1

22 in the
form of τG−1 − ωA−1

22 [3,12,13]. Applying τG−1 − ωA−1
22 is equivalent to transforming

G into
[
τG−1 − (ω− 1)A−1

22

]−1
[3,9], which equals G[(1−ω)G + τA22]

−1A22. It is also

equivalent to replacing G−A22 with
[
τG−1 − (ω− 1)A−1

22

]−1
in Equation (2) [12].

Reducing τ and ω values toward 0 brings G closer to A22 by bringing H22 closer to
A22. However, it is not easily quantifiable how G and A22 are proportionally combined.
With τ and ω deviating from each other and 1, there is a risk of distorting the conditional
properties of H, because the changes made in H22 are not reflected in other blocks of H−1.
Whereas 1 – k and k are the commonly used blending coefficients of G and A22, τ and ω
are the commonly used blending coefficients of H−1 and A−1. i.e.,

A−1 +

[
0 0
0 τG−1 −ωA−1

22

]
= ωH−1 + (1−ω)A−1 +

[
0 0
0 (τ −ω)G−1

]
. (9)

Considering the above equation, there is no legitimate reason for ω being out of the
boundary of 0 and 1, and τ −ω being out of the boundary of –1 and 1. Martini et al. [12]
studied τ ranging from 0.1 to 2, and ω ranging from –1 to 1 by steps of 0.1, leading to
420 analyses. Dealing with two parameters increases the number of analyses and validation
tests in a two-dimensional space. It is assuming that the k coefficient has already been
chosen and does not need to be validated. The most coherent approach for finding k is by
restricted maximum likelihood (REML), as proposed by Christensen and Lund [4], rather
than using empirical values by screening and validation.

Weighting G−1 and A−1
22 as τG−1−ωA−1

22 has been used until recently [12–17]. Several
improvements have been made to ssGBLUP [18] and the use of τG−1 −ωA−1

22 is declining.
For example, one of the factors leading to the need for an ω considerably less than 1
was that inbreeding coefficients were considered in A−1

22 but not in A−1 [19]. The aim of
this study was to communicate the problems that might occur using τG−1 −ωA−1

22 , and
investigate the possible solutions for weighting the H−1 components if the modifications
in G are not satisfactory and the weighting of the H−1 components is still needed for the
deflation/inflation of genomic breeding values.
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2. Methods

2.1. Possible Problems with τG−1 −ωA−1
22

The (τ −ω)G−1 matrix in Equation (9) is unconditional and not reflected in the other
blocks of H−1. As such, some combinations of τ 6= ω potentially distort the conditional
properties of H. However, any τ = ω ranging from 0 to 1 is legitimate and can be considered
as a blending of H−1 and A−1. While it might make sense to weight G−1 and A−1

22 to
bring them closer to each other and make them more compatible, weighting A−1

22 causes
incompatibility between A−1

22 and A−1. Matrix H−1 can also be written as:

H−1 =

[
I

−A−1
22 A21

]
A11

[
I

−A12A−1
22

]
+

[
0 0
0 G−1

]
(10)

=

[
A11 A12

A21 A22 −A−1
22

]
+

[
0 0
0 G−1

]
. (11)

Weighting the components of
[

I
−A−1

22 A21

]
A11

[
I

−A12A−1
22

]
in Equation (10), the aim is

to preserve the existing quadratic form. This study aimed to introduce weighting on the
H−1 components that are unlikely to introduce distortions to the conditional properties of
H. Weighting H−1 can be performed on any of the following components:

1. H−1 itself
2. G−1 −A−1

22
3. G−1

4. A−1

5. A11

6. A22

7. A−1
22

2.2. Weighting H−1

This scenario is helpful when the heritability estimate (h2) does not match the data or
H−1. Heritability may change over time and as a result of selection. An outdated h2 may
differ from the current h2 of the trait in the population. Estimating variance components is
a computationally expensive process. The h2 estimate might have been from a population
subset or via a matrix other than H−1 (A−1 or G−1). Different relationship matrices contain
different information and may result in different genetic variances and h2 estimates [20].

