
R-SAP: a multi-threading computational pipeline
for the characterization of high-throughput
RNA-sequencing data
Vinay K. Mittal1,2 and John F. McDonald1,2,3,*

1School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, 2Parker H. Petit Institute for
Bioengineering and Bioscience, Georgia institute of Technology, Atlanta, GA 30332 and 3Ovarian Cancer
Institute, Atlanta GA, USA

Received September 23, 2011; Revised December 19, 2011; Accepted January 12, 2012

ABSTRACT

The rapid expansion in the quantity and quality of
RNA-Seq data requires the development of sophi-
sticated high-performance bioinformatics tools
capable of rapidly transforming this data into mean-
ingful information that is easily interpretable by
biologists. Currently available analysis tools are
often not easily installed by the general biologist
and most of them lack inherent parallel processing
capabilities widely recognized as an essential
feature of next-generation bioinformatics tools. We
present here a user-friendly and fully automated
RNA-Seq analysis pipeline (R-SAP) with built-in
multi-threading capability to analyze and quantitate
high-throughput RNA-Seq datasets. R-SAP follows
a hierarchical decision making procedure to accur-
ately characterize various classes of transcripts and
achieves a near linear decrease in data processing
time as a result of increased multi-threading. In
addition, RNA expression level estimates obtained
using R-SAP display high concordance with levels
measured by microarrays.

INTRODUCTION

The cellular transcriptome is the complete set of
protein-coding mRNAs, non-coding RNAs and other
regulatory RNAs present in a cell (1). In eukaryotes, the
complexity of the cellular transcriptome is enhanced
by the presence of alternatively spliced RNAs, fusion
and other types of chimeric transcripts and transcripts
encoded within previously uncharacterized genomic
regions (2,3). The complexity of the transcriptome
of cancer and other diseased cells can be even more
complex due to deregulation of the cellular splicing ma-
chinery, and the transcription of various genomic

mutations that contribute to aberrant cell function (4,5).
For these reasons, transcriptome profiling has become
an important tool, not only in the diagnosis of can-
cer and other diseases, but additionally for the identifica-
tion of putative molecular targets for therapeutic
intervention (6,7).
While transcriptomics was first heralded by the intro-

duction of microarray technologies over two decades ago
(8,9), the field is currently undergoing revolutionary ex-
pansion by virtue of the application of deep-sequencing
technologies for the quantitative and qualitative charac-
terization of cellular transcripts (10). Commonly referred
to as ‘RNA-Seq’, these high-throughput methodologies
involve the massively parallel sequencing of millions of
copies of fragments of cellular transcripts (11). Contem-
porary sequencing platforms can generate megabytes to
gigabytes of data in a single sequencing run (10). This
magnitude of data not only allows for the characterization
of moderate to high abundant transcripts, it also provides
sufficient coverage and depth to characterize rare and po-
tentially novel low abundant transcripts that went
undetected by earlier methodologies.
The rapid expansion in the quantity and quality of

RNA-Seq data requires the development of sophisticated
high-performance bioinformatics tools capable of rapidly
transforming this data into meaningful information that is
easily interpretable by biologists. Current approaches to
the analysis of RNA-Seq data involve the alignment of
sequencing reads to a reference genome and subsequent
association of these genome mappings with established
transcript models to quantify expression levels and
detect mRNA isoforms, fusion genes and other novel tran-
script structures [e.g. (12–18)]. Despite their obvious
utility, currently available analysis tools are not easily in-
stalled by the general biologist and most of them lack
inherent parallel processing capabilities widely recognized
as an essential feature of next-generation bioinformatics
tools (19,20).
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We present here an automated RNA-Seq analysis
pipeline (R-SAP) with built-in multi-threading capability
to analyze and quantitate high-throughput RNA-Seq
datasets. R-SAP is easy to install and follows a hierarch-
ical decision making procedure to characterize various
classes of transcripts. It compares reference genome align-
ment of sequencing reads with sets of well-annotated tran-
scripts in order to detect novel isoforms. Reads that map
completely within known exon boundaries are used for
gene-expression quantification. Fragmented alignments
of sequencing reads are used to detect chimeric transcripts
such as fusion genes. Novel exons detected within previ-
ously annotated inter-genic and intronic regions are also
reported. R-SAP modules can be customized by a
user-adjustable set of parameters for particular applica-
tions. R-SAP generates output files that contain transcript
assignments for the sequencing reads, gene-expression
levels, lists of aberrantly spliced genes and data statistics.
The computational outputs can be viewed with online
genome browsers by uploading the R-SAP generated
browser compatible output file. To demonstrate the
applicability of the pipeline, we analyzed publically avail-
able RNA-Seq data generated from the Roche 454 and the
Illumina GA platforms. We achieved a linear decrease in
the data processing time as a result of increased multi-
threading. RNA expression level estimates obtained
using our pipeline displayed high concordance
with levels measured by microarrays. R-SAP program
is publicly available at www.mcdonaldlab.biology.gatech
.edu/r-sap.htm.
In the following sections, we describe the architecture of

the pipeline and results from the analysis of the test data
to evaluate various modules of the pipeline.

