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Abstract

The use of Internet-based sources of information for health surveillance applications has
increased in recent years, as a greater share of social and media activity happens through
online channels. The potential surveillance value in online sources of information about
emergent health events include early warning, situational awareness, risk perception and
evaluation of health messaging among others. The challenge in harnessing these sources
of data is the vast number of potential sources to monitor and developing the tools to trans-
late dynamic unstructured content into actionable information. In this paper we investigated
the use of one social media outlet, Twitter, for surveillance of avian influenza risk in North
America. We collected Al-related messages over a five-month period and compared these
to official surveillance records of Al outbreaks. A fully automated data extraction and analy-
sis pipeline was developed to acquire, structure, and analyze social media messages in an
online context. Two methods of outbreak detection; a static threshold and a cumulative-sum
dynamic threshold; based on a time series model of normal activity were evaluated for their
ability to discern important time periods of Al-related messaging and media activity. Our
findings show that peaks in activity were related to real-world events, with outbreaks in Nige-
ria, France and the USA receiving the most attention while those in China were less evident
in the social media data. Topic models found themes related to specific Al events for the
dynamic threshold method, while many for the static method were ambiguous. Further anal-
yses of these data might focus on quantifying the bias in coverage and relation between out-
break characteristics and detectability in social media data. Finally, while the analyses here
focused on broad themes and trends, there is likely additional value in developing methods
for identifying low-frequency messages, operationalizing this methodology into a compre-
hensive system for visualizing patterns extracted from the Internet, and integrating these
data with other sources of information such as wildlife, environment, and agricultural data.

Introduction

Surveillance systems are essential to detect early warning signals in animal and human health
and inform management strategies for populations at risk. As human populations continue to
grow the demand for more resources from the environment, contact with animals increases.
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In turn this places pressures on wildlife populations, their habitat, and agricultural practices
that are needed to meet the increasing demand for animal proteins globally. As these interfaces
between wildlife, domestic animals and humans increase we can anticipate increased involve-
ment with wildlife in emerging diseases [1].

The relationship between domestic livestock populations and wild reservoirs is important
to understand in the context of disease transmission and evolution. Biosecurity measures on
farms, mixed farming practices [2]open air farming [3] and animals in close proximity can all
influence the emergence of disease. Clinical signs in live wild animals are difficult to observe.
Typically, the impact on a population is more easily quantified for domestic animals than wild,
and expressed in terms of economic losses, as their location and the population susceptible to
disease is more often known. For example, the avian influenza A(H5N1) outbreaks in poultry
during 2004-2009 caused an estimated $30 billion in damages [4]Zoonoses like avian influ-
enza are particularly challenging to plan for and manage at local scales because of the complex
inter-relationships between domestic and wild bird populations. In both economic and health
terms, there is growing awareness of need for situational awareness surveillance tools to man-
age and adapt to variable, inter-connected disease landscapes [5]. More recently, researchers
have been looking to create complimentary surveillance systems that utilize non-traditional
forms of information. These new systems typically have the aim of analysing trends for early
warning purposes, so that increased surveillance or action can take place [6] (However in the
case of AL, we do not expect messages and media activity to provide early-warning of out-
breaks, as it is likely that media reports are responding to official surveillance. In the parlance
of Broniatowski [7], the signal obtained for social media for Al is likely dominated by ‘chat-
ter’-not reports of new or unknown infection/ transmission events. However, from the per-
spective of public and animal health planning, there may be significant value in understanding
how this chatter relates to real outbreaks of AI. We explore this question by investigating the
extent to which statistical outbreaks of Al-related Twitter messages relate to true outbreaks
reported in official surveillance data. We do this by developing an automated methodology to
acquire, structure, and detect temporal outbreaks of Al-related Tweets, and then qualitatively
investigating the topics and characteristics of messaging associated with detected outbreak
periods. While we limit our analysis of risk surveillance to North America via Twitter, given
the transboundary nature of Al transmission, we do not exclude outbreaks external to North
America, as they remain relevant for understanding the global AT risk scenario from the North
American perspective.

