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Altered directed functional 
connectivity of the right amygdala 
in depression: high-density eeG 
study
Alena Damborská  1,2,3,6*, Eliška Honzírková2, Richard Barteček  2,3, Jana Hořínková2,3, 
Sylvie fedorová2,3, Šimon ondruš2,3, Christoph M. Michel1,4 & Maria Rubega  1,5,6

the cortico-striatal-pallidal-thalamic and limbic circuits are suggested to play a crucial role in the 
pathophysiology of depression. Stimulation of deep brain targets might improve symptoms in 
treatment-resistant depression. However, a better understanding of connectivity properties of deep 
brain structures potentially implicated in deep brain stimulation (DBS) treatment is needed. Using high-
density EEG, we explored the directed functional connectivity at rest in 25 healthy subjects and 26 
patients with moderate to severe depression within the bipolar affective disorder, depressive episode, 
and recurrent depressive disorder. We computed the Partial Directed Coherence on the source EEG 
signals focusing on the amygdala, anterior cingulate, putamen, pallidum, caudate, and thalamus. The 
global efficiency for the whole brain and the local efficiency, clustering coefficient, outflow, and 
strength for the selected structures were calculated. In the right amygdala, all the network metrics were 
significantly higher (p < 0.001) in patients than in controls. The global efficiency was significantly higher 
(p < 0.05) in patients than in controls, showed no correlation with status of depression, but decreased 
with increasing medication intake ( ‐= . = .R 0 59 and p 1 52e 052 ). the amygdala seems to play an 
important role in neurobiology of depression. Practical treatment studies would be necessary to assess 
the amygdala as a potential future DBS target for treating depression.

Affective disorders belong to the most common and most serious psychiatric disorders1. A crucial role of the 
cortico-striatal-pallidal-thalamic and limbic circuits in the neurobiology of depression was repeatedly reported2–4. 
Magnetic resonance imaging, functional magnetic resonance imaging (fMRI), magnetoencephalographic, and 
electroencephalographic (EEG) studies have confirmed that depressive patients show structural impairments and 
functional dysbalances of brain networks that involve structures engaged in (a) emotions, i.e. amygdala, subgenual  
anterior cingulate, caudate, putamen and pallidum3,5–12; (b) self-referential processes, i.e. medial prefrontal cor-
tex, precuneus, and posterior cingulate cortex13,14; (c) memory, i.e. hippocampus, parahippocampal cortex15; (d) 
visual processing, i.e. fusiform gyrus, lingual gyrus, and lateral temporal cortex16; and (e) attention, i.e. dorso-
lateral prefrontal cortex, anterior cingulate cortex (ACC), thalamus, and insula10–12,17. Moreover, post-mortem 
morphometric measurements revealed smaller volumes of the hypothalamus, pallidum, putamen and thalamus 
in patients with affective disorders18.

Many depressive patients fail to respond to pharmacological therapy resulting in 1–3% prevalence of 
treatment-resistant depression (TRD)19. One of the newest therapeutic approaches for TRD is an invasive direct 
electrical stimulation of relevant deep brain structures20. Both unipolar and bipolar depression patients might 
benefit from deep brain stimulation (DBS) treatment21, although an optimal approach, including selection of an 
optimal target structure, has yet to be established. Selection of the brain structures, that are currently being tested 
as DBS targets for treating depression20, is mostly supported with the evidence from lesional22,23, animal24–30, 
and neuroimaging31–38 studies. The latter approach provides evidence from a network perspective39,40 showing 
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dysbalances in the intrinsic functional architecture of the brain. During a resting state, patients with depression as 
compared to healthy controls show hyperconnectivity within the default mode network13,33,38, hypoconnectivity 
within the frontoparietal network41,42, hyperconnectivity between the default mode and frontoparietal networks43, 
and dysbalances in connectivity within the salience44,45 and dorsal attention46 networks. Functional connectivity 
anomalies between the hippocampus, cortical and subcortical regions47 similar to those observed in humans 
with depression, were also observed in a genetic rat model of major depression. The pathophysiological basis of 
depression, however, still remains incompletely understood. Particularly, better understanding of the connectivity 
properties of deep brain structures potentially implicated in DBS treatment could have an important value.

Neuroimaging techniques, such as fMRI and EEG, allow to investigate the integration of functionally spe-
cialized brain regions in a network. Inferring the dynamical interactions among simultaneously recorded brain 
signals can reveal useful information in abnormal connectivity patterns due to pathologies.

The connectivity studies based on fMRI are usually based on correlation analyses without providing knowl-
edge about the direction of the information flow between the examined regions. Understanding the directionality 
is, however, crucial when searching for suitable DBS targets for treating TRD, because the antidepressant effect 
of DBS treatment might be caused by changes in the activity of remote structures that receive inputs from the 
stimulated region. For example, it has been hypothesized that DBS applied in the nucleus accumbens might 
influence the activity in the ventral (subgenual ACC, orbitofrontal and insular cortices) and dorsal (dorsal ACC, 
prefrontal and premotor cortices) subnetworks of the depression neurocircuitry48. Causal link between a func-
tional inhibition of the lateral habenula and reduction of the default mode network hyperconnectivity was shown 
on a rat model of depression30, which might explain the therapeutic effect of the lateral habenula DBS in TRD 
patients49. In other words, the functional inhibition of a deep brain structure via DBS might cure depression 
through reduction of the hyperconnectivity in the large-scale brain network. Another example of a particular role 
of the stimulated structure in the large-scale neural communication is the ACC, whose possible integrative role 
in cognitive processing50,51 might explain the most recently reported high efficacy of DBS to subgenual ACC in 
treating depression52.