MATERIALS AND METHODS

Overview of the pipeline

R-SAP compares reference genome mappings of
RNA-Seq reads with the genomic coordinates of known
and well-annotated transcripts (reference transcripts or
known transcript models) in order to detect known and
new RNA isoforms and, chimeric transcripts. There are

four core modules in R-SAP’s workflow (Figure 1):
(i) initial alignment screening, (ii) characterization with ref-
erence transcripts (iii) chimeric transcript detection and
(iv) RNA expression quantification. A main wrapper
script controls the flow of data to these core modules
(Figure 1).

To initiate analyses using R-SAP, the user provides two
required inputs for the pipeline: the sequence alignment
file and known transcripts’ coordinate file. Currently
R-SAP accepts alignment files only in psl format that
are generated by mapping RNA-Seq reads to the reference
genome using BLAT (Blast like alignment tool) (21) or
SSAHA2 (Sequence search and alignment by hashing al-
gorithm) (22). RNA-Seq reads mapping to the genome
may result in the alignments scattered across multiple
exons separated by introns. We chose psl as the alignment
format for the pipeline because the scattered alignments
are precisely stitched together and reported as a large
single alignment. As a result, for each sequencing read
the most likely alignment and corresponding genomic
locus can be readily found in the alignment files.
Moreover, the psl format preserves the orientation of
alignment blocks originating from the contiguous
genomic loci enabling their accurate re-mapping to the
annotated exons and determination of associated refer-
ence structural variants.

R-SAP is also configured to work with two of the cur-
rently available transcript assemblers: Cufflinks (23) and
Scripture (24). Assembled transcripts can be supplied to
R-SAP either in GTF (Gene Transfer Format) or in BED
(Browser Extensible Data) format. GTF and BED are
default output formats from Cufflinks and Scripture
respectively.

Known transcript model files for the reference genome
can be obtained from the UCSC genome database (25),
the UCSC table browser (26) or the Ensembl database
(27). R-SAP accepts known transcript model file formats
in standard table browser format, GTF or BED. The
analysis stringency can be adjusted using a set of cutoff
and threshold values (described in Supplementary
Methods section) provided by the user at the beginning
of the pipeline.

Figure 1. Architecture of R-SAP and data flow in the pipeline. Wrapper script begins the execution of the pipeline and divides the data in to smaller
sub-sets. Multiple threads are created and each core module in each thread is run under the ‘Control-module’. Output files are merged by the
wrapper script and corresponding output files are written to the disk.
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R-SAP begins with the parsing of input data files for the
format check and verification of the input parameters
using the main wrapper script. The same wrapper script
then divides the input alignment file into the number of
parallel threads specified by the user (default is one
thread). Each part of the input file is supplied to the set
of core modules, in parallel. At the completion of each
thread run, the main wrapper script merges the intermedi-
ate output files and creates the final set of output files.

Alignment screening. The first step in the pipeline is to
select the most likely alignment for each of the sequencing
reads as reads may have multiple genomic hits. Alignment
hits with the highest alignment identity, alignment score
and read coverage among all the genomics hits are selected
as the best alignments (top-scoring) on the genome (see
Supplementary Methods section). Top-scoring alignments
are then classified as high-scoring if they have only one
best possible alignment with identity and read coverage
values above the cutoff (default 95% and 90%, respect-
ively). Reads that map to multiple genomic loci with
equivalent alignment identity and read coverage are clas-
sified as multi-hit reads. Those reads that produce low
quality alignments with identity and/or read coverage
below the threshold values are further analyzed by a
separate module of the pipeline to detect chimeric tran-
scripts (see below). The remaining reads that are low
quality alignments are classified as ‘discarded’. Both ‘dis-
carded’ and multi-hits reads are excluded from further
analysis and reported separately.