Avian influenza

Avian influenza is a virus that can be transmitted from wild birds to domestic poultry. Some
strains of avian influenza viruses (AIVs) can be asymptomatic or without clinical signs of ill-
ness in chickens, characterized as low pathogenic avian influenza viruses (LPAI), whereas
other strains can cause severe disease that is fatal within a few days, these viruses are referred
to as highly pathogenic avian influenza (HPAI) [8]In wild birds, AIV is generally asymptom-
atic [9]) but still poses a threat to public and animal health initiatives since wild birds can
reach a wide geographic area [10]Of particular concern are waterfowl, which can cover large
distances during migration, have the greatest subtype variety as well as having the highest gen-
eral AIV prevalence rates [11]. These characteristics offer the opportunity for novel AIVs to
emerge through co-infection events and introduce AIVs from different regions into immuno-
logically naive populations [9]. Wild bird species are thought to transmit the virus by active
shedding, mechanical transfer of water droplets or excretion of large amounts of the virus in
wild bird feces [12]The high virus prevalence in water birds may be due to the transmission
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route through the fecal material in water [11]. The abundance of virus shed into lake water
and wetlands can provide a way for ducks to spread the virus through migration onto other
domestic or wild birds [11]In addition, introduction of LPAI viruses into a poultry population
may not necessarily involve direct contact but rather the mechanical transfer of the virus
through infective faeces from the waterfowl [13]. LPAI of subtypes H5 and H7 in wild birds
can still be problematic as it can mutate when transmitted to poultry to the highly pathogenic
type [14]. As was shown in February 2003 when an outbreak of pathogenic avian influenza
(subtype H7N7) in the Netherlands is thought to have originated from free-living ducks that
had evolved into a highly pathogenic variant after introduction into poultry farms [15].

Surveillance of wild birds and reporting of H5 and H7 subtypes of AIV by World Organiza-
tion for Animal Health (OIE) member countries is a key component in the early detection of
potential outbreaks at an international scale. Surveillance systems can be designed to meet a
number of public health objectives such that each surveillance system may have different
requirements in terms of data, methodology and implementation [16]. Objectives can include:
description of disease trends over time (or disease status of population), detection of new dis-
ease events, and management. Passive surveillance obtains samples of sick or dead animals
through routine activities by stakeholders (e.g. park wardens, hunters), while active surveil-
lance is the direct action of searching for disease in animals through sampling; typically target-
ing specific geographic areas or populations [17].

A limiting factor of surveillance of wildlife is the difficulty in obtaining samples; often rely-
ing on targeted populations over localized areas, or the reporting of opportunistically found
dead animals or live birds caught for other reasons. These samples could be from ornitholo-
gist-captured or hunter-collected birds [18]. Due to the inherent bias in samples of conve-
nience, establishing valid estimates of disease absence or prevalence remains difficult [18].
HPAI detection has been traditionally based on passive surveillance since the infection induces
clear clinical signs and high mortality in most poultry species [14]. In wild birds, dead bird col-
lection limits the insights that can be made on the distribution, spread and the diversity of AIV
strains, since death is rarely caused in wild birds [19]. In terms of early-warning, surveillance
that catches events only after large mortality events occur could be improved by investigating
auxiliary signals related to disease status (i.e., syndromic surveillance). Additionally, tracking
outbreaks over global scales requires dealing with vast amounts of data, of varying quality and
geographic and temporal precision.

Comin [14]used epidemiological data from Italian LPAI surveillance programs and simu-
lated within-farm outbreaks using different surveillance strategies. They found that surveil-
lance was only successful in preventing an epidemic in turkeys if action was taken within two
days of sampling. Comin [14]further suggest that action within a two day window is unfeasible
given the lag time that would be associated with diagnostic laboratory results. Hoye [18]further
asserts that, “effective surveillance requires a compromise between sampling that is based on
probability and the constraints of sample collection, transport and analysis, the details of
which will depend on the specific objectives of the survey”. They suggest that using probability
methods could be used to plan the species, locations and months of the year to sample, as well
as utilizing birds sampled by hunters and ornithologists with additional samples taken to meet
the probability thresholds required [18].

Novel Surveillance Systems

Disease surveillance systems have traditionally relied upon data from hospitals or public health
department records to monitor diseases across populations [20], or in the case of wildlife dis-
eases and zoonoses, government departments of natural resources or agriculture, hunters, and
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sometimes individual researchers. As mentioned previously, action is often limited by the lag
time between observed symptoms of disease (or active collection of samples), laboratory sub-
mission and results, and communication to the appropriate authorities. Novel approaches to
surveillance aim to recognize patterns and provide timely indicators of a potential disease out-
break before they happen. There are a number of new data sources that can be utilized to pre-
dict, forecast and collect information for disease surveillance purposes. These approaches can
be: sales of over-the-counter medicine, absences from work or school, patient’s chief complaint
upon emergency visit, or laboratory test orders [21,22] and more recently, search term fre-
quency for symptoms (e.g. [23,24]), web scraping (e.g. www.Healthmap.org) and social media
(e.g. [25]).