2.3. Weighting G−1 −A−1
22

Aguilar et al. [3] suggested using equal τ and ω. Weighting G−1 − A−1
22 by α is

equivalent to αH−1 + (1− α)A−1.

2.4. Weighting G−1

This scenario can be understood as scaling the h2 corresponding to G−1 to the h2 corre-
sponding to A−1. No violation is made to the conditional properties of H−1, and weighting
G−1 by α is equivalent to using G/α in H. Therefore, instead of G, G/α is propagated
through the blocks of H. A G/α more compatible with A22 would bring G closer to and
more compatible with A.

2.5. Weighting A−1

This scenario can be understood as scaling the h2 corresponding to A−1 to the h2

corresponding to G−1. In response to A−1 weighted by α, G−1 − A−1
22 in Equation (6)

should be changed to G−1 − αA−1
22 , which is equivalent to multiplying

[
A11 A12

A21 A22 −A−1
22

]
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in Equation (11) by α. With an h2 estimate based on pedigree information, weighting G−1

is preferred over weighting A−1.

2.6. Weighting A11

Considering Equation (10), weighting A11 is equivalent to weighting all the compo-
nents of H−1, except G−1, similar to that of the weighting A−1 scenario.

2.7. Weighting A22

Considering Equation (11), weighting A22 should coincide with weighting the other
blocks of A−1 to preserve its conditional properties, as well as weighting A−1

22 , similar to
that of the weighting A−1 scenario.

2.8. Weighting A−1
22

Considering Equation (10), weighting A−1
22 is equivalent to:

H−1 =

[
I

−
√

αA−1
22 A21

]
A11

[
I

−
√

αA12A−1
22

]
+

[
0 0
0 G−1

]
=

[
A11 √

αA12
√

αA21 α
(

A22 −A−1
22

)]+ [0 0
0 G−1

]
=

[
I 0
0
√

αI

][
A11 A12

A21 A22

][
I 0
0
√

αI

]
+

[
0 0
0 G−1 − αA−1

22

]
. (12)

However, this is not recommended as it imposes a different pedigree-based h2 on the
genotyped and non-genotyped animals in A−1. Furthermore, as α becomes smaller, the
relationships between genotyped and non-genotyped animals are weakened.

2.9. The Experiments

Since the scenarios of weighting A11 and A22 are equivalent to weighting A−1, and
weighting A−1

22 is not recommended, the four scenarios of weighting H−1, G−1−A−1
22 , G−1,

and A−1 were tested. These scenarios were tested with α ranging from 0.8 to 1.2 to know
the responses of each H−1 conversion to the deviation of α from 1. Because weighting
G−1 −A−1

22 requires α to be between 0 and 1, it was studied with α ranging from 0.8 to 1.
Predictive ability was calculated as Pearson’s correlation between the phenotypes and the
estimated breeding values. Phenotypes were regressed on the estimated breeding values,
where a lower slope means inflation and a higher slope means deflation.

3. Materials

Data were simulated for a species in a 1:1 sex ratio, litter size of 2, and generation
overlap of 1. The pedigree, phenotypes, and genotypes were simulated using the R package
pedSimulate [21]. Initially, ten generations were simulated, starting with a base generation
(F0) of 100 animals (50 of each sex). No non-random pre-mating mortality or selection was
applied to F0. Genotypes were simulated on 5000 markers, and allele frequencies were
sampled from a uniform distribution ranging from 0.1 to 0.9. Marker (allele substitution)
effects were simulated from a gamma distribution with shape and rate parameters equal to 2.
The distribution was rebased to have a mean of 0 and scaled to create a variance of (true)
marker breeding values in F0, σ2

g = 9. Residual polygenic and environment (residual) effects
were simulated from normal distributions with variances σ2

a = 1 and σ2
e = 30, respectively.