The growing interest in investigating the dynamical causal interactions that characterize resting-state or 
task-related brain networks has increased the use of adaptive estimation algorithms during recent years. 
Particularly, Granger causality based on adaptive filtering algorithms is a well suited procedure to study dynami-
cal networks consisting of highly non-stationary neural signals such as EEG signals53,54. The adaptive filtering 
enables to deal with time-varying multivariate time-series and test direct causal links among brain regions. A 
signal x is said to Granger-cause another signal y if the history of x contains information that helps to predict y 
above and beyond the information contained in the history of y alone55.

Aberrant functional EEG-based connectivity in depressive patients was reported in studies where network 
metrics were computed directly between sensor recordings56–61. Since each EEG channel is a linear mixture of 
simultaneously active neural and other electrophysiological sources, whose activities are volume conducted to 
the scalp electrodes, the utility of such observations on the sensor level is limited62,63. This limitation is particu-
larly remarkable in connectivity studies which aim to identify the real active relations between brain regions. 
Connectivity analysis performed in the source space enables to partially overcome this issue62. Indeed, Partial 
Directed Coherence estimators do not take into account zero-lag interactions that describe the instantaneous 
propagation of activity, considering the zero-phase connectivity as noise added to lagged connectivity patterns of 
interest. For this reason, directed functional connectivity analysis based on electrical source imaging proved to 
be a promising tool to study the dynamics of spontaneous brain activity in healthy subjects and in various brain 
disorders64–66. Despite this fact, the electromagnetic imaging has not been yet used in patients with depression to 
study the directed connectivity of resting-state networks.

In the current study, we explored the directed functional connectivity at rest in depression using high-density 
EEG. We computed the Partial Directed Coherence on the source EEG signals focusing on the role of the amyg-
dala, anterior cingulate, putamen, pallidum, caudate, and thalamus in large-scale brain network activities. We 
hypothesized that the resting-state directed functional connectivity in these deep brain structures might be dis-
rupted in patients with depression compared to healthy controls.

Results
In line with the aim of the study we focused on resting-state electrophysiological activity of twelve regions of 
interest (ROIs) of selected deep brain structures. Further details on results on the ROIs of the whole brain are 
reported in the Supplementary Information.

Power spectra. We found an overall increase in power in theta and alpha frequency bands in patients com-
pared to controls at both the population and single-subject levels. At the population level, significantly higher 
power (p < 0.05) in patients was found in all investigated subcortical regions in both frequency bands (see Fig. 1). 
At the single-subject level, a significantly higher power (p < 0.05) in patients than in controls was observed in the 
[4–12] Hz frequency range bilaterally in the thalamus, pallidum, putamen, and caudate. Moreover, a significant 
left-lateralized power increase (p < 0.05) in patients vs controls was observed in the anterior cingulate and amyg-
dala in this frequency range (see Fig. 2b).

We found a significantly decreased power in delta [1–4] Hz and beta [12–18] Hz frequency bands in patients 
compared to controls in all investigated ROIs, when evaluating the results at the population level (Fig. 1). At the 
single-subject level, delta power was significantly decreased in patients vs controls in the right caudate, putamen, 
and pallidum (Fig. 2a). There was no significant difference in beta power between the two groups in any investigated  
ROI at the single-subject level (see Fig. 2c).
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Network metrics. The connectivity network measures that we performed in the [4–12] Hz frequency 
range, showed increased values in patients compared to controls at both levels. At the population level, the local 
efficiency measured in patients was higher than in controls in all examined subcortical ROIs (see Fig. 3). At 
the single-subject level, the global efficiency was significantly higher (p < 0.05) in patients (mean ± standard 

Figure 1. Parametric power spectral density (PSD) of the population subjects representing controls (A) vs 
patients (B) in the subcortical regions of interest. Power significantly increases within the interval [4–12] Hz 
(indicated with vertical dashed lines) in theta ([4–8] Hz) and alpha ([8–12] Hz) bands and decreases in delta 
([1–4] Hz) and beta ([12–18] Hz) bands in patients compared to controls (p < 0.05) in the subcortical regions 
of interest. Continuous and dashed lines indicate the results for structures in the right and left hemispheres, 
respectively.

