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THE BIGGER PICTURE Disorders ranging across drug addiction, injury, and cancer have proven difficult to
definitively repair by focusing on the molecular hardware inside cells. Drug design and genomic editing face
fundamental limitations of context, complexity, and cellular resistance. Fortunately, computer science and
behavioral science are beginning to point the way to a transformative regenerative medicine in which phar-
maceutical efforts focused onmolecules will be complemented by top-down approaches that exploit the col-
lective intelligence of cells and the native control mechanisms that establish form and function.
Powerful methods of controlling complex body systems include taking advantage of their newly discovered
cognitive properties: memory, problem solving, and reprogrammability. Emerging advances in placebo
research, non-neural bioelectric networks, and the diverse intelligence of cells, tissues, and organs suggest
that the medicine of the future may look more like a kind of somatic psychiatry than chemistry or genetics.
Therapeutic interventions will communicate and behavior-shape body processes, exploiting the software
of life for novel solutions to disease, injury, and aging.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY

Many aspects of health and disease are modeled using the abstraction of a ‘‘pathway’’—a set of protein or
other subcellular activities with specified functional linkages between them. This metaphor is a paradigmatic
case of a deterministic, mechanistic framework that focuses biomedical intervention strategies on altering
the members of this network or the up-/down-regulation links between them—rewiring the molecular hard-
ware. However, protein pathways and transcriptional networks exhibit interesting and unexpected capabil-
ities such as trainability (memory) and information processing in a context-sensitive manner. Specifically,
they may be amenable to manipulation via their history of stimuli (equivalent to experiences in behavioral sci-
ence). If true, this would enable a new class of biomedical interventions that target aspects of the dynamic
physiological ‘‘software’’ implemented by pathways and gene-regulatory networks. Here, we briefly review
clinical and laboratory data that show how high-level cognitive inputs and mechanistic pathway modulation
interact to determine outcomes in vivo. Further, we propose an expanded view of pathways from the
perspective of basal cognition and argue that a broader understanding of pathways and how they process
contextual information across scales will catalyze progress in many areas of physiology and neurobiology.
We argue that this fuller understanding of the functionality and tractability of pathways must go beyond a
focus on the mechanistic details of protein and drug structure to encompass their physiological history as
well as their embedding within higher levels of organization in the organism, with numerous implications
for data science addressing health and disease. Exploiting tools and concepts from behavioral and cognitive
sciences to explore a proto-cognitive metaphor for the pathways underlying health and disease is more than
a philosophical stance on biochemical processes; at stake is a new roadmap for overcoming the limitations of
today’s pharmacological strategies and for inferring future therapeutic interventions for a wide range of
disease states.
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Figure 1. A schematic of a generic GRN/pathway paradigm
A standard conceptual formalism with which to understand biological out-
comes is that of a ‘‘pathway’’ including protein interaction and gene-regulatory
networks. It describes the relationships between nodes and the strength and
direction of their interaction (repressive, dashed lines, or activating, solid lines).
Loops and self-loops are common. The dynamics of the system as a whole (its
‘‘behavior’’) are taken to be accurately described by the topology of the con-
nections and parameters in this circumscribed way—in other words, it draws a
causal boundary around a given set of molecular players and focuses attention
on their interactions. It provides a fundamentally mechanistic, local, single-
level organization perspective. Image courtesy of Jeremy Guay.
INTRODUCTION

Understanding health and disease, and the discovery of biomed-

ical interventions for complex system-level disorders, requires a

model of the underlying mechanisms regulating physiological,

developmental, and neurobiological processes. One of the

most powerful formalisms has been the notion of a ‘‘pathway’’

(Figure 1): a well-defined topological network specifying some

number of biochemical activities and the functional interactions

between them.1 Implicit in this metaphor is the expectation

that necessary information for prediction and control is local—

specified by the connectome and states of the pathway itself.

This view of causation meshes well with mechanistic ap-

proaches to the life sciences, identifying a deterministic, trac-

table set of dynamics at a single level of organization and

de-emphasizing the complexity of history, context, and larger-

scale systems within which the network is embedded.2–6 It

guides approaches in data science both with respect to which

kinds of data are gathered and used for modeling and the kinds

of models that analyze these data for correlations and causal re-

lationships.

This class of models also implies a specific strategy for inter-

vention: adding new nodes or removing nodes, andmanipulating

the connections between them (Figure 2A), often via gene ther-

apy or other transgenic technology, protein design, or drugs

that alter the connections between nodes.7–9 Despite many suc-

cesses, this strategy faces important limitations: the complexity

of pathways makes it difficult to infer which intervention at the

molecular level will give rise to desired system-level states

(health) while avoiding undesirable side effects10—the so-called

‘‘inverse problem.’’11 This approach to modeling healthy and

diseased function is extremely popular today, leading to the

near-universal assumption among both academia and the

biotech industry that all control must be exerted at the hardware

(molecular medicine) level. However, it is widely acknowledged

that despite the ever-increasing deluge of omics data and a

mature set of computational tools for understanding dynamical

systems, there is immense unmet medical need,12–14 suggesting

that additional research perspectives are needed.

One example of a highly successful research roadmap is in

computer science, which moved from physical rewiring of hard-

ware in the 1940s and 1950s to programming at increasingly

higher levels of abstraction. The remarkable state of information

technology today is due in large part to commitment to the idea

that some classes of devices can be controlled in software—by

providing inputs that take advantage of the computational archi-

tecture and its built-in capabilities.15–17 An understanding of the

software-hardware axis and the different strategies that can be

brought to bear on reprogrammable systems enables highly

efficient control. If this strategy could be applied in biomedicine,

we could avoid the intractable inverse problem of deriving low-

level interventions for large-scale physiological or anatomical

outcomes.

However, in many ways, biomedicine is still in the phase that

information technology was 70 years ago. Exciting advances

are being made on ever-finer levels of the hardware of life—

e.g., CRISPR, single-molecule controls, protein design—and

the pharma sector focuses discovery efforts on interventions at
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the molecular level. Despite this torrent of resources, a wide

range of complex neurological problems, physiological states,

and anatomical disorders (birth defects, injury, and cancer)

remain unaddressed, and side effects of efficacious new drugs

are often severe, highly variable, and hard to predict.18–21

Achieving regenerative medicine that effectively moves the living

system to a stable health state, as opposed to targeting symp-

toms without fixing the underlying dynamics, requires new

ways to manipulate pathways. Is it possible that biological hard-

ware has properties in common with reprogrammable devices

and neural ‘‘software’’ systems that are reprogrammable in

situ—that learn from experiences and offer powerful top-down

control strategies? Could concepts and tools from the computa-

tional science of behavior22–26 complement current molecular

mechanistic perspectives and provide a new way to exploit the

allostatic and homeorhetic27,28 properties of living systems

(Figure 2B)?

Computer metaphors are not meant to reduce the remarkable

capacities of biology to the level of simplemachines. On the con-

trary, we argue for expanding and exploiting a view of living tis-

sue as amulti-scale agential material,29–32 amplifying its inherent

capacities. Developing high-level ‘‘programming languages’’

that emphasize salient, context-specific information processing

among biological components can complement current, largely

reductionist, paradigms that focus primarily on the molecular

level. As Marr famously argued in the context of vision,33 mech-

anism is but one important level of analysis in multi-scale control

problems such as somatic health and cognition.