For instance, Google uses search term frequency for influenzalike illness (ILI) in their sys-
tem, termed Google Flu Trends (GFT) to estimate the number of physician visits in a particu-
lar city, state or region [26]. GFT has had mixed results, in Ginsberg [24] GFT was shown to
predict weekly national ILI percentages 1-2 weeks ahead of the publication of the CDC’s US
influenza Sentinel Provider Surveillance Network. GFT could then be used in the case of allo-
cating additional personnel to emergency departments where emergency departments rely on
coupling early detection with a graded rapid response to manage both seasonal and pandemic
influenza surges [26]. However, it was found that GFT was reporting more than double the
portion of doctor visits for ILI than the CDC and later missed the 2009 outbreak of influenza
A-HINI1 [27]. The overestimating of flu prevalence as well as missing significant flu related
events can be attributed to big data issues and poor choice of statistical methods and changes
in algorithm dynamics (used to enhance google’s search engine) [27]. Although GFT is prom-
ising in some use cases it is not yet at a level where it can replace traditional surveillance meth-
ods. The importance of sound statistical methods and algorithms for handling new sources of
data is paramount.

Social Media as a Surveillance Tool

As social media becomes more prevalent in everyday use for certain demographics, scientists
are harvesting this data for analysing trends in a population, market research, sentiment analy-
sis, and surveillance for public health and anti-terrorism purposes. The micro-blogging ser-
vice, Twitter.com presents a promising data source for Internet-based surveillance because of
the message volume, frequency, and public availability [25]. With approximately 332 million
active uses as of January, 2016, Twitter contains a large volume of data that can be used for sur-
veillance purposes. There is a growing body of research that utilizes this freely available infor-
mation in order to correlate or predict twitter messages with specific public health outcomes
(e.g. [28-31]). In Culotta [25], they used several regression models to predict actual influenza-
like illnesses observed in a population to specific terms in twitter messages. In terms of surveil-
lance for zoonoses, Twitter can be used to analyze keywords in messages to:

« Determine the public’s risk perception of a disease
o Identify new or unusual individual cases or emergent outbreaks
« Contribute to situational awareness of global Al patterns

Many studies that analyze Twitter data focus on the content of the messages and decipher-
ing the meaning or associating it with a specific event, however, another challenging aspect of
Twitter data is associating each message with geographic information. Tweets can contain geo-
graphic information if enabled by the user; it is estimated that only 2-5% of all Tweets are geo-
coded. Inferences can be made based on a user’s profile or content of the message to discern
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location, or in the case of local news reports that post to Twitter, from the publication’s origin
or geographically explicit details contained in the full article.

Early warning systems are an essential goal of many surveillance systems (e.g. as examined
in Hoye [18]review of 191 reports of surveillance in wild birds). The current system is in a
large part, reactionary to new avian influenza viruses once they are detected in poultry, how-
ever, more upstream tracking of this information could provide important insights into public
health messaging, relations between outbreak events, or further knowledge on the evolution
and movement of these viruses [19]. Utilizing new technologies such as Twitter along with
current surveillance systems may allow for near real-time risk surveillance of the information
landscape associated with real-world outbreak events.

Methods
Data

Twitter Data. The public application-programming interface (API) of Twitter (i.e.,
Streaming API) was monitored for Al-related messages posted to the social media site during
the period of September 26, 2015 to March 9, 2016. The global Twitter stream of messages was
filtered based on a set of predefined keywords related to AI (Table 1). For each extracted mes-
sage the date, text of the message, username, stated location of the user, and a fixed URL to the
message was stored. Data were extracted on a continual basis from the streaming API using a
custom Python script and the tweepy library (www.tweepy.org/). Data were added to a comma
separated value database file on a nightly basis. Each day, a two-week time series plot and word
cloud were generated to track recent patterns in messages throughout the study period which
were automatically updated on an online repository. Messages that included geographic coor-
dinates were identified and stored separately in a database file for mapping.

OIE Data. OIE reports were aggregated from the World Animal Health Information
Database (WAHIS) Interface. Report data from the Avian Influenza for the years 2015 and
2016 were obtained, and truncated to match the study period based on the date the report was
posted to the system. A number of items were tracked for the OIE data including type of
report, virus type, number of cases and susceptible birds, whether wild or domestic birds were
reported, and the start date of the outbreak. Location data were examined for veracity, but
determined to be too imprecise for further analysis.

Data Analysis Overall Methodology

We developed a complete data processing and analysis pipeline in order structure and analyze
the Twitter database. Our aim was to produce an online-capable set of methods that analyzed
data as it arrived, rather than a purely retrospective analysis of the dataset. This was done in
order to reflect a more realistic surveillance and/or situational awareness use-case for monitor-
ing online content for disease-related information. A schematic view of the processing and
analysis pipeline is presented in Fig 1. During the study period, daily outputs included a
2-week time series graph, a 2-week wordcloud, and a full-time series graph.

As can be seen in Fig 1, we are aiming to learn about online media by exploiting Twitter as
a tool to find and quantify online media discussions related to AI. As messages by users (both
human and machine), a sample of these will be noise (i.e., not related to Al in a substantial

Table 1. Keywords used to search for Al-related Tweets
Keywords Used to Identify Al-related Tweets 'bird flu’, 'avian influenza’, ‘avian flu’, ‘poultry disease’
doi:10.1371/journal.pone.0165688.t001
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Fig 1. Data acquisition and processing pipeline
doi:10.1371/journal.pone.0165688.9001

way). A statistical modelling approach was used to limit noise in the data and identify time
periods of interest. The second stage of analysis pipeline was therefore modelling normal pat-
terns of Twitter activity and identifying unusual time periods when there was a high-level of
Al-related messages posted to Twitter (See Fig 2).