Figure 2. Boxplots to graphical illustrate the distribution of power of controls (green boxes) and patients (red 
boxes) in (a) [1–4] Hz, (b) [4–12] Hz and (c) [12–18] Hz. One star (*) stands for significant statistical difference 
with p < 0.05 and two stars (**) for p < 0.001. Power in [4–12] Hz significantly increases in patients compared 
to controls in all examined anatomical brain structures.
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deviation: 0.0129 ± 0.0021) than in controls (mean ± standard deviation: 0.0126 ± 0.0019). Considering all brain 
regions, the local efficiency tended to be higher in patients compared to controls (see Supplementary Fig. S2) but 
the significant differences corresponded only to the right precentral, amygdala and caudate regions (p < 0.05). 
We observed significant correlations between the local efficiency and power in the [4–12] Hz frequency range 
in subcortical ROIs but it was not generalized among all twelve subcortical ROIs (see Supplementary Fig. S3). 
No significant correlations were found between the local efficiency and power in delta and beta bands. All the 
network measures computed on the twelve selected ROIs showed significantly higher values in patients than in 
controls in the right amygdala. The strength, local efficiency, and clustering coefficient of the right caudate were 
significantly higher in patients than controls, while there was no significant difference between the groups in 
the outflow from this ROI. There were no significant differences in any network metric in the anterior cingulate, 
thalamus, pallidum, or putamen (see Fig. 4).

There were no statistical differences in the network metrics estimated between the left and right hemisphere 
in each subject. The laterality indices showed that neither controls, nor patients had a lateralization in connec-
tivity results of the six investigated deep brain structures. No significant differences in the laterality indices were 
observed comparing controls and patients.

Effect of medication on network impairments. We found no correlation of the connectivity results 
with the intake of benzodiazepines, while there was a significant relationship between the global efficiency as 
predictor of the intake of AD/AP/MS medication (AD/AP/MS ~ 1 + GE + GE2; Root Mean Squared Error: 0.716; 
R 0 59;2 = .  F-statistic vs. constant model: 18.7, = . −p 1 52e 05). The global efficiency decreased with increasing 
medication score (see Fig. 5). We observed no significant correlation ( < . > .R 0 05 and p 0 82 ) between the con-
nectivity results and any of the parameters that describe the status of depression (MADRS score, CGI score, illness 
duration, and the number of episodes) or the demographic profile (age and education level).

Discussion
In this study, we investigated resting-state network alterations using iPDC on source signals of high-density EEG 
in patients with depression compared to healthy controls. We explored the directed functional connectivity of 
the amygdala, anterior cingulate, putamen, pallidum, caudate, and thalamus, among them and with all the other 
brain regions in the time and frequency domain. We exploited the Kalman filter algorithm67 assuming that resting 
state EEG segments were multiple realizations of the same process. Although we collapsed the temporal dimen-
sion to evaluate the network metrics, we decided to use a time-varying adaptive algorithm instead of a stationary 
autoregressive model to take into account the possible non-stationarity of the EEG signal and to more accurately 
capture this variability before collapsing the time with a summary measure, e.g., the median.

To sum up, we demonstrated that in patients with moderate to severe depression: (1) the directed functional 
connectivity was significantly increased compared to controls in the right amygdala and the right caudate; (2) the 
power in theta and alpha frequency bands was significantly increased compared to controls in all investigated 
brain anatomical structures; (3) higher medication intake was associated with lower overall driving from the 
investigated regions.

Increased right amygdala directed functional connectivity in depression. The most robust finding  
in our study was an abnormally increased directed functional connectivity in the right amygdala during 
resting-state in depressive patients. Even though the left-right asymmetry was not demonstrated by the laterality 
indices, a right-lateralized hyper-connectivity, as revealed with all the computed network metrics, was observed 

Figure 3. Local efficiency computed in the two population subjects representing (a) controls and (b) 
patients. Note that all subcortical regions of interest (ROIs) revealed higher values for patients than 
controls corresponding to the same tendency observed in all ROIs of the brain at the single-subject level (see 
Supplementary Figs. S1, S2). The efficiency for each ROI is represented by a sphere centered on the cortical 
region, whose radius is linearly related to the magnitude. Such information is also coded through a color scale.
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in the amygdala. We observed an increase in outgoing connections from the right amygdala as reflected with sig-
nificantly higher outflow and strength in patients compared to controls. Moreover, we found a hyper-connectivity 
in the local networks of the right amygdala as reflected with significantly higher local efficiency and clustering 
coefficient in patients compared to controls.

We also found a significantly higher global efficiency in patients compared to healthy controls. This network 
feature had the same trend at the population level. Namely, we observed abnormally increased local efficiency of 
all examined deep brain structures in depressive patients. The efficiency measures the ability of a neural network 
to integrate and combine information. The deeper regions have a key role as hubs of the large-scale brain net-
works, so changes in their local connectivity properties might have also led to connectivity changes in the whole 
brain.

The amygdala is involved in processing salient stimuli68,69 and has been implicated as one of the central hubs 
within the affective salience network70–72. There is converging evidence from the neuroimaging studies that points 
to an abnormally increased connectivity and heightened activation of the amygdala in major depressive disorder 
(MDD) patients73,74. Reduced connectivity75,76 and anomalous subregional functional resting-state connectiv-
ity of the amygdala77 were also reported. Distinct network dysfunctions in MDD were suggested to underlie 
adult-specific amygdala resting-state fMRI connectivity impairment within the affective network, presumably  
reflecting an emotional dysregulation in MDD76. Hyperconnectivity between the amygdala, default mode 

Figure 4. Boxplots to graphically illustrate the distribution of (a) local efficiency, (b) clustering coefficient, (c) 
strength, and (d) outflow in controls (green boxes) and patients (red boxes). One star (*) stands for significant 
statistical difference with p < 0.05 and two stars (**) for p < 0.001. All network metrics that refer to the right 
amygdala significantly differ between controls and patients (p < 0.001), applying the Bonferroni correction 
(p < 0.05/12 → p < 0.0042).