Characterization with reference transcripts. High-scoring
reads from the alignment module are subjected to the
characterization module where genome mapping coordin-
ates of the sequencing reads are precisely compared
with the transcriptional and exons boundaries of the
well annotated transcripts. Mapping of a read within
the known exon boundaries is considered as indicative
of normal splicing whereas out of exon or partial exon
mapping is indicative of aberrant splicing or the

presence of a novel isoform. The characterization
strategy is outlined in Figure 2. Read alignments that
skip exonic bases because of discontinuous blocked align-
ment on the reference genome are characterized as
exon-deletions in that reference transcript (Figure 2B
and C). Small deletions (10 bp by default) are permitted
in the alignment in order to tolerate small gaps due to
sequencing errors. Read mappings, that span multiple
exons are used to detect exon-skipping events (Figure 2D).
Partial mapping of the sequencing reads onto known

exons results in either gene boundary expansion
(Figure 2E and F) or extension of exons into introns
(Figure 2G and H). Slight extensions in the alignment
beyond the exon boundary are tolerated by applying a
minimum exon extension cutoff (2 bp default).
Sequencing reads that extend 50-terminal exons

(50-UTR) into upstream promoter regions (Figure 2E)
are considered the result of potential new transcription
start sites (alternative TSS). Similarly, reads that extend
30-terminal exons (30-UTR) into downstream regions are
characterized as potential alternative polyadenylation site
variants (Figure 2F). Intron-retentions (or complete
intron inclusion) are detected when a read alignment com-
pletely spans an intron including at least part of flanking
exons (Figure 2H). Such events are included in
the internal-exon-extensions characterizations. Reads
mapping completely within introns are characterized as
intron-only reads (Figure 2I). Sequencing reads that do
not map to any known transcript and fall within a
pre-specified gene radius (5-kb default setting), on either
side of the transcript, are characterized as neighboring-
exons (Figure 2J). Clusters of such reads may represent
the existence of new transcriptional boundaries and can be
aggregated with the known transcript models. Reads
falling outside the gene-radius are designated
as gene-desert reads (Figure 2K). Some of the high-scoring
reads may exhibit multiple characterizations with the re-
ference transcripts. For example, a read may
exhibit internal-exon-extension simultaneously with a
50-UTR expansion. Such reads are sub-characterized

Figure 2. Characterization strategy of R-SAP for high-scoring reads. Read mappings (black boxes) are compared with the known exon (empty
boxes) and intron (black lines). The larger empty boxes represent coding regions while the smaller empty boxes represent untranslated regions. (A)
Read mapping within the known exon. (B, C) Discontinuous blocked alignment resulting in exonic base skipping (dashed-line box). (D) Skipping of
third exon. Exon skipping is also characterized as exon-deletion. (E) Extended 50-UTR. (F) Extended 30UTR. (G) Exon extended into intron. (H)
Intron retention. (I) Read mapping completely within the intron. (J) Read mapping outside the permissible (d) gene-radius (K) Read mapping
outside the permissible (d) gene-radius.
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as multiple-annotation reads. We apply one additional
stringency criterion during the characterization step to fur-
ther filter out possible sequencing artifacts. Sequencing
reads that expand the transcript boundary by >100 kb
or have alignment blocks separated by more than the
cutoff distance value (100 kb default setting) are conserva-
tively reported as uncharacterized and excluded from
further analysis.
As a default setting, the pipeline characterizes each read

with only one best fitting reference transcript. The best fit-
ting transcript is the one with maximum exon overlap and
minimum non-exonic regions (intron and intergenic)
overlap with the read. Reference transcripts with
protein-coding potential are selected over the non-
protein-coding transcripts. In cases where multiple tran-
scripts are equally likely, the best fitting transcript is
selected randomly. The pipeline provides the user with
the option to inactivate all of these defaults settings in
which case all possible reference transcript associations
will be displayed.

Chimeric transcript detection. Chimeric transcripts may be
due to genomic rearrangements such as translocations and
inversions, or transcriptional processes such as
co-transcription, trans-splicing or aberrant intra-genic
(within the same gene) splicing (14,15,28,29). Sequencing
reads from chimeric transcripts are very likely to produce
discrete alignments to distant or close genomic loci.
In order to detect candidate chimeric reads, all the reads
with top-scoring alignments displaying low query
coverage (below the cutoff coverage value, default 90%)
and an alignment identity greater than the cutoff value
(default 95%) are selected. These reads are considered
potential chimeric reads only if the region not covered in
the top-scoring alignment of the read is at least 20 bp
(default gap threshold). The 20 bp was selected as the
default setting because alignment algorithms will not
produce a significant alignment for the relatively short
remaining part of the read. Once the above criteria are
met, alignments are parsed to obtain the alignment pair
for the top-scoring alignment (Figure 3A).
Alignments are filtered out if the alignment identity

is less than the cutoff identity value (default 95%).

