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Based on multiple bioinformatics methods and machine learning techniques, this study
was designed to explore potential hub genes of gastric cancer with a diagnostic value. The
novel biomarkers were detected through multiple databases of gastric cancer–related
genes. The NCBI Gene Expression Omnibus (GEO) database was used to obtain gene
expression files. Three hub genes (ESRRG, ATP4A, and ATP4B) were detected through a
combination of weighted gene co-expression network analysis (WGCNA), gene–gene
interaction network analysis, and supervised feature selection method. GEPIA2 was used
to verify the differences in the expression levels of the hub genes in normal and cancer
tissues in the RNA-seq levels of Genotype-Tissue Expression (GTEx) and The Cancer
Genome Atlas (TCGA) databases. The objectivity of potential hub genes was also verified
by immunohistochemistry in the Human Protein Atlas (HPA) database and transcription
factor–hub gene regulatory network. Machine learning (ML) methods including data pre-
processing, model selection and cross-validation, and performance evaluation were
examined on the hub-gene expression profiles in five Gene Expression Omnibus
datasets and verified on a GEO external validation (EV) dataset. Six supervised learning
models (support vector machine, random forest, k-nearest neighbors, neural network,
decision tree, and eXtreme Gradient Boosting) and one semi-supervised learning model
(label spreading) were established to evaluate the diagnostic value of biomarkers. Among
the six supervised models, the support vector machine (SVM) algorithm was the most
effective one according to calculated performance metrics, including 0.93 and 0.99 area
under the curve (AUC) scores on the test and external validation datasets, respectively.
Furthermore, the semi-supervised model could also successfully learn and predict sample
types, achieving a 0.986 AUC score on the EV dataset, even when 10% samples in the five
GEO datasets were labeled. In conclusion, three hub genes (ATP4A, ATP4B, and ESRRG)
closely related to gastric cancer were mined, based on which the ML diagnostic model of
gastric cancer was conducted.
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1 INTRODUCTION

Gastric cancer (GC), reported as the sixth most common
cancer in the world, has an extremely high morbidity rate
(Sung et al., 2021). Latest global epidemiological data showed
that almost 1,089,103 people were diagnosed with gastric
cancer every year, and 768,793 people died of this disease,
which makes it the fourth most fatal cancer worldwide (Sung
et al., 2021). Although previous research studies have
successfully revealed the major risk factors of GC, such as
the genetic background, obesity, harmful mode of life, and
Helicobacter pylori infection, a high rate of misdiagnosis still
exists due to nonspecific symptoms at the beginning of the
disease (Van Cutsem et al., 2016). In other words, GC usually
has a late diagnosis at an advanced stage, resulting in its
proximity to morbidity and mortality (Asplund et al., 2018).
The prognosis of locally advanced gastric cancer is poor with a
5-year survival rate of 16.4% (Katai et al., 2018) and median
overall survival (OS) of 6–14 months in East Asia after being
diagnosed from extensive clinical studies (Hu et al., 2021). In
contrast, if GC is diagnosed at an early stage, the 5-year
survival rate is about 90% (Saragoni et al., 2013), indicating
the importance of early diagnosis and treatment. Novel
biomarkers screened through bioinformatics methods have
already shown their potentiality in cancer development and
diagnosis. Therefore, it is extremely meaningful to find novel
biomarkers of GC to assist in the early diagnosis and
treatment.

Recently, machine learning (ML) has been widely used as a
bioinformatics method in the realm of medical data mining
(Yang et al., 2020). Compared with traditional analyses, the
ML technique has an edge on discovering hidden relationships
and making predictions from complex datasets which have
already been successful in many clinical practices, such as
image-based cancer screening (Hu et al., 2018), constructing
effective prognostic models (Royston et al., 2004), and
identifying biomarkers based on the integration of omics
and phenotype data (Subramanian et al., 2020). On the
other side, biological networks such as weighted co-
expression network analysis (WGCNA) (Langfelder and
Horvath, 2008) and gene–gene interaction networks can
identify the associations between genes and the biological
processes. In accordance with biological network analyses,
novel genes and pathways related to human cancers are also
revealed (Boucher and Jenna, 2013; Farhadian et al., 2021).
Thus, combing the core concepts of ML such as feature
selection and classification with additional biological
network analyses may further assist in exploring biomarkers
with diagnostic values.