Figure 2. Strategies for regenerative
medicine
Two fundamental broad approaches toward the
control of biological function in biomedicine. The
first (A) focuses on the structure of a specific
pathway and seeks to enhance functionality or
repair a disease state via hardware rewiring—
adding or deleting nodes or changing relationships
between nodes. In practical terms, this means
gene therapy (e.g., CRISPR) tomodify the pathway
at the lowest level of control. The second,
elaborated in this perspective (B), sees function
as the interplay of a pathway machine with its
context, using multi-scale relationships with other
components of the body to pursue anatomical or
physiological goal states. This leads to the
specific and testable proposal that optimal
control over system-level phenotypes can be
exerted using techniques from a discipline ideally
suited for control of fundamentally multi-level
phenomena: behavioral neuroscience. Image
used with the permission of Jeremy Guay.
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Such ‘‘programming’’ approaches are entering neuroscience

and biomedicine of the brain. The emerging field of computa-

tional psychiatry links pharmacology and neuroanatomy with

computational models focused on cellular information process-

ing and perceptual control.22–24,34,35 While such cognitive

features are readily imagined in the context of the CNS, it is

increasingly recognized that many aspects of brain function

are evolutionary pivots of ancient problem-solving capacities

still present in most cells; thus, the insights of neuroscience

extend far beyond classical neurons.36,37 Indeed, recent work

has begun to emphasize the learning and memory capacities

of ubiquitous and highly conserved molecular signaling ma-

chinery.38

Here, we suggest a new roadmap for medical interventions:

exploiting the deep symmetries between pathway models and

neural network functions,32,39–41 along with the ancient evolu-

tionary origins of learning and memory mechanisms.36,42–44

Evolution’s use of a modular multi-scale architecture30 provides

numerous computational competencies in cells and tissues that

could be harnessed for prediction and control. Taking this

proto-cognitive, multi-scale perspective on cellular signaling in-

vites use of concepts and tools from behavioral and computa-

tional neuroscience, including cybernetics and basal cognition.
We first review concepts from behavior

science that help explain important

clinical and physiological/cell-biological

phenomena with respect to pathways

and the drugs that have been used to

control their functionality. We then

discuss work showing new capabilities

revealed with this approach and suggest

a roadmap for future experiments to

further explore the invariants across

these fields. Importantly, use of a ‘‘cogni-

tive lens’’45,46 to understand and control

events outside of brains goes beyond a

philosophical stance: facilitating the use

of powerful concepts from other fields

may help overcome limitations of today’s
discovery efforts, offering predictions that can be evaluated

empirically.

TOLERANCE AND SENSITIZATION: THE UBIQUITOUS
ATOMS OF COMPLEX BEHAVIOR

We recently proposed the idea of competency in navigating

problem spaces as a central invariant unifying behavioral sci-

ence, cell biology, and physiology.37 On this view, evolution

adapted some of the same strategies across metabolic, tran-

scriptional, physiological, and anatomical spaces that feature

so prominently in the study of behavior in familiar 3D space.

Thus, we have been exploring the applications of concepts

from behavioral science to understand aspects of the control

of form and function.31,32,47 The most basic aspects of proto-

cognitive function, seen even in unicellular systems,42 are habit-

uation and sensitization. These simplest kinds of memory (ability

to alter future behavior in light of past experience) tie the tempo-

ral dynamics of pathway activity to questions in behavioral

science, and we next discuss some molecular mechanisms by

which these proto-cognitive effects are implemented.

Tolerance and reverse tolerance (sensitization) are, in their

most general forms, a decrease or increase, respectively, in
Patterns 4, May 12, 2023 3
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the magnitude of reaction to a repeated stimulus.48 The many

types of tolerance include behavioral, pharmacokinetic, and

pharmacodynamic,49 while sensitization can be behavioral or

pharmacokinetic. Both have a large impact on human health.

Tolerance to alcohol or other drugs can lead to increased con-

sumption, dependency, and ultimately addiction,50,51 key fac-

tors in the current public health crisis of overdose deaths.52,53

Sensitization also plays a part in these deaths because it can

amplify incentive and behavioral effects, such as drug seeking,

while tolerance is decreasing the molecular effects.54,55

A crucial type of behavioral tolerance develops in a context-

specific way: the environmental cues presented at the time of

drug administration trigger the behavioral tolerance to the drug’s

effect. Context-specific tolerance has been observed for a wide

range of drugs including alcohol, ketamine, and morphine.56–58

The mechanism behind context-specific behavioral tolerance

in ketamine use has been explained neurochemically by changes

in dopamine release in different parts of the brain, specifically an

increase in the infralimbic cortex and a decrease in the nucleus

accumbens shell.56 Thus, in some cases, the surrounding

context is a key input to the control circuit and must be taken

into account in designing interventions.

In pharmacokinetic tolerance, repeated exposure increases

drug metabolism or transport, reducing exposure to the active

form of the drug.59 Ethanol, nicotine, tyrosine kinase inhibitors,

anesthetics, and anti-epileptics can all increase the level of cyto-

chrome P450 enzymes that are responsible for breaking them

down. Drugmetabolites can both drive transcription of those en-

zymes and stabilize them post-translationally by preventing their

degradation.60–62 Many anti-epileptics also elicit pharmacoki-

netic tolerance by increasing reactive oxygen species (ROS)

levels and thereby the expression of multi-drug transporters

such as P-glycoprotein at the blood-brain barrier (BBB).63–66

Pharmacodynamic tolerance occurs when repeated exposure

to a drug affects how the drug itself interacts with the body. Anti-

epileptic drugs (AEDs) can lose their effectiveness over pro-

longed use due to different pharmacodynamic mechanisms.49

AEDs that specifically target and activate the g-aminobutyric

acid type A receptor (GABAA) and therefore increase cellular

Cl� influx, making neurons less likely to fire, can down-regulate

receptor expression at the cell surface by increasing its endocy-

tosis in an agonist-dependent manner.67 Nicotine tolerance de-

pends on an increase in nicotinic cholinergic receptors (nAChRs)

over time, accompanied by nicotine-mediated desensitization of

those receptors.68 Anti-depressants, specifically selective sero-

tonin reuptake inhibitors (SSRIs) like fluoxetine (Prozac), can also

elicit tolerance by desensitization of the 5-HT1A receptor.69,70

Even diuretics, used to treat hypertension brought on by high so-

dium concentrations, can show pharmacodynamic tolerance

over time due to activation of the renin-angiotensin-aldosterone

system and sympathetic nervous system activation resulting

from increased loss of sodium and water.71,72 All of these are ex-

amples of how the molecular machinery, most of it highly

conserved throughout the body, can underlie simple forms of

memory in pathways guiding key biological processes. Memory

of this kind presents an important limitation on the use of phar-

maceuticals.

Understanding that interoceptive early-drug onset cues

(DOCs) create an association with larger drug effects and there-
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fore lead to tolerance or behavioral sensitization can inform

addiction treatment protocols. These may not only work on ex-

tinguishing environmental cues but also on interoceptive cues

that can be elicited by the administration of very small quantities

of the drug, a method that may lead to less relapse in a non-

abstinence environment.73 Tolerance to opioid analgesics is

known to depend on the intrinsic efficacy of the opioid.74 Howev-

er, this dependence of tolerance on intrinsic efficacy is removed

when intermittent dosing is used instead of continuous dosing,

which could mean that amore thorough exploration of non-tradi-

tional dosing regimens will result in decreased tolerance.74,75

RESISTANCE (DRUG HABITUATION)

Acquired resistance to repeated stimuli is a kind of memory

frequently studied in behavior science as habituation. Recent

advances in targeted cancer therapies, especially tyrosine

kinase inhibitors, are promising but can suffer from drug resis-

tance—either present initially or that develops due to tumor

cell population changes brought on by selection of genetic mu-

tations, alternative splicing, alternative/compensatory signaling

pathways, or epigenetic changes.76 Pharmacokinetic and phar-

macodynamicmechanisms take part in cancer resistance due to

genetic differences in drug-metabolizing enzymes, transporters,

or receptor affinities.