The alignment with the highest coverage on the remaining
part of the read and with highest alignment identity is
selected as the best possible pairing alignment. In
addition, intra-chromosomal pairing is preferred over
inter-chromosomal pairing. Small overlaps (less than
one-third of alignment pair’s coverage on remaining part
of the read) and gaps (not more than the gap-threshold,
20 bp default) between the two read segments correspond-
ing to alignment pairs are allowed. To ensure the validity
and significance of the alignment, chimeric read segments
are required to be at least 25-bp long. Thus, chimeric reads
shorter than 50 bp are rejected. False positives are further
minimized by excluding chimeric reads that produce align-
ments from repetitive genomic regions. If more than one
hit are identified for any part of a chimeric read with
identity above the cutoff value and with >90% coverage
on the same region of read sequence, the candidate
chimeric transcript is rejected as a false positive. The
remaining alignment pairs are associated with reference
transcripts and categorized in various chimeric read struc-
tures according to the genic or intergenic regions to which
they map (Figure 3B–F).

Expression level quantification. Reference transcript as-
signment information for exon-only and intron-only
reads is consolidated from multiple threads into a single
file. Expression levels are quantified using the RPKM
(reads per kilobase of exon model per million mapped
reads) method proposed by Mortazavi et al. (17).
Transcript level RPKM values are calculated using
exon-only reads and similarly the RPKM value for each
individual intron is calculated using intron-only reads.
R-SAP estimates expression values only if the input align-
ment file is provided in psl format. Since, assembled tran-
script files do not contain read level mapping information,
expression estimation is not possible using these files.

Once each of the above modules are run, annotation
and data statistics are collected from various intermediate
output files and merged to generate the final output files.
The final set of output files contains RNA level expression
files, assignment of known transcripts to the high-scoring
reads and their characterization, chimeric reads with an-
notation and data statistics files with distribution of reads

Figure 3. Schematic diagram of the detection and annotation of chimeric transcripts by R-SAP using fragmented genomic alignments. (A) Best
possible alignment pairs are selected for the reads displaying significant sequence similarity to the reference genome. Alignment fragments are then
individually compared with known transcript models. (B) Alignment pairs belong to two different genes (inter-chromosomal or intra-chromosomal).
(C) Alignment pairs mapped to the same gene but in opposite orientation on the reference genome. (D) Both pairs mapped within the same gene but
their order on the sequencing read is opposite of their alignment order on the corresponding gene. (E, F) At least one alignment pair mapped to the
genomic region with no known gene from the reference gene set.
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over the various classes. Finally, browser compatible
out-put files containing annotation information of all the
reads are generated that can be uploaded to web
based genome browsers (such as UCSC and Ensembl)
for visualization purposes.

Implementation and requirements

R-SAP was implemented using Perl 5.8.0 (also the
minimum version of perl required to run the pipeline)
enabled with multi-threading and is compatible with all
UNIX and Windows based systems. Disk space required
during the pipeline run is �1.5 X the size of the input
alignment file.

Test datasets

MAQC Universal Reference Human data. The MAQC
Universal Reference Human Poly-A+ selected RNA-Seq
data compiled from Mane et al. (30) was obtained from
Short Read Archive (SRA accession SRX002934). The
data consisted of 881 555 of Roche’s 454 sequencing
reads with an average length of 258 bp from five 454
GS-FLX sequencing runs. 878 275 of those reads were
retained after low-complexity repeat trimming and short
read (<20 bp) exclusion (see Supplementary Methods
section). Raw microarray data (Affymetrix Human
U133Plus2.0) were downloaded from the Gene-expression
Omnibus (GEO accession: GSM589512). Four replicates
of TaqMan qRT–PCR measurements for the same sample
were also obtained from Gene-expression Omnibus (GEO
accessions: GSM129641, GSM129640, GSM129639 and
GSM129638) that consisted of expression values for
1044 probes.

ENCODE lymphoblastoid cell line data. As a short read
ultra high-throughput data set, RNA-Seq data
for Gm12878 (lymphoblastoid cell line) from ENCODE
project (31) were downloaded from hgdownload.cse
.ucsc.edu /goldenPath/hg19/encodeDCC/wgEncode Cal
techRnaSeq/wgEncodeCaltechRnaSeqGm12878R2X75N
aIl200FastqRd1Rep1.f astq.gz. The data file contained a
total of 87929372 paired-end Illumina GA reads of read
length 75 bp. Microarray intensities (Affymetrix Human
Exon 1.0 ST chip) for the same sample were obtained
from GEO (accession: GSM472901).

NCBI nucleotide data. We searched ChimerDB 2.0 (32) to
obtain the GenBank accession IDs of the publicly avail-
able sequences that are considered chimeric transcripts.
Because these chimeric transcripts were computationally
detected, we limited the dataset to the high confidence
set of chimeric transcripts by choosing only those
chimeric transcripts that also represented fusion
gene pairs in the literature based annotation from
ChimerDB 2.0. In this way, we obtained 206 accession
IDs whose sequences were drawn from the NCBI’s nucleo-
tide database. Test datasets are also summarized
in Supplementary Tables S1–S2 and Supplementary
Methods section.