Figure 5. Relationship between the intake of antidepressants/antipsychotics/mood stabilizers (AD/AP/MS) 
and the global efficiency (GE). Note that higher medication intake is associated with lower GE. The orange 
dotted line stands for the predicted value of AD/AP/MS for each patient using GE as predictor. For values of the 
AD/AP/MS medication scale the reader is referred to the legend of Table 2.
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network and salience network was also found to be related to depressive symptoms suggesting to underlie the 
poststroke depression in temporal lobe lesions78. Unfortunately, the directionality of connections, which might 
be of interest when considering a structure as a potential DBS-target for treatment of TRD, cannot be inferred 
from these functional studies. There are only rare EEG-based connectivity studies focusing on depressive  
symptoms58–60,79 that are, however, conducted only on a non-clinical population79 or with connectivity parameters 
calculated at the sensor level57–61. Authors of one of these studies79 suggested an inability of the left dorsolateral 
prefrontal cortex to modulate the activation of the left temporal lobe structures to be a crucial condition for rumi-
native tendencies. Interestingly, in the current study we demonstrated an abnormal increase in directed functional 
connectivity arising from the right amygdala. This increased connectivity in depressive patients could reflect an 
abnormal functioning of the right amygdala. Such dysfunction might represent an impaired bottom-up signa-
ling for top-down cortical modulation of limbic regions, leading to an abnormal affect regulation in depressive  
patients.

The increased functional connectivity in amygdala is likely related to structural changes observed in depression.  
Enlarged amygdala volumes was found in first-episode depressive patients that positively correlated with severity 
of depression80. Higher grey matter volume was detected in bilateral amygdala of TRD patients compared to 
non-TRD patients, irrespective whether the patients presented bipolar or unipolar features and was suggested to 
reflect vulnerability to chronicity, revealed by medication resistance81. Larger right amygdala volume was, however,  
also suggested to be associated with greater chances of remission in bipolar disorder82.

In our study we aimed to investigate the directed functional connectivity in amygdala to provide knowledge 
on neurobiology of depression that is needed to evaluate this structure as a possible candidate for DBS treatment 
in depression. Despite myriad of DBS targets for treating depression tested in humans20, the amygdala is not 
among them. The possible safety and utility of DBS in the amygdala could only be inferred from studies, in which 
the amygdala-DBS was performed for other neuropsychiatric diagnoses, such as epilepsy83–86, post-traumatic 
stress disorder87,88, and autism89. In one of these studies transient stimulation-related positive shift in mood was 
observed84. Particularly, the stimulation of the right amygdala induced a transient decrease in the negative affec-
tive bias, i.e. the tendency to interpret ambiguous or positive events as relatively negative. In this case study, 
an epileptic patient with MDD rated the emotional facial expressions as more positive with stimulation than 
without. The stimulation effect might have been associated with a transient normalization of likely impaired 
function of the right amygdala in that patient. We can only speculate, whether this dysfunction was in terms of 
hyper-connectivity similar to that observed in our study and whether it was temporally decreased by inhibitory 
effect of the stimulation.

Increased right caudate directed functional connectivity in depression. We demonstrated 
that during resting state, patients had significantly higher right caudate directed functional connectivity than 
healthy controls. Despite no significant difference between groups in the caudate outflow, we observed an abnor-
mally increased strength of outgoing connections from the right caudate in patients. Moreover, we found a 
hyper-connectivity in the local networks of the right caudate as reflected with significantly higher local effi-
ciency and clustering coefficient in patients compared to controls. Caudate hyperactivation and increased 
caudate-amygdala and caudate-hippocampus fMRI connectivity during stress was previously reported in remit-
ted individuals with recurrent depression90. The here observed EEG-based functional caudate hyperconnectivity 
suggests striatal dysfunction even during resting-state in depressed patients. Our finding is consistent with a 
compelling evidence directly associating cortico-basal ganglia functional abnormalities with primary bipolar 
and unipolar spectrum disorders91. Deficits in resting-state default-mode network connectivity with the bilat-
eral caudate were suggested to be an early manifestation of MDD92. Reduced grey matter volume in the bilateral 
caudate12,93–95, diffusion tensor imaging-based hypoconnectivity between the right caudate and middle frontal 
gyrus96, and altered functional connectivity of the right caudate with the frontal regions94 was observed in MDD 
patients. In a post-mortem morphometric study in late-life depressive subjects, reduction in neuronal density was 
found in both the dorsolateral and ventromedial areas of the caudate nucleus97. Associations between increased 
white matter lesion volumes and a decreased right caudate volume in the late-life depression was reported98. In 
mild to moderately depressed patients no change in caudate gray matter volumes were found99 suggesting inverse 
correlation between the caudate volume and severity of depression.