The tyrosine kinase inhibitor imatinib treats chronic myeloid

leukemia (CML), which is caused by an oncogenic non-receptor

tyrosine kinase (BCR-ABL1) that constitutively activates cell pro-

liferation and survival without regulation by normal extracellular

signals.77,78 Resistance to imatinib arises primarily (50%–90%)

from mutations to the ABL kinase domain or by overproduction

of BCR-ABL1 by genomic amplification (10%).79 Recurrence of

cancer upon cessation of imatinib treatment may be due to dif-

ferential resistance to imatinib by hematopoietic stem cells but

not hematopoietic progenitor cells, due to their expression of

the P-glycoprotein drug transporter. This could also explain

why genetic resistance can develop over time.80 Imatinib is

also used to treat gastrointestinal stromal tumors (GISTs), which

similarly exhibit mutations that cause both initial and acquired

resistance.81 However, unlike for CML, no genetic amplifications

were observed in people with acquired resistance,81 suggesting

dynamic physiological habituation mechanisms.

DRUG CONDITIONING: PROTO-COGNITIVE ASPECTS
OF PHYSIOLOGICAL SIGNALING

Environmental cues involved in certain types of tolerance and

sensitization show how powerful context is in eliciting responses

from the body. This conditioned tolerance is similar to Pavlovian

conditioning in that it results in a decrease in alcohol-induced hy-

pothermia in an alcohol-paired environment when alcohol is

administered but also in a small hyperthermic response in the

paired environment without administration.82–84 The same

Pavlovian conditioning is observed in conditioned tolerance to

alcohol-induced tachycardia since unpaired environments did

not show the same level of conditioned tolerance as paired envi-

ronments.85 Newlan proposed that conditioned responses can

counter the drug’s effect, resulting in tolerance to a depressant

like alcohol or in behavioral sensitization to a stimulant like
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cocaine, but that both responses are due to increased stimula-

tion of the reward centers.82

The relationship between environmental context and toler-

ance can have deadly consequences. Siegel posits that a large

majority of heroin overdose deaths are not due to the quantity

of the heroin administered but occur in cases where the environ-

mental context normally paired with the heroin administration

was not present, resulting in a loss of conditioned tolerance.86

In support of this theory, Siegel shows that rats given the same

increasing dosages of heroin had differential responses to an

even higher dose of heroin depending on whether the higher

dose was paired with the same environmental cue associated

with the previous dosages or an environmental cue associated

with dextrose injections: those injected in the heroin-paired envi-

ronment were significantly more likely to survive those given a

high dose.87 It is becoming increasingly clear that environmental

cues have a strong impact on conditioning for drugs.88–93

The significance of place conditioning94–96 on drug use is this:

to understand and predict the action of a particular pharmaco-

logical agent, it is not sufficient to know the details of the

pathway of its actions—the environmental context of its admin-

istration is a key input. Our understanding of what functionally

defines ‘‘a pathway’’ cannot only be a high-resolution focus on

the local chemical interactions. It must broaden to include events

distant in time (past experiences of the patient) and in space (ef-

fects in the brain and nervous system even if the drug-relevant

tissue is elsewhere in the body). This realization modifies our un-

derstanding of what it means for a physiological process to be

controlled by a regulatory molecular pathway. The ‘‘light cone’’

of events that impinge on the process is much wider and encom-

passes more scales of organization than are described by the

currently standard arrow diagram for representing disease path-

ways. Beyond context setting for drugs of abuse, this suggests a

novel roadmap: computational modeling will increasingly include

inputs such as past cognitive and physiological events, and ther-

apeutics will seek to modify the functional outcome of pharma-

cological interventions using other stimuli (perhaps delivered

by virtual reality platforms).

For example, interventions in the environmental cue (condi-

tioned stimulus) pathways involved in tolerance could be used

to disrupt the Pavlovian conditioning required to develop

them.97 Partial reinforcement does this by periodically present-

ing the environmental cues without the drug (unconditioned

stimulus) and has been shown to slow the development of toler-

ance to morphine in rats.88 Latent reinforcement can also slow

the development of tolerance by presenting the environmental

cue without the drug many times before the drug is ever given.

An excellent example of this was shown by a study that admin-

istered an immunostimulatory synthetic polynucleotide (poly

I:C) to mice paired with a complex environmental cue. Natural

killer (NK) cell activity decreased over repeated stimulation,

showing tolerance; however, when the complex environmental

cue was given repeatedly before the first poly (I:C) administra-

tion, tolerance did not occur.89 That same study also showed

that after tolerance was established, repeated exposure to the

environmental cue without administration of poly (I:C) signifi-

cantly diminished tolerance, a perfect example of Pavlovian

extinction.89 Another example of reducing tolerance using

methods derived from Pavlovian conditioning is found in Fanse-
low’s study using explicitly unpaired delivery, where rats that had

grown conditionally tolerant to the locomotor-inhibitory effects

of morphine lost their tolerance when morphine was adminis-

tered in an unpaired environment.90 Interestingly, a change in

temperature in the paired environment is sufficient to explicitly

unpair the administration of alcohol, resulting in loss of toler-

ance.84 In agreement with Pavlov’s98 theory of tolerance, Siegel

also showed that a novel extraneous stimulus, e.g., strobing

light, delivered to already conditionally tolerant rats right after

alcohol administration, attenuated tolerance to the hypothermic

effect of alcohol.91 New studies examining drug-drug condition-

ing show that pairing one drug with another in a specific environ-

mental context can cause the administration of one drug alone to

cause the effect of the second as long as it is administered in the

same environment.99 Drug-drug conditioning could therefore be

used to amplify the effects of single drugs or give them new

effects.99

Pavlovian conditioning that involves a contextual environ-

mental cue paired with drug administration is an example of

delay conditioning and is mediated by the cerebellum92 and

other brain regions.100,101 Another form of Pavlovian condition-

ing, called trace conditioning, is mediated by the hippocampus

and forebrain and occurs when a short time interval separates

termination of cue presentation and onset of drug presenta-

tion.92 These two types of Pavlovian conditioning correspond

to declarative memory and procedural memory, respectively,

and Carey proposes that delayed conditioning of the environ-

mental cues to drug administration elevates the environmental

cue’s salience, allowing trace conditioning to occur by repeat-

edly activating the limbic system, followed by an activation of

the frontal lobes and hippocampus to shift goal-directed behav-

iors toward the drug.92 This agreeswith Robinson andBerridge’s

view of the incentive-sensitization theory of drug addiction.55,102

Methods of disrupting trace conditioning so that the environ-

mental cues are linked instead to an anti-drug state may be a

way of using Pavlovian conditioning to combat addiction.92,93

O’Brian et al. further theorized that withdrawal may also be a

conditioned response arising from the ‘‘drug opposite’’ condi-

tioned responses that occur when the right environmental cues

are triggered.93

Possible methods of pairing an anti-drug state with environ-

mental cues can be inferred from studies examining the mecha-

nism of the conditioned response. A study of fetal rats showed

that pairing dynorphin A, an endogenous k-opioid receptor

agonist, with an artificial nipple induced a k receptor-dependent

conditioned response (reduction of face wiping), similar to the

natural unconditioned stimulus of their first drink of milk.103 In

other mechanistic studies, researchers are looking at how the

actin cytoskeleton shuttles ion channels and neurotransmitter

receptors to the synapse and regulates receptor channel open-

ing during memory formation and consolidation.104 In a study of

the effect of conditioning on cytoskeletal protein function in the

sea slug Hermissenda crassicornis, a one-trial pairing of a light

stimulus with serotonin delivery to the isolated circumesopha-

geal nervous system resulted in phosphorylation of Ser-122 of

Csp24, an actin-binding protein that contributes to the decrease

of an A-type transient potassium current necessary for enhanced

excitability.105 Phosphorylated Csp24 binds to 14-3-3 protein,

potentially affecting cytoskeletal dynamics.106 Understanding
Patterns 4, May 12, 2023 5
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the extent to which the CNS is involved in conditioning, and the

mechanisms involved in that process, would allow development

of targeted therapies to de-couple environmental stimuli from

drug administration. This would have profound implications for

drug addiction therapy but also for clinical tolerance to a wide

range of therapeutic agents.