Once ‘outbreak’ periods were identified, the Twitter messages for these time periods were
used in topic models that uncovered the key topics in messages during these times. Allowing
the number of topics discovered to vary accommodated the possibility of multiple concurrent
Al-related events. The output of the topic modelling was then compared to the OIE curated
database to examine the degree to which detected Al-events on Twitter aligned or overlapped
with events in the OIE database.

Modelling Twitter Activity. Twitter messages related to Al were aggregated by day, and a
daily time series corresponding to the count of messages was created. The temporal pattern in

Dynamic Latent Dirichlet Qualitative
> Threshold Alarm =—>{ Allocation Topic Comparison
Detection Model >
Generalized OIE Al
Linear Time Datasbase
Database Series Modelling
. Latent Dirichlet - —
> ifa?nighrfs?lﬂ > Allocation Topic Outbr.eak
. SEEERS Model Topics
Fig 2. Data modelling, outbreak detection, and natural language processing pipeline
doi:10.1371/journal.pone.0165688.g002
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the time series of Al-related tweets was used to identify ‘outbreaks’ or unusually high days or
sequences of days in terms of the number of Al-related messages. In order to evaluate the tem-
poral structure in the time series, we computed summary statistics, moving averages, and the
autocorrelation function [32] (Box and Jenkins 1976). The ACF quantifies the degree of corre-
lation of a time series with itself at different temporal lags.

Linear modelling of the time series was conducted using recently developed integer-valued
autoregressive conditional heteroscedasticity (INARCH) models [33,34]). The INARCH
framework provides a time-series model within a generalized linear modelling approach,
including supporting different link functions, and incorporating effects of covariates. Our data
consist of a relatively short, noisy time series (n = 147) of daily counts of Al-related Tweets.
The INARCH model of the general form

g(4) =By + B (Y) + 3L g () (1)

which is a mixture of regressions on past observations with parameter weights ;. for each
order of past observation up to P, and a regression on the past process mean governed by
parameter ;. In our case, since we have only a short time series, we focus exclusively on the
first term. Optionally, we can include covariates within this framework. A natural probability
model for count data is the Poisson; as such we modelled the daily Poisson rate A,, conditional
on the mean of a subset of past observations. The Poisson model has the strong assumption of
equality of mean and variance, and given the short and noisy time series we have, we also
tested a negative binomial likelihood for the counts, which includes a dispersion parameter for
extra-Poisson variation.

Model assessment was performed by techniques including minimizing the AIC, evaluating
the normalized probability integral transform plot, and assessing forecast scoring rules as
described in documentation for R package tscount which implements INARCH models [35].
Scoring metrics aim to quantify both the predictive distribution and the ‘sharpness’—how
peaky the probability mass is in the predictive distribution (e.g., a highly sharp prediction is
better than a flat prediction, yet this is lost when only using the point estimate prediction). The
ranked probability score (RPS) and the mean logarithmic scores were used to compare the
Poisson and negative binomial models [36,37]. The fitted model provides step-ahead predic-
tions of daily Twitter message counts. We used the model fitted values as inputs into the next
stage of the data analysis pipeline, detecting ‘outbreaks’.

Surveillance algorithms for univariate time series data are well developed [16]. We
employed a simple cumulative sum (cusum) algorithm to detect outbreaks in an online setting.
A cusum statistic is based on a cumulative summation of the deviation between the observed
and the expected values of a process, given some thresholds for slack around the difference
(i.e., the threshold for when exceedence is accumulated in the statistics) which is denoted k
and a threshold for when the total cumulative deviance triggers an alarm and the statistics is
reset, denoted h. Values for parameters k and h can be set based on the average run length dur-
ing the ‘in-control’ state and the average run length in the ‘out-of-control’ state (detection
delay) (See Rossi [38]) for a discussion of these parameters). We set the average run length to
be 365 days in control, and 7 days out of control. The settings for the ARL were made in order
to more heavily favour reducing false alarms vs early detection at the risk of a detection delay.
An in-control ARL of 365 would be a full year of data before we could expect a false alarm,
whereas an out-of-control ARL of 7 means we could ‘miss’ a shift in the process for up to
seven days. Given the noisy nature of the data source being analyzed, conservative choices for
ARLs were made to offset too many outbreak detections. The cusum framework provides a
dynamic alarm threshold derived from the statistical modelling above. We compared this to a
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simpler alarm threshold, a fixed 95% confidence interval for the global process mean. Using
the days that were denoted as ‘outbreak’ days, Tweets for these days were extracted and used
for further natural language processing.