We found no significant differences in any network metric in the putamen, pallidum, thalamus, and ante-
rior cingulate. It is possible, however, that examining these structures as a whole might be insensitive to differ-
ent changes in their relevant subregions. Only the medial part of the thalamus is expected to play a role in the 
experience of affect73,100. Reduced activity in the dorsal ACC but increased activity in the subgenual ACC have 
been found in acute depression in functional imaging studies101,102. Moreover, we must take into account the 
limitations of our methodological approach, i.e. the source localization of the EEG activity in the subcortical 
regions. We have to keep in mind that the spatial resolution in detecting and distinguishing neighboring brain 
regions is about 24 mm103. Therefore, our results in the caudate, putamen and pallidum are probably overlapping 
due to smearing of the sources. Keeping in mind these limitations and with respect to the lower robustness of 
our findings in the caudate, we can just encourage researchers to further investigate the neuropathophysiol-
ogy of depression associated with the caudate nucleus functioning. More evidence from neuroimaging studies 
is needed to provide arguments for the next caudate-DBS tests in treating TRD. In an early case study, DBS of 
the ventral caudate nucleus markedly improved symptoms of depression in a patient with MDD and comorbid 
obsessive-compulsive disorder104. No change in depressive symptoms, however, was recently observed during 
the stimulation of the caudate in a study of three TRD patients105 and authors concluded the caudate to be less 
promising DBS target than the nucleus accumbens.
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Increased theta and alpha powers in depression. We found a significantly higher power in the theta 
and alpha frequency bands in the depressed compared to the healthy control group in all the investigated subcor-
tical structures consistently at both the population and single-subject levels. The power decrease in the beta and 
delta frequency bands was observed only in the right striatum at both levels.

Our findings might be in line with previous observations in the sensor space of the scalp EEG. Abnormally 
high power in alpha106–108 and theta106,108,109 frequency bands in parietal and occipital regions were found in 
depressed patients, lower than normal beta and delta power were also reported108. Recent evidence points, how-
ever, to opposite power changes showing that theta and alpha power might decrease, while beta power increases 
in depression110. Moreover, the same study reported negative association of the posterior alpha power with the 
depression severity. While changes in cortical theta and alpha activity were suggested to be inversely related to the 
level of cortical activation, enhancement of the cortical beta power was suggested to reflect higher level of anxiety 
symptoms in depressed patients106. To the best of our knowledge there is only one study that directly recorded 
electrophysiological activity in subcortical structures in depressive patients. In this study, a larger alpha activity 
in MDD patients compared with obsessive compulsive disorder was found in the limbic DBS targets (the anterior 
cingulate and the bed nucleus of the stria terminalis)111. Moreover, in the same study, the increased alpha power 
correlated with severity of depressive symptoms. Nevertheless, in spite of parallels with prior reports, the current 
link between the power changes in subcortical structures and depression awaits replication.

Lower network impairments with more medication. We found an inverse relationship between the 
intake of medication and the impairment of the investigated networks. Particularly, increased intake of antide-
pressants, antipsychotics, and mood stabilizers was associated with reduction of the global efficiency. This finding 
might be related to the pharmacological effect on the brain activity, i.e. a change towards the normalization of the 
hyper-connectivity in the cortico-striatal-pallidal-thalamic and limbic networks. The low sample size and great 
variability in medication made it, however, impossible to examine any potential influence of medication on the 
network impairments by comparing patients receiving a specific drug with those not receiving it. To summarize 
the various medications, an ordinal variable was used that is only a rough measurement of medication usage. 
Moreover, the duration of the illness rather than the duration of the specific drug intake was considered in our 
study. Only doses of medication actually taken at the time of experiment were taken into consideration. The possi-
ble accumulated effect of specific drugs on connectivity results, thus, cannot be assessed. Therefore, the observed 
relationship between the global efficiency and medication should be viewed with caution. Interestingly, we have 
not found significant correlation between the global efficiency and intake of benzodiazepines. This negative find-
ing suggests that even though benzodiazepines are known to have an effect on electrophysiological correlates of 
brain functions, the network properties might not be influenced. There were no significant correlations between 
the connectivity results and depressive symptom severity or other parameters describing the status of depression 
within the patient group. We suppose that heterogeneity of our dataset, in which patients with different disorders 
were included, might underlie this observation. We also found no relation between the connectivity results and 
education level or age. This finding suggests independence of the observed impairment on these demographic 
variables, however, the current sample size might be insufficient for such investigations.

Limitations of the study. We here report sources of scalp-recorded electrophysiological brain activity in deep 
brain structures. We are aware of the limitations of EEG in sensing deep brain structures. However, previous 
work using simulations and source reconstruction provided indirect evidence for the detectability of subcor-
tical sources in non-invasive EEG and magnetoencephalographic recordings112–115. Moreover, recent simulta-
neous scalp and intracranial recordings directly demonstrated that activity in deep brain structures spread to 
the scalp103,116. While Seeber and colleagues103 used individual head models that improve source localization 
precision, a generic head model was used in the magnetoencephalographic study by Pizzo et al.116, similar to the 
approach used in our study. Nevertheless, the results that we report have to be interpreted with caution and need 
further validation by intracranial recordings in future studies.

conclusions
We found an overall increase in power in theta and alpha frequency bands in depressive patients compared to 
healthy controls in the subcortical regions constituting the cortico-striatal-pallidal-thalamic and limbic circuits. 
The network measures showed a higher than normal functional connectivity arising from the right amygdala in 
depressive patients. The amygdala seems to play an important role in neurobiology of depression. Resting-state 
EEG directed functional connectivity is a useful tool for studying abnormal brain activity in depression.