The influence of psychogenic factors on various tissue behav-

iors is just beginning to be explored. Dykman and Gantt studied

the degree to which blood pressure could be influenced by the

CNS in dogs and found that pairing a tone with a shock would

cause an increase in blood pressure and that the increase in

blood pressure could subsequently be induced by the tone

alone.107 They also showed that pairing different tones with

different shock intensities resulted in different levels of hyperten-

sion induced by the tones alone.107 Hypertension resulting from

the presentation of tone occurred rapidly and took much longer

to disappear than the conditioned movements the shocks

created, a perfect example of schizokinesis. Gantt and others

over the years found that skin resistance, respiration, heart

rate, motor responses, heat regulation, spleen contraction, kid-

ney secretions, pancreas secretions, and stomach secretions

could all be conditioned.107 Similarly, the immune and endocrine

systems can be conditioned, and the type of paired environ-

mental cue had a significant effect on the strength of the condi-

tioning.108–111 Further explorations are necessary to discover

what other internal biological processes can be conditioned.

Toward training cell signaling pathways to regulate
health and disease
The profound possibilities of these kinds of training for cell regu-

lation are only now beginning to be realized. A broad class of

systems, from molecular networks112 to physiological networks

in somatic organs,113,114 exhibit plasticity and history-based re-

modeling of stable dynamical states. Could gene-regulatory net-

works (GRNs) likewise exhibit history dependence that could

help understand variability of cellular responses and be ex-

ploited to control their function by modulating the temporal

sequence of inputs? This is a different approach from existing

conceptions of memory as changes at the epigenetic and pro-

tein levels,115–118 focusing on memory as a shift between stable

attractors in the dynamical state portrait of a physiological cir-

cuit. Several studies have proposed memory phenomena in

network models.41,119–128 We recently analyzed a set of GRN

models129,130 to discover several predicted classes of learning,

including associative conditioning. We found that many biolog-

ical (but not random) networks can stably store multiple mem-

ories, are highly resistant to noise, and can perform simple

computational tasks such as counting discrete stimulus

events.130Most importantly, thememories are readily controlled

by specific stimuli, which can be discovered by a computational

process,130 without rewiring network structure or altering pro-

moter connection weights. While these remain to be tested

in vivo, the implications are potentially very significant. For

example, drugs that are too strong to be used in patients for

extended periods could be paired with neutral drugs, giving

rise to Pavlovian conditioning of the pathway, after which the

neutral drug could be administered alone, causing the same

response for some period of time. Interestingly, we found that

random GRN models do not exhibit the trainability properties
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seen in biological networks, suggesting that this capacity is

evolutionarily important and likely to be prevalent.

BEYOND HABITUATION AND SENSITIZATION: MORE
COMPLEX CELL BEHAVIORAL COMPETENCIES
REVEALED BY MORPHOGENETIC ROBUSTNESS?

This demonstration that GRNs, previously assumed to be purely

mechanical systems, support several kinds of

learning41,128,129,131 highlights an important part of a roadmap

for future biomedicine: the need to examine regulatory mecha-

nisms for computational competency as standard practice. In

addition, Csermely et al. described a number of adaptive molec-

ular mechanisms in individual non-neuronal cells as examples of

generalized Hebbian learning in signaling networks.38,132–134

They also proposed that this demonstration of cellular learning

opens new possibilities in drug design by providing new targets

for intervention, as well as new models for artificial intelligence.

Here, we expand the analysis of cell signaling topologically,

conceptually, and temporally, going beyond Hebbian learning

and beyond the level of the single cell to model cell signaling in

the context of past experience and of tissue, organ, organism,

and environment (Figure 2). We propose that a proto-cognitive

metaphor for cellular signaling provides a framework and toolkit

for experimenters to ascertain the behavioral competencies of

tissues, organs, and the regulatory machinery of a wide range

of unconventional substrates. This is already beginning to be

worked out for synthetic biology and bioengineered life forms.135

What other capacities could plausibly be found in biomedically

relevant processes?

The following are novel examples of somatic information pro-

cessing that can be addressed via behavioral neuroscience

perspectives. We focus on a just few examples of unique as-

pects that complement Csermely’s work38,132–134 and other

recent dynamical systems perspectives on molecular net-

works.38,132–134,136–140 William James defined intelligence as

the capacity to reach the same goal by different means.141

Our previous work provides evidence for this capacity at the

level of tissue morphogenesis, where groups of cells coordi-

nately navigate morphospace—the space of all possible

anatomical trajectories—to produce appropriate anatomies.37

One example of robust problem solving in morphospace31 is

craniofacial remodeling in Xenopus, a system often used to

model birth defects.142 Specifically, tadpoles must rearrange

their facial features to metamorphose into frogs. We found

that this is not a hardwired process where each organ blindly

moves a certain distance in a certain direction. Instead, tad-

poles with scrambled faces (e.g., eyes on top of the head,

jaws off to the side, etc.) still make largely normal frogs

because the organs keep moving until they reach the correct

target morphology.143 This extreme example is related to regu-

lative development (e.g., mammalian embryos cut into pieces

give rise to normal monozygotic twins) and reveals the plasticity

and problem-solving capacity of processes that underlie devel-

opment, repair, and cancer suppression. To harness such ca-

pacities for repair and cancer normalization,144,145 future work

will characterize the parameters that cell collectives measure

and the pattern-homeostatic mechanisms that enable error

detection relative to a stored setpoint. Bioelectric mechanisms
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for setpoint storage are already beginning to be understood

(see below), as are the attractor-selector mechanisms that pro-

vide metastability.146,147

A complementary example demonstrates problem-solving ca-

pabilities across both physiological and transcriptional space. In

planarian flatworms exposed to the non-specific potassium

channel blocker barium, neurons die of cytotoxicity due to

excessive de-polarization, resulting in rapid degradation of the

head. Remarkably, when kept in barium, they soon regenerate

new, barium-resistant, heads.148 They do this by changing the

transcriptional levels of just a handful of genes. Because planaria

never experience barium in the wild, there has been no selection

pressure to evolve a response to barium poisoning. This indi-

cates that when confronted by a new physiological stressor,

these cells manage to navigate a path in a very high-dimensional

transcriptional space to up- and down-regulate exactly the right

genes to solve their problem. This is a highly efficient process:

because these cells turn over slowly, there is no time for a bac-

teria-like population-level search over all possible transcriptional

actions and a survival of a small number of cells. This is therefore

an example of drug resistance that is notmerely the result of one-

shot learning but also requires problem solving that can deal with

both novelty and cross-modal (physiology / transcriptional)

action. It is currently unknown how planarian cells solve this

problem, but it is clear that this is the kind of computational

search capacity (of successfully mapping stressors to transcrip-

tional responses) that could be artificially reproduced, or har-

nessed directly, for biomedical purposes to help address the

perennial problem of which genes to target to achieve a desired

response to a disease state.