In this study, our purpose was to explore biomarkers based
on biological network analyses and ML techniques, the novelty
of which is further examined with ML diagnostic models.
Potential hub genes are screened by the feature selection
method and biological networks. ML diagnostic models are
constructed by supervised and semi-supervised ML methods
with stratified k-fold cross-validation and random
permutation validation, respectively.

2 MATERIALS AND METHODS

2.1 Data Collection and Preprocessing
The study design is shown in Figure 1. This systematic study
comprehensively downloaded six datasets from the Gene
Expression Omnibus (GEO) database and focused on the
gene sequencing results of GC patients with each dataset
containing more than 10 samples. These datasets were
produced using three different microarray platforms:
Affymetrix Human Genome U133 Plus 2.0 Array,
Affymetrix Human Exon 1.0 ST Array, and Affymetrix
Human Genome U133A Array. Raw data of these datasets
were preprocessed by R packages “oligo” (Carvalho and
Irizarry, 2010) and “affy” (Gautier et al., 2004), and then,
the background was corrected and normalized through the
Robust Multichip Average (RMA) function. In this study,
GSE66229 was used to construct a weighted gene co-
expression network due to the sufficient data and detailed
clinical characteristics of the gastric cancer samples. Five
datasets (GSE19826, GSE27342, GSE29272, GSE54129, and
GSE66229) were combined into a total dataset (TD) which
contains 780 samples and 11,181 genes for feature selection
and building ML models. TD includes 435 tumor samples and
345 normal ones, i.e., a mild imbalanced dataset. The combat
algorithm in the “sva” R package (Johnson et al., 2007) was
used to eliminate batch effects between different platforms and
experiments. GSE33335 acts as an independent dataset, based
on which an external validation (EV) was performed to
validate the authenticity of hub genes and the
reproducibility and generalizability of the ML diagnostic
models. Details of all datasets can be found in
Supplementary Table S1.

2.2 WGCNA
The R package “WGCNA” (Langfelder and Horvath, 2008)
was constructed to detect gene modules, and the correlation
of each module with sample type was evaluated. The specific
steps are as follows: (a) in the GSE66229 dataset, only normal
and cancer samples from the same individuals (196 samples)
were selected for further analysis. Then, the 196 samples
were divided into “tumor” and “normal” groups according to
their clinical records, with each group containing 98
samples; (b) the samples were clustered by the “hclust”
function to detect the outliers. After employing the
“hclust” function to the expression matrix evaluated by
the average method, 35 offending samples were removed
with a height cut at 125; (c) the best scale-free topology
fitting index (soft threshold) was selected as 7 to achieve a
higher average network connectivity with a scale-free fitting
number β � 0.86 ; d) the adjacency matrix was transformed
into a topological overlap matrix (TOM) to define the gene
co-expression similarity; (e) Based on the dissimilarity
measured by TOM, the “hclust” algorithm was employed
for gene hierarchical clustering; (f) the optimal module size
was set as 30, and the dynamic tree was used to cut the
identification module; (g) after each module was determined
based on the signature gene expression profile and the
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sample type of patients, the correlation of the module
signature genes with sample types was also determined.

2.3 Identification of the WGCNA Hub Genes
Cytoscape (Shannon et al., 2003) was used to visualize the co-
expression network in the modules of the highest correlations. All
genes in the selected modules were exported to Cytoscape and
analyzed with the “NetworkAnalyzer” plugin (Assenov et al.,
2007), which can give a comprehensive set of topological
parameters for gene–gene interaction networks. Hub genes are
defined as genes with high connectivity in the gene–gene
interaction network. According to connectivity, i.e., node
degrees in the output of “NetworkAnalyzer”, the top-ranked
10% genes in the two most significant modules “red” and

“turquoise” were selected (Fuxman Bass et al., 2013), which
may have important implications for the progression of gastric
cancer.