Following F0, half of the males were mated to half of the females, which were all
randomly selected and mated. Where the numbers of mating animals per sex were not
equal, the sex with the higher number of animals underwent random selection to match
the number of animals of the opposite sex. These ten generations were followed by ten
more generations, in which 50% of male candidates (to become sires of the next generation)
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were selected for their marker breeding value and mated to the same number of randomly
selected females. Genotypes in each subsequent generation were obtained by combining
sampled gametes from the parents’ genotypes.

Phenotypes were calculated as y = µ1 + g + a + e, where µ is the population mean,
and g, a, and e are the vectors of effects corresponding to σ2

g , σ2
a , and σ2

e . Genotypes
before F8 and phenotypes for the last generation (F19) and before F7 were set to missing.
Randomly, 5% of the known dams and 5% of the known sires (after F0) were set to missing.
As such, missing pedigree and phenotype information, genomic pre-selection, and base and
scale deviations between A and G were accommodated in the simulation. Data simulation
was repeated ten times to reduce the possibility of observing the results specific to a dataset.

No fixed effect was simulated, and the data were analysed using the following mixed
model equations: [

1′1 1′Z

Z′1 Z′Z + H−1 σ2
e

σ2
g+σ2

a

][
µ̂
û

]
=

[
∑ y
Z′y

]
, (13)

where Z is the matrix relating phenotypes to animals, 1 and û are the vectors of ones and
predicted breeding values, and µ̂ is the mean estimate. Matrix G was used in H−1 and built
according to method 1 of VanRaden [5], where G = WW′/2 ∑ p(1− p), W is the centred
and scaled genotype matrix, and p is the marker allele frequency. Markers with minor
allele frequency below 0.02 were discarded before calculating G. Then, G was blended as
G← 0.9G + 0.1A22.

4. Results

The simulated pedigrees had a population size of 2162.8 ± 358.3 (µ ± sd),
1326.4 ± 298.2 genotypes, 1324.6 ± 277.2 phenotypes, 1074.7 ± 156.8 males, and
1088.1 ± 202.9 females. Inflation and predictive ability estimates over the ten simulated
pedigrees were averaged and presented (Figures 1 and 2).

Figure 1. Regression coefficients of the phenotypes on genomic breeding values for different components
of H−1 weighted by α. Each data point is an average of ten observations for the simulated populations.
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Figure 2. Correlation coefficients between phenotypes and genomic breeding values for different
components of H−1 weighted by α. Each data point is an average of ten observations for the
simulated populations.

Different H−1 components were weighted by α ranging from 0.8 to 1.2, except for
G−1 − A−1

22 , where α ranged from 0.8 to 1. Weighting H−1 and G−1 showed similar
trends for inflation (Figure 1) and predictive ability (Figure 2), with the slope of the trends
being slightly less for G−1 compared to H−1. Weighting A−1 (accompanied by weighting
A−1

22 ) showed slightly decreasing trends, with the regression slope decreasing by 0.01
(i.e., inflation increasing by 0.01) and the predictive ability decreasing by 4.4 ×10−3 over
the range of α. The inflation and prediction ability increased by weighting G−1 −A−1

22 with
α decreasing from 1 to 0.8.

5. Discussion

Matrices G and A22 indicate different means and variances for genotyped animals.
This can cause differently scaled genomic and pedigree information in H−1 [3]. Usually,
G is blended and tuned (rebased and scaled) with A22. If genomic breeding values are still
inflated, a complementary weighting of G−1 −A−1