Methods
Subjects. Data were collected from 26 depressive patients and 25 healthy controls. The two groups were 
matched by gender and there were no significant differences in age or education (see Table 1). On a subsample 
of this dataset we recently showed that the severity of depressive symptoms correlates with resting-state micro-
state dynamics117. The patients were recruited at the Department of Psychiatry, Faculty of Medicine, Masaryk 
University and University Hospital Brno, Czech Republic. The diagnostic process had two steps and was deter-
mined based on the clinical evaluation by two board-certified psychiatrists. First, the diagnosis was made accord-
ing to the criteria for research of the International Classification of Disorders (ICD-10). Second, the diagnosis 
was confirmed by the Mini International Neuropsychiatric Interview (M.I.N.I.) according to the Diagnostic and 
Statistical Manual (DSM-V). All patients were examined in the shortest time period after the admission and 
before the stabilization of treatment, typically during their first week of hospitalization. All patients met the 
criteria for at least a moderate degree of depression within the following affective disorders: bipolar affective 
disorder (F31), depressive episode (F32), recurrent depressive disorder (F33). Exclusion criteria for patients 
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were any psychiatric or neurological comorbidity, IQ <70, organic disorder with influence on the brain func-
tion, alcohol dependence or other substance dependence. All patients were in the on-medication state with 
marked interindividual variability in specific medicaments received. Control subjects were recruited by general  
practitioners from their database of clients. Control subjects underwent the M.I.N.I. by board-certified psychia-
trists, to ensure that they had no previous or current psychiatric disorder according to the DSM-V criteria. The 
scores on the Montgomery-Åsberg Depression Rating Scale (MADRS), a specific questionnaire validated for 
patients with mood disorders118 and the Clinical Global Impression (CGI)119, a general test validated for mental 
disorders, were used to evaluate the severity of depressive symptoms in patients. The status of depression was fur-
ther described with life time count of depressive episodes and illness duration. Medication in 24 hours preceding 
the EEG examination was also recorded (see Table 2). This study was carried out in accordance with the recom-
mendations of Ethics Committee of University Hospital Brno with written informed consent from all subjects.

EEG - data acquisition and pre-processing steps. Subjects were sitting in a comfortable upright posi-
tion in an electrically shielded room with dimmed light. They were instructed to stay as calm as possible, to keep 
their eyes closed and to relax for 15 minutes. They were asked to stay awake. All participants were monitored by 
the cameras and in the event of signs of nodding off or EEG signs of drowsiness detected by visual inspection, 
the recording was stopped. The EEG was recorded with a high density 128-channel system (EGI System 400; 
Electrical Geodesic Inc., OR, USA), fs = 1 kHz, and Cz as acquisition reference.

Five minutes of EEG data were selected and visually assessed. Noisy channels with abundant artifacts were 
identified. EEG signal was band-pass filtered between 1 and 40 Hz with a 2nd-order Butterworth filter avoid-
ing phase-distortion. Subsequently, in order to remove physiological artifacts, e.g. ballistocardiogram and 
oculo-motor artifacts, infomax-based Independent Component Analysis120 was applied on all but one or two 
noisy channels. Only components related to ballistocardiogram, saccadic eye movements, and eye blinking 
were removed based on the waveform, topography and time course of the component. Then, the cleaned EEG 
recording was down-sampled at fs = 250 Hz and the previously identified noisy channels were interpolated using 
a three-dimensional spherical spline121, and re-referenced to the average reference. For the following analyses, 
thirty 2-s EEG epochs free of artifacts were selected per subject. All the pre-processing steps were done using 
the freely available Cartool Software 3.70, programmed by Denis Brunet122 and custom functions in MATLAB® 
R2018b.

EEG source estimation. We applied the LAURA algorithm implemented in Cartool122 to compute the 
source reconstruction taking into account the patient’s age to calibrate the skull conductivity123–125. The method 
restricts the solution space to the gray matter of the brain. Then, the cortex was parcellated into the 90 Automated 
Anatomical Labeling brain regions126. The dipoles in each ROI were represented with one unique time-series by 
a singular-value decomposition127.

Time-variant multivariate autoregressive modeling. The cortical waveforms computed after applying 
the singular-value decomposition, were fitted against a time-variant (tv) multivariate (MV) autoregressive (AR) 
model to overcome the problem of non-stationarity of the EEG data. If the EEG data are available as several trials 
of the same length, the cortical waveforms computed from the EEG data generates a collection of realizations 
of a multivariate stochastic process which can be combined in a multivariate, multi-trial time series67,127,128. The 
tv-MVAR matrices containing the model coefficients were computed in the framework of a MATLAB toolbox 
(code available upon reasonable request to the authors) that implements the adaptive Kalman filtering and infor-
mation Partial Directed Coherence (iPDC) in the source space67,129,130. The model order of the tv-MVAR and the 
Kalman filter adaptation constant were chosen applying the method proposed by Rubega and colleagues128, i.e., 
evaluating the partial derivatives of a residual minimization function obtained varying simultaneously both p (p 
Є [1, 15]) and c (c Є [0, 0.03]). By means of the model coefficients, we computed the parametric spectral power 
density and the iPDC absolute values for each subject. For each patient, we obtained a 4-dimensional matrix 
[ROIs × ROIs × frequency × time] that represented the directed information flow from one ROI to another for 
each frequency at each time sample. In this way we performed the analysis on the single-subject level to compare 
the two groups quantitatively.