Natural Language Processing of AI-Related Twitter Messages. Latent Dirichlet Alloca-
tion (LDA) is a class of Bayesian mixture models that aim to discover topics from text data
organized as a term-document matrix. LDA is an instance of a hierarchical multinomial model
that seeks to generate (rather than classify according to known classes) characteristic topics
from a set of text documents. In our case, each Tweet message is a document, and the text
making up each message are the terms. The matrix representation is composed of columns,
which are documents, and rows, which are words. The intuition behind this LDA model is
that similar terms will be used for similar topics.

The LDA approach is effective at discovering topics from text data, and has become one of
the most widely used approaches to unsupervised learning [39]. However, in the case of surveil-
lance of social media activity for AI events, there are limitations with this naive approach. Firstly,
the LDA models assume a static corpus of text data that is mined at a single point in time, how-
ever text-data from the web (whether from social media or web-scraping) is constantly evolving
over time. This is especially true in the case of online surveillance. The notion of a static database
of data extracted from the web is of limited utility when data are continually being updated. A
second limitation of LDA is that the temporal ordering of documents is ignored in classical
LDA. Temporal algorithms incorporate the timestamp of each message that factor in the tempo-
ral dependence in events giving rise to Al-related events. A final limitation in the context of
social media messages is dependence between messages sent by the same author. The author-
topic model includes dependence between messages while discovering topics [40].

The statistical modelling and outbreak detection algorithms therefore served to overcome
several of the limitations of applying classical LDA. In order to process the data for analysis of
the content of Twitter messages using LDA, several data cleaning operations were performed
on the data (see Table 2).

Comparing Signals in Social Media to Official Surveillance Data. The time series of dis-
covered topics was compared to the timeline of AI events as recorded in the OIE reports. We
qualitatively compared these datasets in order to see to what extent patterns in the social
media data analysis could be linked to events in the surveillance reports. Our objective in this
synthesis was to identify both the nature of concordant patterns; where social media analysis

Table 2. Data cleaning operations performed on Tweets prior to Latent Dirichlet Allocation topic
modelling

Operation Rationale

Lower case Needed in order to ignore difference in text based only on case

Remove ‘RT’ Facilitates identifying duplicate entries

Remove usernames Not related to Al content

Remove links Not related to Al content

Remove punctuation Not related to Al content

Remove leading and trailing | Not related to Al content

spaces

Remove duplicates The quantity of tweets is already captured in the statistical modelling, so
duplicates not necessary for topic discovery

Remove stopwords To focus NLP analysis on meaningful text

Stem words To facilitate comparison of text data

Remove original search Since only a five search terms were used, the differences in match frequency

terms between difference messages was deemed not relevant so these were
removed

doi:10.1371/journal.pone.0165688.t002
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aligned with surveillance data, as well as discordant patterns; where events occurred in the
social media stream that were not part of official surveillance data, and vice versa. In so doing,
we aimed to identify biases and characteristic in social media data relative to the OIE data.
Data and code to implement the methods described here are available at https://github.com/
colinr23/AlTweets.

Results
Overall patterns in social media and official surveillance data

Over the course of the study period, a total of 38,191 Tweets were obtained related that
matched at least one of the keywords in Table 1. The vast majority (n = 36,985) of messages
matched one keyword, 1184 matched two, and 22 matched three keywords. These messages
were contributed by 15,965 unique users, over the period from September 26, 2015 to March
9,2016. Geo-location data (i.e., latitude and longitude coordinates) were obtained for only 36
messages, so were not analyzed in detail. General location information obtained from the user
profile was obtained for most observations, which included 9061 unique text descriptions of
locations to varying level of detail (See Table 3).

The temporal pattern in observations is given in Fig 3, which shows the daily count of AI-
related Tweets during the study period and two moving averages. At several points during the
study period, the script harvesting Tweets from the API was interrupted and had to be
restarted, which may have caused very low values where they would not have otherwise been
observed. The moving averages account for these interruptions, however in our modelling we
employ the raw count data because this is the nature of the data collection methodology. The
script was never inactive for more than one day, so the overall temporal trends are reflective of
the true distribution of activity on Twitter related to AI. The most marked observation from
Fig 3 is a huge spike in activity in mid-January. Secondary spikes in activity are evident in late
October, late November and perhaps early October. Part of the objective of the analysis that
follows is to better understand the information content embedded in these patterns, and to
assess the surveillance-value of social media for AL

OIE data extracted for the coincident time periods are given in Fig 4, giving the total number
of reports by month and the relative distribution of Al virus types described in the reports. Quali-
tatively, the distributions look similar, with the highest number of reports in January. In Decem-
ber, several spikes in the Twitter data at the daily scale indicate a lot of activity during this month
as well, and in the OIE data December was the second highest reporting month. To investigate
further, we enumerated the month-to-month correlation between the two datasets, finding a Pear-
son’s correlation coefficient of 0.746, indicating a strong positive association between the monthly
observations. However, given the low sample size, we cannot place much confidence in this find-
ing. The difference in magnitude precludes direct comparison at a more granular temporal scale.