Methods

All RNA-Seq reads and GenBank sequences were mapped
to the reference human genome (hg18) using BLAT with
the default parameter settings for the DNA sequence
alignment in BLAT. We used RefSeq (33) transcripts
(hg18) as our reference set and the corresponding
genomic coordinates were downloaded using UCSC
Table browser.
To demonstrate the applicability of R-SAP, a complete

pipeline run was performed on the MAQC Reference
Human RNA-Seq dataset. For the evaluation of pipeline’s
expression estimation and isoform detection performance,
we employed the ENCODE Gm12878 cell line RNA-Seq
dataset in addition to MAQC RNA-Seq dataset. The high
confidence chimeric transcript dataset obtained from
Chimer DB 2.0 and NCBI was used for testing R-SAP’s
chimer-detection module. To evaluate R-SAP’s RNA-seq
quantifications, the output was compared with the results
of microarray gene-expression analyses and TaqMan
qRT–PCR measurements carried out on the same cells.
R-SAP’s expression estimation performance was bench-
marked using the same RNA-Seq datasets against
Cufflinks (23) and RSEM (34) while isoform predictions
were compared with those from Trans-ABySS (18) and
Cufflinks. Data analyses and comparison methods used
for the different platforms and programs are summarized
in Supplementary Methods section.
We performed R-SAP test runs using the default par-

ameter settings (described in Supplementary Methods
section) of the pipeline. These default values were previ-
ously derived and optimized empirically during the devel-
opment of R-SAP by running core modules individually
on various RNA-Seq datasets (data not shown here).

RESULTS AND DISCUSSION

Demonstration of the applicability of R-SAP using
the MAQC dataset

Sequencing tags from the test MAQC Reference Human
RNA-Seq dataset were initially mapped to the human ref-
erence genome. We mapped 855 159 (97.3% of the 878 275
cleaned reads, Table 1) and analyzed these alignments
using R-SAP. More than half (491 117/855 159 or
57.43%) of the mapped reads were high-scoring
(Table 1) and were further characterized with the RefSeq
transcripts (Table 2).
As expected from the RNA-Seq data, the majority

(299 473/491 117 or 61%) of the high-scoring reads
mapped to the exons (Figure 4 and Table 2). Slightly
more than half (54.42%; 267 279/491 117) of high-scoring
reads were exon-only reads that could be attributable to
24 461 RefSeq transcripts (Table 2). RPKM values (ex-
pression levels) for these RefSeq transcripts are presented
in Supplementary File S2. R-SAP identified a wide
spectrum of expression values (RPKM values) ranging
from a minimum of 0.046 for the TTN (titin or connectin)
gene to a maximum of 2112 for the MTRNR2L2
(humanin- like protein 2) gene. More than 1% (1.38%;
6786/491 117) of the high-scoring reads were found to be
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associated with exon-deletion events among the 4850
RefSeq transcripts (Table 2). Relatively few (840/6786 or
12.37%) of the events characterized by R-SAP as exon
deletions were attributable to exon-skipping events corres-
ponding to 620 RefSeq transcripts. While skipping of a
maximum of 20 exons was observed, the majority of the
exon skipping events involved skipping of only one exon
(Supplementary Figure S1). It is important to note that
the power and accuracy of R-SAP to detect splice variants
depends completely upon the length of the sequencing
reads. For instance, exon-skipping events are detected
when the read spans the flanking exons of the skipped
exon. Short reads from such new splice junctions will
not produce significant alignments on the genome and
hence will go undetected. Previously published RNA-Seq
studies detect exon skipping by mapping the short reads to
a synthetically created library of new splice junctions (12).

We observed that internal-exon-extension (3.75%,
Table 2) accounted for more than the extension of
known transcription boundaries (AlternativeTSS and
Alternative Polyadenylation) combined (0.25%+0.56%,
Table 2). These transcriptional events can be further
examined in the follow-up analysis. For example,
internal-exon-extension in the last intron or extension of
30-end of the transcript is indicative of the potential alter-
native polyadenylation site. The presence of a poly-A tail
or a poly-T prefix on the reads may confirm the presence
of a polyadenylation site (35). Internal-exon-extension
reads also included 361 reads that showed retention
of 305 introns in 275 of the RefSeq transcripts
(Supplementary Table S3).