2.4 Supervised Feature Gene Selection With
the Fisher Score Algorithm
The feature selection technique is a process of reducing the
number of variables, especially important for developing a
predictive model (Ali et al., 2018). The feature selection
method can evaluate the relationship between each variable
and the output and select those variables with the strongest
relationship. Fisher score is one of the most widely used
supervised feature selection methods, which returns the ranks

FIGURE 1 | Flowchart of this study.
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of the variables based on the Fisher score in the descending order
(Gu et al., 2011). The Fisher score Si of the i-th feature is
calculated as follows:

Si �
∑

j
nj(μij − μi)

2

∑
j
njσ

2
ij

, (1)

where μij and σ ij are the mean and standard deviation of the i-th
feature in the j-th class, respectively. nj is the number of samples
in the j-th class, and μi is the mean of the i-th feature.

In this study, to select the most relevant genes that are strongly
related to the sample type, feature selection using the Fisher score
algorithm was applied to the combined five datasets. Here, a gene
was regarded as a feature, and TD was splitted into five folds
during feature selection. A list of genes ranked by their scores
returned in each fold, where we picked the top-ranked 10 feature
genes with a cutoff at Si ≈ 0.5 for each list for further study. The
feature genes were determined as the intersection of the features
of five folds. The final biomarkers in this study were obtained by
the intersection of the hub genes filtered by the gene–gene
interaction network and the feature genes.

2.5 Validation of the Final Hub Genes
GEPIA2 can be used to verify the expression difference of the hub
genes in tumor samples and normal ones (Tang et al., 2019). The
RNA-seq datasets used in GEPIA2 were based on UCSC Xena
(http://xena.ucsc.edu), which was computed by standard
pipelines to analyze the RNA-sequencing expression of tumor
and normal samples from the TCGA (Colaprico et al., 2016) and
GTEx (Lonsdale et al., 2013) datasets. In this study, we used the
TCGA and GTEx gastric cancer RNA-seq data integrated by the
GEPIA2 platform for a comprehensive validation. With |Log2FC|
cutoff = 1 and p-value cutoff = 0.01, box plots of the RNA-seq
data of the gastric cancer hub genes were drawn.

The immunohistochemistry (IHC) staining data for this study
were downloaded from the Human Protein Atlas (HPA) database
(Thul and Lindskog, 2018), and then, the results of gastric cancer
pathology and normal gastric tissue were processed.

The Cytoscape plugin “iRegulon” was used to analyze the
transcription factors regulating hub genes (Janky et al., 2014;
Gao et al., 2020). This plugin predicts transcription factors by
using the motif enrichment analysis and using track discovery

in a set of regulated genes. The cutoff criteria were as follows:
enrichment score threshold = 3.0, receiver operating
characteristic (ROC) threshold for area under the curve
(AUC) calculation = 0.03, rank threshold = 5,000,
minimum identity between orthologous genes = 0.0, and
false discovery rate (FDR) = 0.001. After all transcription
factors were outputted, the factor which regulates all hub
genes and ranks first in the normalized enrichment score
(NES) was defined as the most relevant transcription factor.

2.6 Development and Validation of Machine
Learning Models
2.6.1 Supervised Learning
At the first step, TD was randomly split into training and test
datasets, with ratios of 80 and 20%, respectively. Then, a
repeated stratified k-fold cross-validation was performed on
the training dataset. The stratified k-fold can ensure that
each fold has the same proportion of the sample type
compared to the whole one, which is more suitable to
imbalance datasets. The ML model was trained using of k-
1 folds and validated on the one remaining fold for k times.
The training performance of the model was reported on the
average over k times. At last, a final evaluation was
performed on the test dataset. The aforementioned steps
can be regarded as an internal validation since both training
and test datasets come from TD. To examine the robustness
of the ML models, an EV was further performed on the
independent dataset GSE33335.

In this study, k was set to 10, and the cross-validation was
repeated 100 times with different randomizations in each
repetition to ensure the estimated performance. The Matthews
correlation coefficient (MCC) metric (Chicco and Jurman, 2020)
was chosen as the performance score for the model evaluation
during the training process, which is suitable to imbalance
datasets.

To further reduce the affection of the dataset imbalance, the
synthetic minority oversampling technique (SMOTE) was
applied to the training dataset (Chawla et al., 2002). The
SMOTE can synthesize new samples based on randomly
picked existing samples and their k-nearest neighbors. In this
study, a grid search of k ranging from 1 to 7 was also performed.