Statistical modelling and outbreak detection in social media data

The raw time series data presented in Fig 3 were used as input into regression models for iden-
tifying normal patterns and one-step-ahead predictions in Al-related Twitter activity. Recall

Table 3. Sample of location information available from profile information for Al-related Twitter
messages

Ten Randomly Selected Location "Chicago", "Nellore, andhra pradesh, India”, "Geneva,

Entries in Tweet Database Switzerland”, "American Farms & Ag-Busineses", "Western
Canada info@farms.com", "Toronto, ON", "Nigeria" "Hong Kong",
"Auckland, New Zealand", "USA, Phoenix, AZ"

doi:10.1371/journal.pone.0165688.t003
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Daily Al-related Tweets

from Fig 1 that our purpose is to use Twitter activity as a proxy for online media in general;
utilizing the ‘crowd’ on Twitter to curate and identify important events related to Al online.

The autocorrelation function showed a strong correlation structure in the data. The highest
correlation was with the day previous, and strong correlations up to a five-day lag, after which
it starts to decline (with a spike at 8 days). This temporal structure is an important characteris-
tic of the data in order to take a time series modelling approach. Also, this is expected given
that we expect Al events to persist over several days and related online activity to follow this
pattern. The five-day correlation structure was used to help parameterize the INARCH model,
which we specified to regress each day’s count on the previous five-days of counts in the time
series. As discussed earlier, two models were fit to the data: a Poisson model and a Negative
Binomial model that incorporates higher variance in the counts. The higher variance was also
important given the data collection gaps in the time series that may have impacted the tempo-
ral structure of the observations.

The model coefficient estimates and assessment statistics are presented in Table 4 and
Table 5. The beta coefficients can be interpreted as the effect of the n'™ previous day on the cur-
rent days count of Al-related Twitter messages, where n = 1,2,3 for f3,,5,,0; and so on. The esti-
mates of each of the past observations on the count were very similar across the two models.
However the model statistics demonstrated a much better fit for the negative binomial model
that included the dispersion parameter (o® in Table 5), indicated by a lower AIC, higher log-
likelihood, and lower values of the logarithmic and ranked probability scores [37].
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Fig 3. Time Series of Al-related Tweets including the raw count data (black), and three (red) and seven (grey) day moving averages.

doi:10.1371/journal.pone.0165688.g003
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doi:10.1371/journal.pone.0165688.9004

The probability integral transform histogram also indicated a more even distribution for
the negative binomial model (not shown), which suggest a sharper forecast distribution. We
therefore used the negative binomial model as the basis for generating expected counts of Al
activity. The model values and the actual values are presented in Fig 5. We can see that the pre-
dicted values often lag the actual values that is a common characteristic of time series regres-
sion models, however, the normal and abnormal activity is apparent. Also note that the model
values are prospective in nature, so prediction are based only on previous observations up to a
temporal lag of five days (as determined by the ACF plot above).

Table 4. Results of Poisson time series regression INARCH model for daily time series of Al-related
Twitter activity (Log-likelihood: -8907.42, AIC: 17826.85, log score: 6.26, ranked probability score:

78.76)

Parameter Estimate Standard Error
Bo 36.49 2.05

B 0.39 0.008

B> <0.00 0.008

Bs 0.30 0.008

Ba 0.057 0.008

Bs 0.10 0.007

doi:10.1371/journal.pone.0165688.t004
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Table 5. Results of negative binomial time series regression INARCH model for daily time series of
Al-related Twitter activity (Log-likelihood: -920.29, AIC: 1854.58, log score: 60.59, ranked probability
score: 109.36)

Parameter Estimate Standard Error
Bo 36.49 28.70

B 0.39 0.120

B> <0.00 0.102

Bs 0.30 0.113

Ba 0.057 0.111

Bs 0.10 0.103

o2 0.433 NA

doi:10.1371/journal.pone.0165688.t005

Two methods were used for outbreak detection. A static threshold (denoted by the horizon-
tal line in Fig 5) was determined based on the 95% confidence interval for the process mean.
In Fig 5 days that exceed this threshold are denoted with a dark circle. In total, there were 34
days that were identified as anomalous using this method. The cusum algorithm was much
more conservative in nature, identifying only 4 days that were unexpected (Fig 6).