The second most frequent category of high-scoring
reads identified by R-SAP (21.34%, Table 2) was intron-
only reads. While intron-only reads may occasionally
result from the presence of premature mRNAs containing
un-spliced introns in sequencing samples, intron-only
reads that are in high abundance may be indicative of
yet-to-be annotated exons. In an effort to separate these
potentially new ‘intronic exons’ from un-spliced introns,
RPKM values for each intron are calculated using
intron-only reads. Introns with RPKM values of the
same order of magnitude as the RPKM value of the cor-
responding annotated transcript are reported by R-SAP as
potentially new intronic-exons. Our pipeline reported 9707
introns containing potentially new exons that correspond
to 5890 of the RefSeq transcripts (presented in
Supplementary File S3). About 4% (17 935/491 117) of
the high-scoring reads were characterized as
neighboring-exons (Table 2). Further examination
revealed that the distribution of neighboring-exons was
biased downstream of 30-end of the RefSeq transcripts
relative to the 50-end (70% 30-end and 30% 50-end)

Gene-desert was the third most abundant category
(13.58%, 66 694/491 117) of the high-scoring reads
(Table 2). The remaining �1% of the high-scoring reads
were delegated to either the multiple-annotations (0.61%,
Supplementary Table S4) or uncharacterized (0.45%)
category (Table 2). Uncharacterized were those that
could not be associated with any known reference tran-
script by the pipeline. Examples for each type of

Figure 4. Distribution of the high-scoring reads from MAQC
Reference Human dataset onto RefSeq transcripts. ‘Exons’ includes
those reads characterized as Exons-only, Exon-deletion, Alternative
TSS, AlternativePolyadenylation, Internal-exon-extension and
Multiple-annotations. ‘Intergenic’ includes those reads characterized
as gene-desert or neighboring-exon, ‘Introns’ represent reads mapping
completely within introns and ‘Uncharacterized’ are those reads that
cannot be characterized with any RefSeq transcript (distribution is pre-
sented in Table 2).

Table 2. Number (%) of high-scoring reads (obtained from MAQC

Reference Human dataset) partitioned by R-SAP into sub-categories

Sub-categories
(characterization)

Reads
(% high-scoring)

Represented RefSeq
transcripts

Exon-only 267 279 (54.42%) 24 461
Exon-deletion 6786 (1.38%) 4850
AlternativeTSS 1210 (0.25%) 1078
Alternative Polyadenylation 2759 (0.56%) 2042
Internal-exon-extension 18 419 (3.75%) 7648
Multiple-annotations 3020 (0.61%) 1973
Intron-only 104 824 (21.34%) 22 383
Neighboring-exons 17 935 (3.65%) 5929
Gene-desert 66 694 (13.58%)
Uncharacterized 2191 (0.45%)
Total high-scoring 491 117

Also, shown is the number of RefSeq transcripts represented in each
sub-category.

Table 1. Results of initial mapping and alignment screening of

MAQC Reference Human RNA-seq data using R-SAP

Description Reads

Total raw sequencing reads 881 555
Cleaned reads 878 275
Genome mapped reads 855 159

Classification Reads (% genome
mapped reads)

High-scoring 491 117 (57.43%)
Chimers 8458 (0.99%)
Multi-hits 29 279 (3.42%)
Discarded 326 305 (38.16%)
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characterization from the MAQC Reference Human
dataset are displayed in Supplementary Figures S2 (A–M).

AsMAQCReference Human sample was obtained from
a pool of cancer cell lines [Supplementary Materials
section of (36)] and since cancer cells have been previously
reported to harbor chimeric transcripts (28), we expected
to observe such transcripts in our test dataset. R-SAP
characterized 8458 reads (� 1% of the 855 159l mapped
reads) as chimeric transcripts (Table 1). This relative low
abundance of chimeric transcripts is consistent with the
fact that prevalence of such RNA-species is reported to
be typically low (37,38). These designated chimers were
further characterized by R-SAP as inter-chromosomal
(51.2%) or intra-chromosomal (48.8%) based on the target
genomic regions of the alignment pairs in the chimeric
transcripts (Table 3). Nearly 40% of the detected
chimeras were intra-genic (type-1 and type-2), i.e. chimeras
likely generated by deletions resulting from loop forma-
tion or other restructurings of the precursor transcript
(Table 3). Only 13.18% of the detected chimeras were
designated inter-genic chimeras, i.e. chimeras resulting
from the potential fusion of heterologous gene transcripts
(Table 3). The remainder of the aligned reads was
comprised of ‘discarded’ reads (38.16%, Table 1) and
multi-hits reads (3.42%, Table 1).

In summary, the MAQC Reference Human RNA-Seq
data mapped to 30 074 of the RefSeq transcripts (27 068
protein coding and 3006 non-protein coding). R-SAP clas-
sified these detected reference transcripts as either
normally or aberrantly spliced (Figure 5).