TABLE 1 | All genes and their Fisher Scores were selected by the feature algorithm.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Gene name Fisher score Gene name Fisher score Gene name Fisher score Gene name Fisher score Gene name Fisher score

ATP4A 0.762 ATP4A 0.745 ATP4A 0.796 ATP4A 0.862 ATP4A 0.810
ESRRG 0.736 ESRRG 0.705 ESRRG 0.734 ESRRG 0.803 ESRRG 0.749
CBLIF 0.671 ATP4B 0.642 CBLIF 0.642 CBLIF 0.748 CBLIF 0.670
ATP4B 0.641 CBLIF 0.632 ATP4B 0.631 ATP4B 0.712 ATP4B 0.644
INHBA 0.548 TIMP1 0.574 SST 0.540 INHBA 0.618 KCNE2 0.553
KCNE2 0.541 KCNE2 0.517 MT1M 0.539 KCNE2 0.615 TIMP1 0.541
CPA2 0.533 INHBA 0.513 TIMP1 0.538 CPA2 0.601 INHBA 0.524
MT1M 0.531 CPA2 0.498 INHBA 0.522 TIMP1 0.595 CPA2 0.520
ALDH6A1 0.529 MT1M 0.491 KCNE2 0.511 MYRIP 0.587 MYRIP 0.505
TIMP1 0.510 GKN1 0.468 GKN1 0.501 MT1M 0.543 MT1M 0.494
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FIGURE 2 | Progress of the weighted gene co-expression network analysis in GSE66229. (A) Cluster dendrogram of 161 samples in GSE66229. (B) Soft
thresholds of the best scale-free topological model fitting index (left) and mean connectivity (right) were determined. The red horizontal line represents R2 = 0.86. (C)
Dendrogram of all genes clustered in GSE66229. Gene clustering into modules is based on a topological overlap matrix. Assigned modules are colored on the bottom
with gray denoting unassigned genes.
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In order to select a proper classifier for the ML diagnosis
model, six widely used algorithms, namely, support vector
machine (SVM) (Byvatov and Schneider, 2003), k-nearest
neighbors (KNN) (Zhang, 2016), decision tree (DT) (Chen
et al., 2011), random forest (RF) (Chen and Ishwaran, 2012),
neural network (NN) (Lancashire et al., 2009), and eXtreme
Gradient Boosting (XGB) (Chen and Guestrin, 2016), were
examined through their performance metrics for classification
results. Hyperparameters of all the models were finely tuned
using the scikit-learn GridSearchCV method, according to the
highest “MCC” scores. The best model for each algorithm was
selected after exploration of the whole grid. Best
hyperparameters and the corresponding training
performances of all supervised ML diagnostic models can be
found in Table 1. Finally, the performance of each model on
test and EV datasets was evaluated by these performance
metrics: accuracy (Heidaryan, 2018), specificity (Altman

and Bland, 1994), sensitivity (Altman and Bland, 1994),
precision (Heidaryan, 2018), F1 score (Chicco and Jurman,
2020), and MCC. Furthermore, the ROC curve and AUC are
also given.

2.6.2 Semi-Supervised Learning
To deal with a different problem, such as handling large amounts
of samples with only a few diagnosed ones, a semi-supervised
learning model based on a label-spreading algorithm is also
examined (Zhou et al., 2003). Semi-supervised learning can
learn from small amounts of labeled samples, combined with
the use of unlabeled data to better capture the underlying
properties and generalize better to new samples (Chapelle
et al., 2009). To some extent, semi-supervised learning can be
regarded as a hybrid of supervised and unsupervised learning. In
this study, TD was randomly split into a labeled dataset and an
unlabeled one, with five unlabeled ratios including 50, 60, 70, 80,

FIGURE 3 | Heatmap of the relationship between module eigengenes and clinical traits of GSE66229. WGCNA labeled heatmaps for GSE66229, each row
represents a module characteristic gene encoded by color, and the three columns represent clinical characteristics of overall survival time (OST), overall survival status
(OSS), and sample type, respectively. Each cell represents the Pearson correlation coefficient and p-value (in parentheses) of the corresponding module characteristics,
and the color of each cell represents the value of correlation.
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and 90%. For each ratio, the semi-supervised model was cross-
validated by 100 times of random permutations and further
evaluated on the EV dataset GSE33335. The performance
metrics of prediction on the unlabeled dataset and EV dataset
are given.