22 might be needed. A common practice
is to weight using τG−1 −ωA−1

22 . It was shown that some τ 6= ω combinations are likely
to distort the properties of H that provide conditionality between the breeding values of
genotyped and non-genotyped animals. Other ways of weighting the components of H−1

were presented that are unlikely to distort the conditional properties of H.
Weighting H−1 with α > 1 is equivalent to reducing h2 and increasing inflation due to

increased dispersion. It is equivalent to adding (1− α)/α to 1/h2 or weighting the genetic
variance by 1/α. Due to selection, h2 can be lower than expected. The h2 reduction is
expected to be greater due to genomic selection. Change of genetic variance by genomic se-
lection is propagated from G throughout H. The predictive ability declined with increasing
α (Figure 2), which might be concerning. However, predictive ability is a direct function
of the slope of the regression line (Figure 1). Therefore, the slope of the regression line
(inflation) should be the main concern.
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Weighting A−1 (accompanied by weighting A−1
22 ) did not influence inflation and

predictive ability. Predictive ability and the slope of the regression line decreased slightly
(inflation increased slightly) over the increase in α. The reason for this is likely that H is a
genomic relationship matrix extended from G for genotyped animals to non-genotyped
animals via the A12A−1

22 coefficients (Equations (2)–(5)). As such, G is more influential in
defining the variances in H than A. This was confirmed by similar trends for weighting
G−1 and H−1 (Figures 1 and 2). The slopes of the regression line (inflation) and predictive
ability were slightly steeper for H−1 than for G−1, and that was a result of the combined
weighting of G−1, A−1 and A−1

22 . Weighting G−1 −A−1
22 by α < 1 increased the inflation but

at a lower rate than weighting H−1 or G−1 with α > 1.
The inflation results are expected to be valid for other data as weighting H−1 or its

components is equivalent to inversely weighting the genetic variance, regardless of the
data. The exception is weighting G−1 −A−1

22 . Whether weighting G−1 −A−1
22 with a larger

α results in inflation or deflation depends on whether using H−1 instead of A−1 results in
inflation or deflation. If using H−1 results in inflation, then weighting G−1 −A−1

22 with a
larger α (more emphasis on H−1 than A−1) results in greater inflation. The predictive ability
improved by weighting G−1 −A−1

22 with α decreasing from 1 to 0.8. Generally, predictive
ability increases by the increase in the slope of the regression line. Notice that the predictive
ability ignoring inflation can be misleading. Since the trends for prediction ability and the
slope of the regression line were in opposite directions for weighting G−1 −A−1

22 , it shows
that the predictive ability benefited from blending H−1 and A−1, mainly because the h2

was more compatible with a blended H−1 and A−1 than with H−1.
This study does not completely rule out using τG−1 − ωA−1

22 . However, weight-
ing H−1 components should meet specific conditions to avoid/minimise violating the
conditional properties of H. As such,

A−1 +

[
0 0
0 α

(
G−1 −A−1

22

)],

τ

(
A−1 +

[
0 0
0 α

(
G−1 −A−1

22

)]),

A−1 +

[
0 0
0 αG−1 −A−1

22

]
,

and αH−1 are better alternatives to τG−1−ωA−1
22 . By definition, none of these four options

are better than the others. However, achieving good compatibility between the resulting
H−1 and h2 without blending H−1 and A−1 at a high rate (low emphasis on genomic
information) is important.

Concerning pedigree and genomic errors, regardless of the emphasis given to pedigree
and genomic information, genotype errors propagate through non-genotyped animals,
and pedigree errors incorrectly and insufficiently propagate genotype information through
non-genotyped animals. Therefore, the correctness and the completeness of pedigree and
genomic information are vital for accurate and unbiased ssGBLUP evaluations.

Future research may focus on changing genetic parameters over time or across popu-
lations in genomic predictions. It is possible to reduce inflation in genomic predictions for
young animals by using smaller additive genetic variances. This can be done by replacing
H−1 with DH−1D. Considering no overall weight on H−1: ∑ DH−1D = ∑ H−1. Matrix
D is a diagonal matrix of positive values descending in function of the animal’s age. The
researcher would need to decide the min(d) ≤ σe

σg
≤ max(d) range, where d = diag(D).

With recent advances in ssGBLUP (mentioned by Misztal et al. [18]), which improve the
compatibility between A and G, conditioning H−1 might become an interim solution from
the past or be reduced to only weighting H−1.
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