R-SAP’s performance compares favorably
with currently popular pipelines

Comparison with Trans-AbySS. To evaluate the perform-
ance of R-SAP against existing pipelines, we compared
R-SAP’s characterization results for the MAQC
Reference Human dataset with the output from another
commonly used pipeline, Trans-ABySS. Trans-ABySS is a
highly respected RNA-Seq data analysis pipeline used to
detect novel transcriptional events using the reference
genome alignments of contigs obtained after performing
a de novo assembly on short RNA-Seq reads. Since we
already had 454 reads that were long enough to be

treated as assembled contigs, we skipped the assembly
step and directly ran the intermediate step of the
Trans-ABySS that compares reference genome BLAT
alignment of contigs (long reads) with the known tran-
script models. We used the reference genome alignment
of 491 117 high-scoring reads (already classified by
R-SAP, Table 1) from the MAQC test dataset and
RefSeq transcripts (hg18) as reference transcript models.
Out of 491 117 high-scoring reads, Trans-ABySS
associated 127 913 (26%) reads with known exons while
R-SAP associated more than twice as many (299 473 or
61%, Figure 2, Table 2) high-scoring reads with known
exons. Of 127 193 exon-associated reads, Trans-ABySS
classified 4847 (0.98% of the 491 117 high-scoring) reads
as novel transcriptional events (exon-skipping, alternative
splice sites, intron-retention, UTR expansion and new
exons) (Supplementary Table S5) and the remaining
123 066 (25.05% of the 491,117 high-scoring) reads as
those mapping completely within the known exons.
Overall, Trans-ABySS reported a lower number of
novel transcriptional events compared with R-SAP’s char-
acterizations (4847 versus 32 194; exon-deletion,
AlternativeTSS, AlternativePolyadenylation, internal-
exon-extension, multiple-annotations; Table 2). The
lower number of novel transcriptional events detected by
Trans-ABySS may be due to the filtering of all the reads/
contigs that have single block alignments with the refer-
ence genome before novel transcriptional events are
detected. Table 4 displays the overlap between the char-
acterization categories that were comparable between
R-SAP and Trans-ABySS outputs. R-SAP predictions
included 91% to 100% of the Trans-ABySS predictions
(Table 4).

Comparison with Cufflinks/Cuffcompare. Cufflinks is a
widely used ab initio assembler that reconstructs full tran-
script structures using genomic alignments of RNA-Seq
fragments. Cufflinks also includes a module, called
Cuffcompare that compares the assembled transcripts to
reference or annotated transcripts in order to build tran-
script structural equivalence classes and also to detect

Figure 5. Distribution of RefSeq transcripts detected by R-SAP using
MAQC Reference Human dataset. ‘Normally spliced’ RefSeq tran-
scripts (5039 transcripts) showed no novel transcriptional events.
‘Single novel event’ transcript (15 796 RefSeq transcripts) and
‘Multiple novel event’ transcripts (9239 RefSeq transcripts) were
detected to have only one type and more than one type of novel tran-
scriptional event, respectively.

Table 3. Number (%) of chimeric transcripts detected by R-SAP

from MAQC Reference Human dataset and represented RefSeq

transcripts

Chimer type Reads
(% total chimers)

Inter-chromosomal 4327 (51.16%)
Intra-chromosomal 4131 (48.84%)

Chimer type Reads
(% total chimers)

RefSeq
transcripts

Intragenic (type-1) 2896 (34.24%) 1677
Intragenic (type-2) 524 (6.20%) 114
Gene-desert 3923 (46.38%) 253
Inter-genic 1115 (13.18%) 480
Total chimers 8458
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novel isoforms (23). In order to compare Cuffcompare
classifications with R-SAP’s characterizations, we used
our ENCODE lymphoblastoid cell line RNA-Seq test
data from which 38 524 540 reads were aligned to the
human reference genome (hg18) using TopHat (39)(see
Supplementary Methods section). Transcript assembly
on the genomic alignments was performed using
Cufflinks (see Supplementary Methods section) that
resulted in 76 101 transcripts of length varying from 73
to 38 345 bp. Assembled transcripts were reported in a
GTF file that contains genomic coordinates of assembled
transcripts and their exons. The GTF file was then used as
the input for R-SAP and Cuffcompare. Since TopHat
reports only high-quality alignments, we considered
Cufflinks assembled transcripts as high-scoring alignments
for R-SAP’s characterization module. RefSeq transcripts
(hg18) were used as a reference annotation set for R-SAP
and Cuffcompare (Supplementary Table S6 and S7).
Based on the classification definitions provided in