All supervised and semi-supervised ML models in this study
were implemented by Python language programming on Intel
Xeon silver 4110 CPU.

3 RESULTS

3.1 Construction of the GeneCo-Expression
Network
In order to find the correlation between clinical features and
genes, this study used the R “WGCNA” package to construct
20,862 genes and 161 samples in the GSE66229 dataset into a
gene network. A sample clustering figure was plotted
(Figure 2A). To guarantee a scale-free topology and zero
mean connectivity, the threshold was determined to be 7
(Figure 2B). The dissimilarity of the modules was set as 0.2,
and a total of 14 modules were generated (Figure 2C). Two
modules (red: r = 0.73 and P = 5e-28; turquoise: r = -0.84 and P =

6e-44) with the positive and negative highest correlations were
acquired as the significant modules for subsequent analyses
(Figure 3).

3.2 Feature Gene Selection
In order to select critical genes to the diagnostic model, feature
selection was performed for the combined five datasets using the
Fisher Score method on five folds. In each fold, a cutoff around
the Fisher Score Si ≈ 0.5 s was applied, and as a result, 10 genes
with the highest scores were selected. All selected genes as well as
their Fisher Scores are listed in Table 1. At last, the intersection of
all picked genes in the five folds is investigated, resulting in six
intersection elements: TIMP1, ATP4A, ESRRG, CBLIF, ATP4B,
and INHB.

3.3 Identification and Validation of Hub
Genes
In the results of WGCNA, two significant models, the red and
turquoise ones, were exported to Cytoscape. Two gene–gene
interaction networks were constructed and analyzed in
Cytoscape. Then, the top 10% target genes of each network
were selected, according to the connectivity degree. As a

FIGURE 4 | Gene–gene interaction network of the top-ranked 10% genes in red modules.
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FIGURE 5 | Validation of three hub gene expressions in the GEPIA2 platform. (A) Validation of three hub gene expressions in the GEPIA2 platform. The red and gray
boxes represent cancer and normal tissues in the TCGA and GTEx datasets, respectively. STAD, gastic cancer, and p < 0.01 (GEPIA2 website). (B)
Immunohistochemical staining of ESRRG, ATP4A, and ATP4B in the Human Protein Atlas (HPA) database. (C) Transcription factor–hub gene regulatory network of the
most relevant factor in the Cytoscape plugin “iRegulon”.

TABLE 2 | Tuned hyperparameters, k in the SMOTE, and the training performance of six machine learning models.

Model Tuned hyperparameters k MCC

SVM C: 3,000 and gamma: 0.01 5 0.666 ± 0.093
RF max_features: log2 and n_estimators: 1,500 5 0.641 ± 0.091
KNN metric: manhattan and n_neighbors: 29 3 0.649 ± 0.089
NN activation: tanh and hidden_layer_sizes: (200, 200, and 200) 6 0.633 ± 0.096
DT max_depth: 60, min_impurity_decrease: 0.2, and min_samples_leaf: 2 7 0.637 ± 0.090
XGB gamma: 1, max_depth: 2, and n_estimators: 100 5 0.658 ± 0.092
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FIGURE 6 | Performance of the six supervised machine learning models on the test and EV sets. Hyperparameters of all six models are tuned with the GridSearchCV
method, according to the “MCC”metric, and then, the six bestmodels were chosen after exploration of thewhole grid. Predictions on the test and EV sets aremadewith the best
models. Six models used in this study are support vector machine (SVM), k-nearest neighbors (KNN), decision tree (DT), random forest (RF), neural network (NN), and eXtreme
Gradient Boosting (XGB) in order. (A,B)Scores of accuracy, F1 score,MCC, precision, sensitivity, and specificity in the sixmodels on the test and valid datasets, respectively.
(C,D) Four terms of the confusion matrix (TP, TN, FP, and FN) in the six models on the test and valid datasets, respectively.