Natural language processing of Al-related Twitter messages

The days identified by the static (Fig 5) and dynamic (Fig 6) outbreak detection algorithms
were investigated to determine the nature of the topics and locations (Table 6) embedded in
the social media data (as indicated in Fig 2). The cross-validation step to determine the num-
ber of topics in the data found the optimal number of topics for the static data to be 31, and for
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Fig 5. Observed daily time series of Al-related Twitter activity, black circles indicate significant errors (possible outbreaks) based on the
static threshold criterion (blue line).

doi:10.1371/journal.pone.0165688.g005
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Fig 6. Observed daily time series of Al-related Twitter activity, black circles indicate significant errors (possible outbreaks) based on the
dynamic threshold criterion (blue line).

doi:10.1371/journal.pone.0165688.9006

the dynamic data to be 15. A set of wordclouds for the 16 topics from the static method is pre-
sented in Fig 7, and all 15 topics of the dynamic method in Fig 8.

Worth nothing in Fig 7 is the frequency of geographic place names, which indicate topics
are associated with specific Al events reported in online media. We examined in detail of the
topics discovered by the models, and interpreted the main theme or article associated with the
topic. For some topics, they were linked to one specific story, whereas others included mix-
tures of articles around a common theme. Overall, 10 out of 31 topics were classified as
unknown and ambiguous topics were discovered by the static method which included many
more days and topics, whereas only one out of 15 was ambiguous for the ‘outbreak’ days iden-
tified by the dynamic detection method.

Comparing Signals in Social Media to Official Surveillance Data. The curated OIE
database which included only reports that contained the most recent data for current and com-
pleted outbreaks of Al during the study period contained a total of 73 observations. A compar-
ison of the timing of these events relative to the outbreak events is given in Fig 9.

The Indiana outbreak event that according to OIE reports started on January 11", 2016
included an outbreak of HPAI-H7N8, was first reported on in online media in the Twitter
data on January 16", 2016. The number of messages (after removal of duplicates) discussing
the event was 119 on January 17™, an additional 212 on January 18", 221 messages on January
19", 324 on January 20™, and 31 and 29 the following days after that.

Investigating the dynamic outbreak in late October which does not seem to correspond to
any new outbreaks based on Fig 1, we find 192 Al-related messages on that day. Table 7 reports
the theme associated with messages on that day, finding that the vast majority (141/192) were
related to a single article in Reuters titled ‘MERS, Ebola, bird flu: Science’s big missed opportu-
nities’. Other messages were related to general Al articles, the identification of a new outbreak

PLOS ONE | DOI:10.1371/journal.pone.0165688 November 23, 2016 13/21
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Table 6. Top ranking locations based on profile of account for static and dynamic outbreak Al-related Tweets.

Location Rank—Static
Nigeria

Global

Lagos, Nigeria

Lagos

USA

United States
Mumbai, Maharashtra
Worldwide

Abuja

London

Abuja, Nigeria

New York

India

Africa

UK

Philippines

Canada

Earth

LAGOS NIGERIA
United Kingdom
Eastbourne, England
lagos

Washington, DC
Delmarva

Lagos Nigeria
doi:10.1371/journal.pone.0165688.t006

Count Location Rank—Dynamic Count
1220 Nigeria 373
979 Lagos, Nigeria 241
807 Gilobal 153
469 Lagos 122
434 United States 100
363 USA 91
212 London 53
196 Abuja, Nigeria 51
186 Worldwide 46
181 Abuja 43
161 Africa 40
130 New York 39
129 United Kingdom 39
117 UK 38
110 Canada 30
105 lagos 29
94 Philippines 27
94 Scotland 26
94 NIGERIA 25
89 Earth 22
88 Indonesia 22
84 Lagos Nigeria 21
80 Bonita Springs, FL 20
78 Germany / Europe 20
74 Eastbourne, England 19

in South Korea, and a suspected turkey shortage in advance of American Thanksgiving. Note
also from Table 7 that only 11% of the messages were not substantively about Al The outbreak
was identified by the dynamic method because the article was posted during a time of relatively
low activity, so the dramatic increase was flagged as unusual, although the response was not
high enough to flag this using the static threshold. The increase was not due to a new outbreak
explains its lack of concordance with any OIE reports during that time in Fig 10.

Discussion

The analysis here provides a synoptic view of using social media as a tool for sensing online
media related to AI. We have demonstrated a fully automated methodology to acquire, struc-
ture, model and analyze social media data related to AI at a global scale. This means that each
process outlined in Fig 1 and Fig 2 (except for qualitative comparisons) are automated and
computed online. Such a process could support a more comprehensive decision support tool
or dashboard for monitoring social media Al trends and events. The method demonstrates
that there may be surveillance value in understanding the media landscape related to AI out-
breaks and responses to them across the globe. The modelling analysis revealed that in general,
time periods identified by the dynamic threshold algorithm identified more relevant topics
and many linked to known AT events as reported in the OIE data. The topic models revealed
that the Al events in Nigeria were the most important in the social media data, garnering the
most amount of activity. During the study period, the outbreak with the highest numbers of

PLOS ONE | DOI:10.1371/journal.pone.0165688 November 23, 2016 14/21
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Fig 7. Wordclouds generated from original Tweets associated with topic models discovered from outbreaks based on the static
threshold method (only 16 topics of 31 shown here).

doi:10.1371/journal.pone.0165688.9007

cases were actually in Chinese Taipai, but there were relatively less messages related to these
outbreaks compared to Nigeria or outbreaks in France or Indiana, USA. The People’s Republic
of China has strict controls on use of social media, including banning Twitter, so this is not
unexpected. Also, a limitation of our analyses was that it was constrained to English-language
content only, so non-English speaking countries and/or countries with low Twitter penetra-

tion were undersampled.