Bioelectricity: A roadmap for a biomedicine of
reprogrammable tissues
The proto-cognitive functions (memory, context sensitivity, etc.)

of cell signaling pathways are not unique to chemical signaling

networks but are also implemented by bioelectrical networks.

It has long been known that networks of neural cells exhibit

learning, plasticity, and other information-processing capabil-

ities that enable a very powerful form of functional control:

behavior shaping (training). Bioelectric signaling in the brain

binds a large number of individual cells into a larger-scale emer-

gent agent with specific cognitive properties that do not belong

to any of the cells individually. The exciting emerging field of

developmental bioelectricity emphasizes that these capacities

are not unique to the CNS but are evolutionary modifications of

an ancient bioelectric communication system that earlier used

the same strategies to navigate a different problem space—mor-

phospace.37

Configuring the body in morphospace is a critical task

throughout the lifespan; disorders manifest as birth defects or

as failure to regenerate after damage, cancer, and aging.32

Much of the information processing that enables distributed

groups of cells to ascertain current anatomy and execute

changes to bring it closer to a species-specific target

morphology is carried out by bioelectrical communication across

tissues (Figure 3) using the same highly conserved molecular

components used by neurons: ion channels and electrical syn-

apses.152 Specific endogenous bioelectric dynamics (via slowly

changing patterns of resting potential) are required for the forma-
tion of organs such as the wing,153,154 face,155–157 eye,158

brain,159 and heart160,161 and also function in control of single-

cell parameters such as stem cell differentiation,162,163 cancer

suppression,164,165 and organ-level size control.166–168

The foundations for therapeutic tissue reprogramming have

been laid by showing that functional interventions into bioelectric

circuit function can induce development of complete organs

such as eyes158 and regeneration of tails169 and limbs170 and

can abrogate cancer phenotypes in amphibians in vivo171–173

and in human in vitro systems.174 They can also dictate spe-

cies-specific structural variations in anatomical features.175

Moreover, in a set of recent studies,149,150,159,160,176 a computa-

tional platform for simulating endogenous bioelectrical control

mechanisms identified human-approved ion channel-targeting

drugs that could repair drastic brain defects in a tadpole model

by enforcing the appropriate bioelectric prepattern despite the

action of powerful teratogens. The most remarkable aspect of

these is that heart, gut, and brain defects induced by a mutation

of the important neurogenesis gene NOTCH could be repaired

by transient exposure to pharmacological electroceuticals (spe-

cifically HCN2-opener drugs) without repairing the muta-

tion.150,160 This reinforces the message of the examples cited

above. Experience-dependent changes to pathway function

can alter outcome without gene therapy or genomic editing,

demonstrating that some biological hardware problems are

fixable ‘‘in software’’—without rewiring the molecular machinery

or directly repairing the defect.

Bioelectric signaling is also relevant to the ‘‘disease of geome-

try’’ known as cancer.177 Cells are normally bound to large-scale

morphogenetic goals (such as organ building ormaintenance) by

a collection of electrochemical cues, creating a cellular network

that maintains anatomical homeostasis,178,179 or homeorhesis,

as pointed out by Waddington, since, over the long term, what

is maintained are trajectories, not fixed states.28 Disruptions in

this system can induce cancer phenotypes,164,165 even in the

absence of mutation or DNA damage, because the society of

the body is a dynamical type of order that must be actively main-

tained.180–182 Fundamentally, when cells dissociate from tight

informational links with their neighbors, they revert back to a uni-

cellular ancient state, effectively seceding from the multi-cellular

collective and treating it as simply external environment. The

result is resurgence of behaviors appropriate to the unicellular

state, i.e., overproliferation and metastasis. This cognition-

inspired perspective on cancer as fundamentally a disorder of

setting informational boundaries between the cellular self and

the outside world178,183 has already given rise to effective treat-

ments that reverse and prevent cancer in amphibia171 and are

now being tested in human tissues.174

The important insight emerging from this field184–186 is that the

bioelectric signals are not just another set of microstates that

could be targeted to force specific cell-level outcomes. Instead,

bioelectric events are highly modular computations that imple-

ment tissue- or organ-level morphogenetic decisions, inducing

complex structures. Evolution exposes a powerful control inter-

face on tissues—ion channels that enable morphogenetic

outcomes to be reprogrammed by transient experiences, just

as in neuroscience, using, for example, optogenetic

pulses187,188 or brief drug exposure.189 Taking advantage of

the modular, homeostatic, learning, and perhaps even more
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Figure 3. Bioelectric pathways
(A) The hardware that enables complex computations in neuronal networks consists of ion channel proteins that determine cells’ electrical state and gap junctions
(electrical synapses) that selectively propagate this state to their neighbors. (B) This hardware is evolutionarily ancient and ubiquitous, enabling similar (albeit
slower) dynamics in non-neuronal cells. Taking advantage of this bioelectrical interface to the circuits that make anatomical decisions has significant biomedical
implications. For example, normal brain development in the tadpole model (C) requires a specific bioelectrical prepattern in the nascent anterior ectoderm.
Disrupting this pattern with a range of teratogens or via mutations of the NOTCH protein results in severe brain defects and a loss of learning behaviors (D).
Remarkably, correct brain structure, gene expression, and learning rates can be reinstated (E) when the correct bell-curve-shaped bioelectric prepattern (F) is
enforced according to a computational model that suggests specific drugs that target ion channels to enforce the correct bioelectric prepattern (G).149 (F) shows
the effect of various manipulations on embryonic bioelectric prepattern: control (blue), microinjection with voltage-gated potassium channel (Kv1.5, red),
microinjection with glycine-gated chloride channel (GlyR, purple), and microinjection with GlyR plus ivermectin treatment (IVM; green). (A) and (B) are courtesy of
Jeremy Guay and are taken with permission from Levin.30 (C)–(E) are courtesy of Vaibhav Pai. (F) is taken with permission fromPai et al.150 (G) is courtesy of Alexis
Pietak.151.
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complex capacities of bioelectric circuits is an excellent comple-

ment to similar approaches targeting biochemical pathways. A

huge pool of ion channel-targeting drugs, many already

approved for patient use in various indications, could be used

to exploit the wider notion of control mechanisms as active,

computational, and proto-cognitive matter, moving beyond

limiting views of pathways as simple machines.

TOP-DOWN CONTROL, MULTI-SCALE INFORMATION
FLOWS, AND CLINICAL MEDICINE
Words and drugs have the same mechanisms of action. –

Fabrizio Benedetti190

The data on psychological effects in medicine provide support

for cross-scale computation and integration of stimuli.191–195 For

example, the ‘‘white coat’’ effect is now being studied with

respect to changes in gene expression induced by the very

high-level stimulus of social hierarchy-induced stress.196 Simi-

larly, it is now becoming clear that the relationship between ther-

apist and patient is a key input into drug efficacy.197,198 Such

cross-level information transfer is also manifest in biofeedback,

a set of techniques that allow conscious control of autonomic

body states.199–202 Biofeedback is now being studied in non-hu-

man systems such as closed-loop control of hybrots,203 organo-

ids, andother contexts204–206 thatwill facilitate theunderstanding

of cross-level control modalities.