FIGURE 7 |ROC curves for the predicted probability on the test and EV sets of all six machine learning diagnostic models: (A) SVM, (B)RF, (C)KNN, (D)NN, (E)DT
and (F) XGB.
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result, 30 and 330 genes in the “red” and “turquoise” modules
were selected. The gene–gene network of 30 genes in the “red”
module is shown in (Figure 4), while genes in the “turquoise”
module are listed in Supplementary material S1. Together with
the six feature genes selected through the Fisher Score method,
three hub genes (ESRRG, ATP4A, and ATP4B) were finally
selected in the red module, while none was selected in the
turquoise module.

The expression of three genes in cancer and normal samples
was validated in GEPIA2. The box plot of GEPIA2 presented the
expression levels of the three genes in the standard of expression-
log2 (TPM+1) (Figure 5A). We observed that the expressions of
ESSRG, ATP4A, and ATP4B in tumor samples were significantly
lower than those in normal ones. This study also performed an
IHC analysis in the gastric data of hub genes from the HPA

database. The results of IHC staining are shown in Figure 5B,
which were consistent with GEPIA2.

Among all transcription factors regulating the three hub genes,
FOXA1with the highest NES (NES = 5.142) was considered as the
most important transcription factors (Figure 5C). Existing
studies have shown that the expression of FOXA1 affects the
proliferation and invasion of gastric cancer cells (Lin et al., 2018;
Dai Y. et al., 2021). The result verified the objectivity of the three
hub genes in gastric cancer.

3.4 Establishment and Validation of the
Machine Learning Model
After going through the hyperparameter grid and the SMOTE
grid, the best model was selected according to the MCC metric.

FIGURE 8 | Performance of the semi-supervised machine learning model with various ratios of unlabeled data. Semi-supervised machine learning models are built
with the label spreading (LS) algorithm. The ratios of randomly unlabeled samples include 50% (LS50), 60% (LS60), 70% (LS70), 80% (LS80), and 90% (LS90). In each
ratio, the semi-supervised model is cross-validated 100 times by random permutation. (A,B) Performance of the semi-supervised machine learning models on all
unlabeled data and the valid dataset with various ratios of unknown samples, respectively. Seven metrics are given, namely, accuracy, F1 score, MCC, precision,
sensitivity, specificity, and AUC.
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The corresponding hyperparameters, k-nearest neighbors in the
SMOTE, and values of MCC on the training dataset are listed in
Table 2. One might see that the SVM model has the best
performance with an average MCC score at
0.666 ± 0.093.With the fixed hyperparameters, the
performance of all six ML diagnostic models on the test
dataset is shown in Figure 6. The trained SVM had the
highest accuracy with 89.1%, while the RF showed the lowest
but a close accuracy with 85.3% (Figure 6A), which demonstrated
the robustness of both hub genes and ML methods.

Based on the results, the weakest performance of the sensitivity
metric was the KNN algorithm with a ratio of 81.7% (Figure 6A).
As a contrast, the SVM algorithm again had the highest sensitivity
of 93.9%, showing the great ability for predicting tumor samples
(Figure 6A). For specificity, the NN algorithm had the best
performance with a 90.5% specificity to predict normal
samples. The RF algorithm had the lowest specificity of 82.4%.
The SVM algorithm had the second lowest specificity of 83.8%
(Figure 6A). These results demonstrated the six models have
both advantages and disadvantages.

MCC and F1 scores could serve as more reliable metrics which
involve all four terms: true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) in the confusion matrix.
According to the ratios of the MCC and F1 scores, the SVM
should be the best model with 78.4 and 89%, respectively
(Figure 6A).

ROC curves for all six ML classification diagnostic assistants
were built using the predicted probability of belonging to
different classes. Except for the AUC of DT having the lowest
value of 85%, all the other models had an AUC of 93–95%
(Figure 7).

The prediction performance of six ML diagnostic assistants
was further evaluated on the EV dataset (25 tumor samples and
25 normal ones). The results showed the six models can classify
all the normal samples correctly with specificity and precision
both equaling to 1 (Figure 8B); however, the prediction on tumor
samples varies. SVM and NN have the best performances on
successively predicting 23 tumor samples (Figure 6D). As a
result, SVM and NN share the highest MCC and F1 scores of
92.3 and 96%, respectively (Figure 6B). The AUC of SVM and
NN on EV is 99% (Figures 7A, D). Therefore, one can conclude
that the SVMmodel based on the expression profiles of three hub
genes may have a potential diagnostic value for gastric cancer.