Since the features in the power spectra were consistent among subjects in the same population (patients vs 
controls), we also performed the analysis on the population level. A population subject was built by estimating the 
tv-MVAR model, where each trial in the input was a different subject. One power spectral density matrix and 
one connectivity matrix [ROIs × ROIs × frequency × time] were obtained for each group (controls and patients). 
In other words, subjects were combined as trials, assuming respectively humans as multiple realizations of their 
own brain processes, with the purpose to show that the two approaches, i.e., single subject and population, give 

Characteristic
Patients
(n = 26)

Controls
(n = 25) t-value df p-value

Age: mean ± SD 51.9 ± 9.1 49.5 ± 8.7 0.97 49 0.34

Gender: female, n 11 10

Educationa: mean ± SD 1.9 ± 0.9 2.3 ± 0.7 −1.70 49 0.10

Table 1. Demographic data. aEducation was classified into three levels: 1 = no high school, 2 = high school, 
3 = university studies.

https://doi.org/10.1038/s41598-020-61264-z


9Scientific RepoRtS |         (2020) 10:4398  | https://doi.org/10.1038/s41598-020-61264-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

equivalent results in differentiating patients vs controls. In the last decade, population-based approaches were 
successfully exploited in computer simulations engineered to evaluate the safety and limitations of closed-loop 
control treatment algorithms131,132. Population-based approaches for MVAR/PDC modelling are currently lacking 
and this might be considered a first attempt justified by the consistent features estimated in the frequency domain 
among subjects belonging to the same population (patients vs controls). Further details on the connectivity  
estimation are reported in the Supplementary Information.

Network metrics. In order to study the peculiarities of the brain network in patients vs controls, the brain 
was represented as a digraph defined by a collection of nodes and directed links (directional edges). Nodes in 
the brain network represent brain regions, i.e., the 90 ROIs, while the directed links represent the values com-
puted by iPDC. Thus, the weight of such link can vary in the interval [0–1] and it represents the amount of 
mutual information flowing between ROIs. We defined twelve ROIs, including the bilateral amygdala, anterior 
cingulum, thalamus, putamen, caudate, and pallidum, to examine the directed functional connectivity between 
these seeds and the whole brain. Significant differences in power between patients and controls were observed 
in the single-subject level in alpha and theta frequency bands in all these six anatomical structures. Therefore, 

Patient
ICD-10 
diagnose

Number of 
episodes

Illness duration 
(years)