Studies of placebo/nocebo effects191,194,195,207–209 also

reflect this multi-scale integration of inputs. For example, Bene-

detti’s work shows that the analgesic/anxiolytic effect of potent

drugs is remarkably reduced if the person is not aware that

they were administered.191–195 Remarkably, open-label studies

show that placebos work even when the patient is aware of

what they are getting.210,211 All of this has important implications

for predictive coding and Bayesian brain hypotheses.212

Crucially, this phenomenon is useful not only at the level of the

patient but also needs to be explored and exploited in cells

and tissues. For example, the association of a powerful stimulus

to a neutral one (whether in tissues or in GRN models129) is

essentially a minimal placebo model, where the neutral stimulus

exerts effects that are not explained by a direct consideration of

its mechanism of action. The efficacy is borne by a much wider

context established by the learning and information-processing

capacities within and across levels of organization from subcel-

lular networks to whole-body organ systems.

CONCLUSION: FUTURE MEDICINE FROM DATA TO
INTERVENTIONS

Decades of research with pharmacological and recreational

drugs have revealed interesting aspects of cellular regulatory

pathways that implement basic properties of cognition, including

tolerance and sensitization. Studies of morphogenesis and of

psychological regulation of clinical outcomes hint that non-

neuronal cell signaling can exhibit even more complex proto-

cognitive behaviors, integrating computation across scales to

support top-down, context-sensitive control and reprogramm-

ability at levels other than that of molecular properties. The

data suggest several main points.
d Simple forms of learning, such as habituation and condi-

tioning, exist outside the brain. Hints of more advanced ca-

pacities, such as solving novel problems in navigation of

transcriptional spaces,148 physiological spaces,47 and

morphospace31,213 suggest that such capacities of neural

networks in unconventional substrates can provide

exciting targets for biomedical intervention.

d While a major problem for the development of effective

therapeutics, tolerance is not an inherently negative ca-

pacity. Indeed, its failure can result in overdose.86,97,214–218

The challenge is to develop therapeutic approaches that

manipulate these homeostatic properties in efficient ways.

d Behavioral neuroscience is uniquely and rigorously

comfortable with multi-scale approaches to these kinds

of complex control problems. In particular, the disciplines

of behavior science, control theory/cybernetics, and

computational neurobiology provide rich toolkits of con-

cepts, formalisms, and techniques that can be applied to

somatic signaling systems (Figure 4).32 Examples include

exploiting generic principles of behavior shaping to control

phenotypes in synthetic biology and bioengineering,135 us-

ing concepts of perceptual control theory to understand

instructive information in bioelectrical networks,47 and us-

ing the frameworks of active inference to understand and

manipulate collective decision-making in regenerative

and developmental morphogenesis.219–221

d The remarkable capacities of pathways in biomedical con-

texts are very likely scaled-up aspects of extremely ancient

properties of our unicellular ancestors, including multi-

modal integration of signals, learning, and complex deci-

sion-making.42,46,222–226 The study of basal cognition and

diverse intelligence is poised to strongly impact biomedi-

cine by revealing the fundamental evolutionary roots of ho-

meostasis, homeorhesis, and similar processes byminimal

biochemical, biomechanical, and bioelectrical agents.

Early efforts in regenerative medicine160,172,173,176,227 indi-

cate the promise of this approach.

d Conversely, analyses of cell biological and clinical data are

revealing how a collection of molecules in a network can

work together as a special kind of dynamical system that

can process a history of experiences (inputs, stimuli) and

gain associative or other kinds of memories that belong

to no individual molecule or molecular link but to the sys-

tem as a whole.38

d Pathways and other clinical targets can no longer be

considered self-contained dynamical systems with a small

set of local interactions and mechanical behavior; optimal

prediction and control of their functionality requires prob-

ing their proto-cognitive capacities and functional connec-

tions with higher levels of organism function, such as

environmental cues and cognitive attitudes.

d We suggest exploring scale-free228 dynamics that may be

conserved between proto-cognition and evolution.229,230

For example, molecular resistance on coevolutionary time-

scales, such as the ecotoxinology of venoms,231,232 may

offer interesting parallels to organism-scale resistance

effects. Likewise, exciting work hints at relevant coevolu-

tionary dynamics driven by stress233–235 and cellular adap-

tation to novel conditions.236,237
Patterns 4, May 12, 2023 9



basal 
cognition

optogenetics
GRN 

simulators

behavioral 
neuroscience

Cybernetics

closed-loop 
culture systems

physiological 
sensors

Disciplines Tools Computation

bioelectric 
simulators

machine 
learning

simulationphysiological 
data

inference engine

+

stimulation 
protocol

delivery 
device

Regenerative 
medicine

Impacts

Neuroscience

Bioengineering

Evo-Devo

+ +A

B

C

Figure 4. Conceptualization of key features
of the emerging field of multi-scale
biomedicine
(A) Schematic illustration of a multi-disciplinary
field, suggesting impacts that insights from
several diverse disciplines, specific tools, and
computational approaches will have in biomedi-
cine, neuroscience, synthetic bioengineering, and
basic evolutionary developmental biology.
(B) A schematic of a generic closed-loop system in
which an ex vivo cultured tissue or organ is being
trained by rewards and punishments for specific
morphogenetic, transcriptional, or physiological
outcomes. Such systems can be used in basic
research to identify the proto-cognitive capacities
of cells and tissues or in regenerative/bioengi-
neering contexts to achieve desired complex
endpoints.
(C) A schematic of the deployment pipeline for
medical intervention in which computational/AI
algorithms (inference engine), fed with physiomic
data and operating over an in silico simulation
environment, can suggest stimulation protocols
with specific drugs or other modalities, delivered
by novel devices such as wearable bioreactors
and other stimulation technology.
(B) is by Alexis Pietak. Image in (C) is by Jeremy
Guay of Peregrine Creative.
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d This perspective has key implications for data science on

biological control. It suggests we need to widen the data

mined around any biological endpoint to include other re-

gions of the body and other levels of organization (i.e.,

psychological in addition to molecular pathway data).

This will require novel data structures to handle diverse

information at different levels of organization, integrating

advanced data mining techniques across modalities

from physiological measurements to behavioral ones. In

addition, unsupervised artificial intelligence (AI) ap-

proaches will be necessary to identify factors and dy-

namics that are as yet unknown and to infer interventions

via integrated multi-scale models that exploit innate,

multi-scale competencies from cell networks to organ

systems.

Here, we have extended the concept of ‘‘pathways’’ along 3

dimensions: space, time, and level of organization. Data indicate

that for cell signaling, history matters, and large-scale (non-local)

inputs matter. Place modulation and placebo/association
10 Patterns 4, May 12, 2023
studies discussed above, as well as

conditioned immunosuppression,238–240

reveal that an exclusive molecular

pathway view of drug action is highly

incomplete. It is now clear that informa-

tion crosses levels: changes of gene

expression and cytokines by intentional

meditation,241–247 psychoneuroimmunol-

ogy,248–250 somatic and transcriptional

memories of experience of stress/

trauma,251–254 and hypnodermatology255

all show that high-level mental states

change cell-level phenotypes. One of

the most interesting implications of these

data is the interactions across levels of
organization: for example, the efficacy of a drug on cell physi-

ology is in part a function of the patient’s environment and their

psychological relationship with a therapist. Thus, it forms a

model system for the holy grail of neuroscience: how do higher

psychological levels arise and relate to the dynamical circuits

of behavior and themechanisms of ion channels and neurotrans-

mitter signaling below that? How does the mind (at whatever

level of sophistication) relate to thematter of the body that imple-

ments it?