3.5 Semi-Supervised Diagnostic Model
Semi-supervised ML can learn from a combination of small
amounts of labeled samples and large amounts of unlabeled
ones, which is especially suitable for the scenario of annotating
large amounts of samples with expensive costs or miscellaneous
steps. In this study, the label spreading (LS) algorithm was tested
on 50% (LS50), 60% (LS60), 70% (LS70), 80% (LS80), and 90%
(LS90) randomly unlabeled samples in TD. Each learning model
was cross-validated 100 times with random permutation. The
results shown in Figure 8 demonstrate that the LS algorithm can
successfully learn and predict the sample type even when small
amounts of labeled data are available. The mean MCC and F1
scores are 0.649 ± 0.029 and 0.824 ± 0.015, respectively, with 50%

unlabeled samples. As the ratio of unlabeled samples increases,
the performance of the LS slightly decreases. However, with 90%
unlabeled data, the LS90 model still has meanMCC and F1 scores
of 0.635 ± 0.020 and 0.816 ± 0.012, respectively. Furthermore, all
LS models achieved a good prediction performance for the EV
dataset, for example, the LS90 model has mean MCC and F1
scores of 0.845 ± 0.066 and 0.919 ± 0.037, respectively.

4 DISCUSSION AND CONCLUSION

Gastric cancer is still a major disease threatening human health,
so it is particularly important to find a comprehensive and
effective set of biomarkers with diagnostic values. This study
systematically used a series of bioinformatics methods to select
key features, i.e., hub genes, which were further confirmed by
both, the GEPIA2 tool and IHC experiments. The transcription
factor–hub gene regulatory network confirmed that three genes
are closely associated with gastric cancer in the level of
transcription factors. Based on these features, ML diagnostic
assistants for the diagnosis of gastric cancer were established
by both supervised and semi-supervised learning. The
performance of the ML models on the EV dataset further
approves the potential diagnostic ability.

In this study, five GEO datasets were downloaded for
construction, and one independent GEO dataset GSE33335
was used for external validation. Comprehensive data collation
can make the construction of diagnostic assistants more objective
(Ahluwalia et al., 2021; Dai W. et al., 2021; Ye et al., 2021).
GSE66229 was used for the WGCNA analysis. WGCNA is a
widely used target therapy analysis tool, which clusters related
genes, according to some clinical characteristics of research
subjects. There have been many studies on gastric cancer
tumor markers in recent years, and most of the WGCNA
clusterings are based on differentially expressed genes (DEGs)
in the research dataset (Li et al., 2021; Xiang et al., 2021; Zhang
et al., 2022). In contrast, this study performed the WGCNA
analysis on all gastric cancer–related genes in one dataset and
fused them with selected features using a supervised learning
method, i.e., Fisher score algorithm on five combined datasets,
preserving the diversity of the gastric cancer hub genes. This also
reduces the hub gene bias caused by clustering with a certain
clinical feature traditionally (Yang et al., 2022). We putWGCNA-
significant modules into Cytoscape to construct a gene–gene
interaction network. Previous research shows that gene–gene
interaction networks can reveal the principle and mechanisms
of cancer (Zeng et al., 2013; Rana et al., 2020). In order to enhance
the objectivity and authenticity of the hub genes, genes that are
highly associated with gastric cancer screened by the gene–gene
interaction network were intersected with the selected
feature genes.