MADRS 
score

CGI 
score BZD

ADP/
AP/MS

AD/AP/MS 
medication scale

1 F31.4 3 2 27 4 2 AD, AP, 
MS 3

2 F32.2 1 0.5 24 5 0 AD 2

3 F32.1 1 1 15 4 2 AD 2

4 F31.5 5 20 39 6 0 AP 2

5 F33.1 3 7 18 4 0 AD 1

6 F33.1 2 8 9 3 1.33 AD 1

7 F32.1 1 1 24 4 1.33 AD, AP 3

8 F31.4 4 27 29 5 2 AP 2

9 F33.3 2 5 36 6 1 AD, AP 4

10 F33.1 3 19 21 4 1 AD 1

11 F33.3 2 2 38 5 6 AD, AP 4

12 F33.2 2 1 39 5 3 AD, AP 4

13 F32.3 1 0.08 21 5 2 AD, AP 4

14 F33.2 5 21 32 5 0 AD, AP 3

15 F33.3 2 2 38 6 3 AD, AP 4

16 F32.3 1 0.08 37 6 2 AD, AP 4

17 F33.1 3 4 18 4 0 AD, AP 4

18 F31.3 2 16 28 4 0 AP, MS 4

19 F31.3 11 24 23 4 1 AP, MS 4

20 F32.2 0 0,17 23 4 1 AD, AP 4

21 F33.1 1 9 34 5 2 AD 2

22 F32.3 0 0,04 37 6 1 AD, AP 4

23 F33.3 1 11 49 6 3 AD, AP 4

24 F33.1 3 20 23 4 0 AD 2

25 F33.1 5 24 26 4 2 AD, AP, 
MS 4

26 F32.1 0 0,17 23 4 3 AD, AP 3

Table 2. Patient characteristics. F31.3 - Bipolar affective disorder, current episode mild or moderate depression; 
F31.4 - Bipolar affective disorder, current episode severe depression without psychotic symptoms; F31.5 - 
Bipolar affective disorder, current episode severe depression with psychotic symptoms; F32.1 - Moderate 
depressive episode; F32.2 - Severe depressive episode without psychotic symptoms; F32.3 - Severe depressive 
episode with psychotic symptoms; F33.1 - Recurrent depressive disorder, current episode moderate; F33.2 -  
Recurrent depressive disorder, current episode severe without psychotic symptoms; F33.3 - Recurrent 
depressive disorder, current episode severe with psychotic symptoms; BZD - benzodiazepine equivalent 
dose139; AD - antidepressants (mirtazapine, citalopram, venlafaxine, vortioxetine, sertraline, trazodone); 
AP - antipsychotics (risperidone, olanzapine, quetiapine, amisulpride, aripiprazole); MS - mood stabilizers 
(valproate, lamotrigine, carbamazepine); AD/AP/MS medication scale: 1 – one medication in sub-therapeutic 
doses, 2 – one medication in therapeutic doses, 3 – combination of medications with one in therapeutic doses, 
4 – combination of medications with more than one in therapeutic doses; MADRS (Montgomery–Åsberg 
Depression Rating Scale): score is between 0 and 60, the higher the score the higher the depressive symptom 
severity; CGI (Clinical Global Impression scale): healthy (1) – most extremely ill (7). Four patients were 
undergoing the first (patient 3) and second (patient 4 and 9) week of electroconvulsive therapy and the first 
week of repetitive transcranial magnetic stimulation (patient 5). No clinical effect of these neurostimulation 
treatments was apparent.
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we restricted the network analysis to this [4–12] Hz frequency range. To evaluate how much the system is fault 
tolerant and how much the communication is efficient, the global efficiency for the whole brain and the local 
efficiency, clustering coefficient, strength and outflow for each of these twelve investigated ROIs were computed. 
To compute all the graph measures, the scripts and functions implemented on the freely available MATLAB 
toolbox133 were customized.

Global efficiency. Global efficiency is defined as the average minimum path length between two nodes in the 
network. This measure is inversely related to topological distance between nodes and is typically interpreted as a 
measure of the capacity for parallel information transfer and integrated processing134.

Local efficiency. Local efficiency is defined as the average efficiency of the local subgraphs135, i.e. the global 
efficiency computed on the neighborhood of the node. It reflects the ability of a network to transmit information 
at the local level. This quantity plays a role similar to the clustering coefficient since it reveals how much the sys-
tem is fault tolerant, i.e., it shows how efficient the communication is between the first neighbors of i when i is 
removed.
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i and node j, i.e., a 1ij =  if the link between i and j exists, =a 0ij  otherwise. N  is the set of nodes in the network. n 
is the number of nodes and 
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Clustering coefficient. Clustering coefficient reflects the prevalence of clustered connectivity around an 
individual brain region136:
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where ti are the number of triangles around the node i, and ki is the degree of node i, i.e., the number of links 
connected to node i. In our case of a weighted directed network, a weighted directed version of clustering  
coefficient was used137:
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where →ti  are the number of directed triangles around the node i, ki
out is the out-degree of node i, ki

in is the 
in-degree of node i, and aij is the connection status between the nodes i and j, i.e., =a 1ij  if the link between i and 
j exists, a 0ij =  otherwise. N  is the set of nodes in the network.

Strength and outflow. Finally, the connectivity patterns between the different cortical regions were sum-
marized by representing the strength that quantifies for each node the sum of weights of all links connected to the 
node and the total outflow from a region toward the others, generated by the sum of all the statistically significant 
links obtained by application of the iPDC. The greatest amount of information outflow depicts the ROI as one of 
the main sources (drivers) of functional connections to the other ROIs138.

Laterality. For all the network metrics explained in the previous paragraph, we also computed a laterality 
index, which is defined as −

+
Left Right
Left Right

metric metric

metric metric
 to test if the measures significantly differentiate between the two hem-

ispheres. Laterality index and all network metrics were calculated for both groups.

Statistical analysis. To assess whether or not the changes in the network metrics were statistically signifi-
cant between patients and controls, paired Student’s t-tests were computed under the hypothesis of normal distri-
bution of samples (Lilliefors test), otherwise Wilcoxon rank-sign tests were considered. To test whether the age 
and education level predict the values of the spectral power distribution and the network metrics in patients, a 
multiple linear regression was performed. We also tested the influence of the clinical data on the connectivity 
results. A multiple linear regression was performed exploiting correlation of the connectivity results with four 
variables describing the status of depression and two variables describing the medication status in terms of the 
intake of benzodiazepines (BZP), antidepressants, antipsychotics, and mood stabilizers (AD/AP/MS). These six 
clinical variables are provided for each patient in Table 2. We checked through the following multiple linear 
regression models (4) (5), if the response variable Y depends on a number of predictor variables Xi:

β β β ε= + + … +Y X X (4)k k0 1 1

β β β ε= + + +Y X X (5)0 1 2
2
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where the ε are the residual terms of the model and β0, β1, β2, …, βk are the k regression coefficients. Both the 
clinical data and the power and network metrics were used once as predictors and once as response variables.

Ethics statement. All participants gave their written informed consent prior to the experiment and the 
study received the approval of the Ethics Committee of University Hospital Brno in Brno, Czech Republic. All 
experiments of this study were performed in accordance with relevant guidelines and regulations.
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