Thus, the use of reagents to manipulate disease pathways is

likely way more complex than currently appreciated by bio-

pharma efforts in mechanistic screening, drug-protein interac-

tion predictions, and machine learning focused on pathway

models. The existence of complex behaviors at all scales,

and multi-scale interactions, means that it is hard to control

the details. The good news is that we should not have to con-

trol the details. In vivo, the modular architectures (much like

behavioral repertoires) are already good at dealing with

complexity, noise, and uncertainty. We can therefore focus

on developing behavior-shaping protocols that exploit these
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high-level properties. Early examples of such protocols in pre-

clinical models include a 1-day exposure to a trigger drug blend

that can kickstart 18 months of leg regeneration in a frog

model189 and a 1-h exposure to a specific ionophore electro-

ceutical that can induce regeneration of a tail (with spinal

cord).169

We propose a research roadmap (Figure 4) in which we view

health and disease pathways as multi-scale, predictive compu-

tational agents that offer interfaces for prediction and control

at multiple scales. Given the recent explosion of work on nervous

systems as predictive agents in active inference formal-

isms,256–258 all the tools now exist (Figure 4A) to begin formu-

lating sophisticated models of pharmacological signals and

physiological/behavioral environment states that can predict

which drug metabolism or receptor pathway needs to be modu-

lated for therapeutic effects and to test those predictions. Mov-

ing even further upstream, it should be possible to train tissues

and organs for long-term changes in fundamental dynamics by

appropriate positive and negative reinforcement. Indeed, many

of the advances from the cognitive and behavioral sci-

ences,22–24,34,35 including ones in which the efficacy of pharma-

ceutical therapeutics is highly dependent on high-level features

such as ‘‘therapeutic alliance’’ and not only on molecular struc-

ture,197,259 are ideally poised to be translated into a kind of

‘‘somatic psychiatry’’ that maximizes efficacy by interventions

at multiple scales.208

The non-neural bioelectricity framework,47,220,260 together

with perspectives from the diverse intelligence and computer

science communities,42,261,262 are revealing a biomedical road-

map that is not stuck at the molecular level any more than mod-

ern cognitive science is exclusively focused on synaptic

machinery. This will not only drive the design of much more

effective interventions for regenerative medicine but will also

advance neuroscience (by solving key problems in simpler,

evolutionarily more basal, contexts), enable better control of

complex morphogenesis for bioengineered synthetic con-

structs (such as novel biorobotics), and even the field of evolu-

tionary developmental biology (by improving our understand of

the relationship between the genetically specified hardware

and the phenotypes that result from the physiological software

that drives biological robustness and competency). Transfor-

mative impacts are also predicted for evolutionary develop-

mental biology, basal cognition, and synthetic bioengineering

by harnessing clinical data to spur novel ways to understand

universal dynamics operating across scales.228 We believe

the future of biomedicine will look a lot more like behavior

shaping than molecular engineering,29,144,145 with all the bene-

fits of high-level communication and control that the intelli-

gence of the body enables.

ACKNOWLEDGMENTS

We thank Douglas Brash, Karl Friston, Adam Goldstein, Anna Kane, Michael
Hufford, Eric Kuelker, Eric Lagasse, Giovanni Pezzulo, Alex Schmidt, and
Richard Watson for helpful discussions; Randy Ellis and Cody Rasmussen-
Ivey for very insightful comments on a draft of the paper; Susan Lewis for
editorial assistance with the manuscript; and two referees for their helpful sug-
gestions. We gratefully acknowledge funding from Templeton World Charity
Foundation (TWCF0606) and the John Templeton Foundation (62212), as
well as sponsored research agreements to Tufts University from Astonishing
labs and Morphoceuticals.
DECLARATION OF INTERESTS

M.L. is a scientific cofounder of a company called Astonishing Labs, which in-
cludes computational approaches to information processing by multi-scale
pathways as one of its long-term goals. He is also a scientific cofounder of a
company called Morphoceuticals, which includes bioelectric approaches to
regeneration as one of its long-term goals.
REFERENCES

1. Emmert-Streib, F., Dehmer, M., and Haibe-Kains, B. (2014). Gene regu-
latory networks and their applications: understanding biological and
medical problems in terms of networks. Front. Cell Dev. Biol. 2, 38.
https://doi.org/10.3389/fcell.2014.00038.

2. Brash, D.E. (2020). Rethinking Causation for Data-intensive Biology:
constraints, Cancellations, and Quantized Organisms: causality in com-
plex organisms is sculpted by constraints rather than instigators, with
outcomes perhaps better described by quantized patterns than recti-
linear pathways. Bioessays 42, e1900135. https://doi.org/10.1002/
bies.201900135.

3. Noble, D. (2012). A theory of biological relativity: no privileged level of
causation. Interface Focus 2, 55–64. https://doi.org/10.1098/Rsfs.
2011.0067.

4. Bizzarri, M., Brash, D.E., Briscoe, J., Grieneisen, V.A., Stern, C.D., and
Levin, M. (2019). A call for a better understanding of causation in cell
biology. Nat. Rev. Mol. Cell Biol. 20, 261–262. https://doi.org/10.1038/
s41580-019-0127-1.

5. Simeoni, C., Dinicola, S., Cucina, A., Mascia, C., and Bizzarri, M. (2018).
Systems biology approach and mathematical modeling for analyzing
phase-space switch during epithelial-mesenchymal transition. Methods
Mol. Biol. 1702, 95–123. https://doi.org/10.1007/978-1-4939-7456-6_7.

6. Bizzarri, M., Palombo, A., and Cucina, A. (2013). Theoretical aspects of
systems biology. Prog. Biophys. Mol. Biol. 112, 33–43. https://doi.org/
10.1016/j.pbiomolbio.2013.03.019.

7. Das, S.K., Menezes, M.E., Bhatia, S., Wang, X.Y., Emdad, L., Sarkar, D.,
and Fisher, P.B. (2015). Gene therapies for cancer: strategies, challenges
and successes. J. Cell. Physiol. 230, 259–271. https://doi.org/10.1002/
jcp.24791.

8. Paananen, J., and Fortino, V. (2020). An omics perspective on drug target
discovery platforms. Brief. Bioinform. 21, 1937–1953. https://doi.org/10.
1093/bib/bbz122.

9. Dimitrov, D.S. (2012). Therapeutic proteins. Methods Mol. Biol. 899,
1–26. https://doi.org/10.1007/978-1-61779-921-1_1.

10. Kamb, A., Wee, S., and Lengauer, C. (2007). Why is cancer drug discov-
ery so difficult? Nat. Rev. Drug Discov. 6, 115–120. https://doi.org/10.
1038/nrd2155.

11. Lobo, D., Solano, M., Bubenik, G.A., and Levin, M. (2014). A linear-en-
coding model explains the variability of the target morphology in regen-
eration. J. R. Soc. Interface 11, 20130918. https://doi.org/10.1098/rsif.
2013.0918.

12. Scannell, J.W., and Bosley, J. (2016). When quality beats quantity: deci-
sion theory, drug discovery, and the reproducibility crisis. PLoS One 11,
e0147215. https://doi.org/10.1371/journal.pone.0147215.

13. Scannell, J.W., Bosley, J., Hickman, J.A., Dawson, G.R., Truebel, H., Fer-
reira, G.S., Richards, D., and Treherne, J.M. (2022). Predictive validity in
drug discovery: what it is, why it matters and how to improve it. Nat.
Rev. Drug Discov. 21, 915–931. https://doi.org/10.1038/s41573-022-
00552-x.

14. Seyhan, A.A. (2019). Lost in translation: the valley of death across preclin-
ical and clinical divide – identification of problems and overcoming obsta-
cles. Transl. Med. Commun. 4, 18. https://doi.org/10.1186/s41231-019-
0050-7.