Three hub genes were crucial to the next machine learning-
based bioinformatics approach. Although no studies used them as
combined biomarkers for gastric cancer diagnosis, some studies
have screened these genes in the identification of gastric cancer
biomarkers and explored them to a certain extent in the field of
human and animal experiments on gastric cancer (Lozano-Pope
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et al., 2017; Peng et al., 2020; Liu et al., 2021). ESRRG belongs to
the estrogen-related receptor family. In one aspect, it has been
classified that ESRRG inhibits the occurrence of gastric cancer by
inhibiting the Wnt pathway by activating DY131 (Kang et al.,
2018). In another, ESRRG can directly bind to the TFF1
promoter, which is a recognized tumor suppressor and
inhibits Helicobacter pylori infection (Kang et al., 2021).
Helicobacter pylori infection is a common cause of chronic
atrophic gastritis, which is a precancerous lesion (Rolig et al.,
2012). ATP4A and ATP4B belong to a family of P-type cation-
transporting ATPases. These two genes belong to the gastric
proton pump and are antigens of gastric parietal cells, which are
diagnostic markers for immune gastric lesions including atrophic
gastritis. Through in vivo and in vitro experiments in animals and
humans, researchers have found that ATP4A and ATP4B were
partially or fully methylated in gastric cancer cells. It was also
verified that the reactivation and demethylation of ATP4A and
ATP4B can effectively inhibit the progression of gastric cancer
(Lin et al., 2017; Cao et al., 2020). Hence, ATP4A and ATP4B are
important tumor suppressor genes.

Six supervised diagnostic models and one semi-supervised
diagnostic model were developed based on different algorithms
including SVM, RF, KNN, DT, NN, and XGB (supervised), and
LS (semi-supervised). The performance was evaluated by seven
metrics, namely, accuracy, specificity, sensitivity, precision, MCC,
F1 score, and AUC. All the models were trained through cross-
validation and further examined on the EV dataset GSE33335.
The results suggested that SVM and LS can serve as the most
appropriate algorithm for prediction. For example, LS90 can
learn from only 10% of labeled data and achieve 0.906 ± 0.008
and 0.986 ± 0.007 AUC scores for 90% unlabeled data and the EV
dataset. Therefore, this study demonstrates the potential ability of
the ML diagnostic model created with three hub gene expression
profiles of 780 samples.

In recent years, bioinformatics analyses based on machine
learning have been popularly used in individual medicine. For
example, multi-classifiers and deep neural networks are being
applied in cancer research (Huang et al., 2018; Zhang et al., 2021).
Comparing to previous studies, our research may be more robust
in model development and evaluation. First, we included five
datasets with 780 samples in the model development and internal
validation. Second, we also used an independent dataset only for
external validation. Huang et al. (2018) applied multi-classifiers
to select gastric cancer-related miRNAs in one dataset and
validate their performance in another two datasets. Huang
et al. and our team both explored the application of SVM in
the diagnosis of gastric cancer. Their SVM diagnostic model’s
AUC was 95% in the training dataset, which is slightly higher
than our corresponding AUC (93%). However, their model
achieved a biased performance on the two valid datasets: one
was 97%, while the other was less than 80%. Relatively fewer
samples in model development may be responsible for this
performance. Moreover, their two validation datasets were also
involved in biomarker selection; thus, they might not be totally
independent. Compared with the WGCNA and network control
analyses used in our study to screen potential cancer-related
genes, Zhang et al. (2021) fused gene expression data and DNA

methylation data to obtain relatively more biomarkers for
training their deep neural networks. On one hand, their study
got an extremely high performance in six metrics. The accuracy,
precision, recall, F1 score, and AUC value were all around 99%.
On the other hand, the absence of an external validation report
makes the generalization ability of their study remain unclear.

More several strengths of this study should be emphasized. First
of all, data sources in this study come fromAsia. Consistency in data
sources may strengthen the pertinence of the model. Second, rich
data in six datasets are sorted and then integrated into a
comprehensive one to build an objective and effective diagnostic
model. Third, hub genes selected from three robust methods were
used in combination (WGCNA, gene–gene interaction network, and
feature gene selection). Fourth, the selected hub genes are multiple-
validated by GEPIA2, HPA databases, and transcription factor–hub
gene regulatory network, the results of which further confirm the
importance of the selected biomarkers. Finally, the diagnostic model
is improvedwith the SMOTE and passes advancedmachine learning
analysis on an EV dataset and presented more convincing statistical
results than previous studies. This study still has some flaws. First,
this study deserves to be verified by subsequent independent
experiments. Second, although comprehensive bioinformatics
analyses were conducted in this study, an in-depth mechanistic
study of three hub genes had not been advanced.

Finally, this study systematically established a gastric cancer
diagnostic assistant based on multi-database bioinformatics and
machine learning analysis. Our results have a moderate effect on
auxiliary diagnosis. We expect future research to test the stability
of the model.
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