From a methodological perspective, some potential limitations are worth noting. Firstly,
while the outbreak detection framework used here (i.e., cusum analysis) provides for auto-
mated analysis, there is a danger in employing step-ahead model outputs as inputs to the out-
break detection in that the detected outbreaks are dependent on the fit of the model to the
data. In essence, the model assessment step (here using AIC and forecast sharpness scores) is
critical the success of the subsequent detection step in the analysis pipeline. In practice, this
means that some care is required with baseline data to select appropriate model forms. A
related issue is tuning the model estimation step to reduce over-fitting in the context of pro-
spective real-time surveillance. Because we only ran the model on one season’s worth of data,
we were not able to investigate this aspect in detail. However, prospective surveillance algo-
rithms typically utilize some combination of historical and current data in estimating baseline

PLOS ONE | DOI:10.1371/journal.pone.0165688 November 23, 2016
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Fig 8. Wordclouds generated from original Tweets associated with topic models discovered from outbreaks based on the dynamic
threshold method.

doi:10.1371/journal.pone.0165688.g008

values [41], and such an approach could be adopted here when longer-term data are available.
To further explore these issues in detail, additional work on surveillance modelling and event
detection in social media data streams is needed.

In terms of effectiveness of Twitter for Al-risk surveillance in North America, the platform
can provide timely and current information on trends and real-world events related to Al
One of the challenges to this form of media surveillance is understanding the degree to which
these trends and events related to surveillance objectives. Similar studies of web-based surveil-
lance for human disease such as Google Flu Trends has demonstrated shortcomings in out-
break detection capabilities due to conflation of search activity for flu information with search
activity relating to new infections [27]. Models for disentangling search data for information
from those for new infections have recently been demonstrated by Broniatowski [7]. In our
analyses, the vast majority of Al-related messages were what might be termed ‘awareness’ ori-
ented, aimed at publicizing and communicating Al-related information. As is the case with
influenza, such information may have significant value for public and animal health planning.
For example, Smith et al. 2016 focus on influenza awareness with Twitter showing how these
messages differed when compared to outbreak-oriented message distributions. Awareness
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data distributions tended to be spikier and more short-lived than infections message distribu-
tions. The degree to which social-media-driven contagion of health related information can
induce public fear has also recently been demonstrated in the context of the ebola outbreak in
West Africa [42,43] Modelling to understand the spread of health-related information is an
important part of evaluating public perceptions and developing sound risk communication
protocols.

The qualitative comparison of OIE reports and social media data suggest that the social
media stream provides a timely filter of online content for new Al events. The time delay
between the start of the outbreak in Indiana and its reporting and detection online was five

Table 7. Top ranking locations based on profile of account for static and dynamic outbreak Al-related
Tweets on October 26", 2016.

Theme Number of Messages
Reuters Article 141

General Al 22

Newly Detected Outbreak in Korea 5

Thanksgiving Turkey Shortage 3

Specific Al 2

Azerbaijan Canada Taiwai 1 each

Not Related to Al 16

doi:10.1371/journal.pone.0165688.t007
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days. Developing this degree of timeliness in detection at a global scale could provide an effec-
tive tool for filtering the information landscape and developing visualizations that allow one to
query, track, and identify events across the global disease landscape. However the detection
and reporting in the Indiana outbreak may differ significantly from other jurisdictions.
Examining the content and themes of messages revealed that most were related to real and
reported Al-events. Twitter acted as an efficient tool to access reports of Al events in news arti-
cles, blog posts, and other sources of online media. While the topic models in this analysis only
analyzed Tweet content, which tend to be article titles, there may be value in extending the
analysis deeper by crawling to linked full articles and using similar natural language processing
models on the full content of the articles. While we focused this analysis on dominant themes
and events, some of the hidden value in social media data is embedded within less frequently
posted (e.g., one user posted ‘Had a great day at the NC State Fair. Best: The Jaycee Turkey
Shoot. Worst: No chicken exhibits due to bird flu concerns’). Developing a system capable of
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identifying important themes as well as interesting messages that are standalone would provide
both broad thematic and granular information on an ongoing and real-time basis.
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