15. Akl, S.G. (2017). Information and computation: the essence of it all. Int. J.
Unconv. Comput. 13, 187–194.
Patterns 4, May 12, 2023 11

https://doi.org/10.3389/fcell.2014.00038
https://doi.org/10.1002/bies.201900135
https://doi.org/10.1002/bies.201900135
https://doi.org/10.1098/Rsfs.2011.0067
https://doi.org/10.1098/Rsfs.2011.0067
https://doi.org/10.1038/s41580-019-0127-1
https://doi.org/10.1038/s41580-019-0127-1
https://doi.org/10.1007/978-1-4939-7456-6_7
https://doi.org/10.1016/j.pbiomolbio.2013.03.019
https://doi.org/10.1016/j.pbiomolbio.2013.03.019
https://doi.org/10.1002/jcp.24791
https://doi.org/10.1002/jcp.24791
https://doi.org/10.1093/bib/bbz122
https://doi.org/10.1093/bib/bbz122
https://doi.org/10.1007/978-1-61779-921-1_1
https://doi.org/10.1038/nrd2155
https://doi.org/10.1038/nrd2155
https://doi.org/10.1098/rsif.2013.0918
https://doi.org/10.1098/rsif.2013.0918
https://doi.org/10.1371/journal.pone.0147215
https://doi.org/10.1038/s41573-022-00552-x
https://doi.org/10.1038/s41573-022-00552-x
https://doi.org/10.1186/s41231-019-0050-7
https://doi.org/10.1186/s41231-019-0050-7
http://refhub.elsevier.com/S2666-3899(23)00077-6/sref15
http://refhub.elsevier.com/S2666-3899(23)00077-6/sref15


ll
OPEN ACCESS Perspective
16. Hopfield, J.J. (1994). Physics, computation, and why biology looks so
different. J. Theor. Biol. 171, 53–60. https://doi.org/10.1006/jtbi.
1994.1211.

17. Ellis, G., and Drossel, B. (2019). How downwards causation occurs in
digital computers. Found. Phys. 49, 1253–1277. https://doi.org/10.
1007/s10701-019-00307-6.

18. Rachwalski, M., Khonsari, R.H., and Paternoster, G. (2019). Current ap-
proaches in the development of molecular and pharmacological thera-
pies in craniosynostosis utilizing animal models. Mol. Syndromol. 10,
115–123. https://doi.org/10.1159/000493535.

19. Galgano, M., Toshkezi, G., Qiu, X., Russell, T., Chin, L., and Zhao, L.R.
(2017). Traumatic brain injury: current treatment strategies and future en-
deavors. Cell Transplant. 26, 1118–1130. https://doi.org/10.1177/
0963689717714102.

20. LeClerc, S., and Easley, D. (2015). Pharmacological therapies for autism
spectrum disorder: a review. Pharm. Therapeut. 40, 389–397.

21. Pokhriyal, R.,Hariprasad,R., Kumar, L., andHariprasad,G. (2019).Chemo-
therapy resistance in advanced ovarian cancer patients. Biomark. Cancer
11. 1179299X19860815. https://doi.org/10.1177/1179299X19860815.

22. Friston, K.J., Stephan, K.E., Montague, R., and Dolan, R.J. (2014).
Computational psychiatry: the brain as a phantastic organ. Lancet Psy-
chiatr. 1, 148–158. https://doi.org/10.1016/S2215-0366(14)70275-5.

23. Corlett, P.R., and Fletcher, P.C. (2014). Computational psychiatry: a Ro-
setta Stone linking the brain to mental illness. Lancet Psychiatr. 1,
399–402. https://doi.org/10.1016/S2215-0366(14)70298-6.

24. Montague, P.R., Dolan, R.J., Friston, K.J., and Dayan, P. (2012). Compu-
tational psychiatry. Trends Cogn. Sci. 16, 72–80. https://doi.org/10.
1016/j.tics.2011.11.018.

25. Ramstead, M.J., Sakthivadivel, D.A., Heins, C., Koudahl, M., Millidge, B.,
Da Costa, L., Klein, B., and Friston, K.J. (2022). On Bayesian mechanics:
a physics of and by beliefs. Preprint at arXiv. https://doi.org/10.48550/ar-
Xiv.2205.11543.

26. Friston, K. (2019). A free energy principle for a particular physics. Preprint
at arXiv. https://doi.org/10.48550/arXiv.1906.10184.

27. McEwen, B.S. (1998). Stress, adaptation, and disease. Allostasis and al-
lostatic load. Ann. N. Y. Acad. Sci. 840, 33–44. https://doi.org/10.1111/j.
1749-6632.1998.tb09546.x.

28. Matsushita, Y., and Kaneko, K. (2020). Homeorhesis in Waddington’s
landscape by epigenetic feedback regulation. Phys. Rev. Res. 2,
023083. https://doi.org/10.1103/PhysRevResearch.2.023083.

29. Davies, J., and Levin, M. (2023). Synthetic morphology with agential ma-
terials. Nature Reviews Bioengineering 1, 46–59. https://doi.org/10.
1038/s44222-022-00001-9.

30. Levin, M. (2022). Technological approach to mind everywhere: an exper-
imentally-grounded framework for understanding diverse bodies and
minds. Front. Syst. Neurosci. 16, 768201. https://doi.org/10.3389/
fnsys.2022.768201.

31. Pezzulo, G., and Levin, M. (2016). Top-down models in biology: explana-
tion and control of complex living systems above themolecular level. J. R.
Soc. Interface 13, 20160555. https://doi.org/10.1098/rsif.2016.0555.

32. Pezzulo, G., and Levin, M. (2015). Re-membering the body: applications
of computational neuroscience to the top-down control of regeneration
of limbs and other complex organs. Integr. Biol. 7, 1487–1517. https://
doi.org/10.1039/c5ib00221d.

33. Marr, D. (1982). Vision : A Computational Investigation into the Human
Representation and Processing of Visual Information (W.H. Freeman).

34. Adams, R.A., Huys, Q.J.M., and Roiser, J.P. (2016). Computational Psy-
chiatry: towards a mathematically informed understanding of mental
illness. J. Neurol. Neurosurg. Psychiatry 87, 53–63. https://doi.org/10.
1136/jnnp-2015-310737.

35. Wang, X.J., and Krystal, J.H. (2014). Computational psychiatry. Neuron
84, 638–654. https://doi.org/10.1016/j.neuron.2014.10.018.
12 Patterns 4, May 12, 2023
36. Fields, C., Bischof, J., and Levin, M. (2020). Morphological coordination:
a common ancestral function unifying neural and non-neural signaling.
Physiology 35, 16–30. https://doi.org/10.1152/physiol.00027.2019.

37. Fields, C., and Levin, M. (2022). Competency in navigating arbitrary
spaces as an invariant for analyzing cognition in diverse embodiments.
Entropy 24, 819. https://doi.org/10.3390/e24060819.

38. Csermely, P., Kunsic, N., Mendik, P., Kerestély, M., Faragó, T., Veres,
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Posas, F., and Solé, R. (2016). A synthetic multicellular memory device.
ACS Synth. Biol. 5, 862–873.

125. Macia, J., Vidiella, B., and Solé, R.V. (2017). Synthetic associative
learning in engineered multicellular consortia. J. R. Soc. Interface 14,
20170158.

126. Kandel, E.R., Dudai, Y., and Mayford, M.R. (2014). The molecular and
systems biology of memory. Cell 157, 163–186.

127. Ryan, T.J., Roy, D.S., Pignatelli, M., Arons, A., and Tonegawa, S. (2015).
Engram cells retain memory under retrograde amnesia. Science 348,
1007–1013.
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