Cuffcompare’s manual [see also (23)], we selected those
classifications that were comparable with R-SAP’s charac-
terizations (comparisons are displayed in Table 5).
Cuffcompare reported 24 752 (32% of 76 101 assembled
transcripts) as novel-isoforms while R-SAP detected
40 025 (52.6% of 76 101) novel transcripts. 86% of
Cuffcompare’s novel-isoforms were also reported
by R-SAP as either exon-skipping (�97%), exon-deletion
(�87%), internal-exon-extension (�58%), intron-
retention (�33%), alternativeTSS (�62%) or
alternativePolyA (�57%) (Table 5). While Cuffcompare
reported exon-associated novel transcriptional events as a
generic category ‘novel-isoform’, R-SAP provided a more
comprehensive characterization of novel-transcriptional
events. Other R-SAP characterization classes such as
exon-only, intron-only, neighboring-exon and gene-desert
showed even higher overlap of 62%, 99.9% and 100%
respectively with Cuffcompare’ comparable classifications
(Supplementary Table S8).

Evaluation of RNA expression level quantification

MAQC human reference sample. Comparison between
R-SAP’s RPKM values from MAQC Human Reference
sample and gene-expression values determined from
Affymetrix U133 Plus2.0 resulted in a significant correl-
ation (Spearman correlation=0.67, P< 0.0001)
(Figure 6A) that is in agreement with the similar correl-
ations previously reported in (40,41). We further evaluated
our expression estimates by comparing with TaqMan

qRT–PCR measurements that is generally considered a
more accurate abundance estimation than microarrays.
After initial filtering, we retained 962 expressed RefSeq
transcripts from TaqMan qRT–PCR data, of which 727
were also present (RPKM> 0) in the RPKM estimates
from R-SAP. With TaqMan qRT–PCR estimates, we
observed a better correlation of (Spearman correl-
ation=0.88, P< 0.001, Figure 6B) our RPKM values
than those with microarray estimated values.

ENCODE lymphoblastoid cell line sample. To explore the
possibility that expression estimates may be further
improved by using higher throughput RNA-Seq data
than are available in the MAQC Human Reference
dataset, we used R-SAP to quantify expression levels
using RNA-Seq data of a lymphoblastoid cell line,
Gm12878, obtained from ENCODE (31) and compared
the results with microarray data (Affymetrix Human Exon
1.0 ST arrays) generated from the same cell line. We
mapped �54 million sequencing tags to the reference
human genome (alignment details are presented in
Supplementary Table S9) resulting in a highly significant
correlation (Spearman correlation=0.77, P< 0.0001)
between the RPKM values and the microarray generated
expression values (Figure 6C).

In order to benchmark R-SAP’s RNA expression
accuracy, we further compared R-SAP’s RPKM values
with those estimated from Cufflinks and RSEM using
ENCODE RNA-Seq dataset. Reference genome align-
ments for Cufflinks were generated using TopHat
(mapped �38 million reads) while reference transcript
(RefSeq hg18) sequence alignments were generated by
RSEM using BowTie (42) (mapped �26 million reads).
Cufflinks was run in isoform abundance estimation
mode in order to generate RPKM values for RefSeq tran-
scripts. Parameter setting for TopHat, Cufflinks and
RSEM runs are describe in Supplementary Methods
section. RSEM generated TPM (transcripts per million)
values as abundance measures that were further converted
to comparable RPKM values using the conversion
formula described in (43).

Since expression values are observed to be robust at 1.0
RPKM for �40 M mapped RNA-Seq reads (17) and our
ENCODE RNA-Seq dataset is comparable to that, we
used only reference transcripts with RPKM� 1 for
comparing expression values between different methods.
With Cufflinks RPKM estimates, we observed a high cor-
relation of 0.84 (P< 0.0001). Surprisingly, RSEM’s ex-
pression values showed relatively low correlation with

Table 4. Comparison between R-SAP and Trans-ABySS characterization sub-categories for the high-scoring reads from MAQC Reference

Human dataset (R-SAP characterizations include reads from ‘multiple-annotations’ category) (Table 2 and Supplementary Table S4)

R-SAP characterization Trans-ABySS characterization Number of associated reads Characterization overlap

R-SAP Trans-ABySS #Reads %Trans-ABySS %R-SAP

Exon-skipping Exon-skipping 1419 768 757 98.56% 53.1%
Alternative TSS+PolyAdenylation Alternative UTR (50 and 30) 5314 357 327 91.59% 5.9%
Intron-retention Intron-retention 374 2 2 100% 0.53%
Exon-deletion New-intron 9675 259 259 100% 2.7%
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RPKM values from R-SAP (Spearman correlation 0.65,
P< 0.0001) and from Cufflinks (Spearman correlation
0.40, P< 0.0001) (See Supplementary Figure S3 for cor-
relation plots).

The low concordance of RSEM with the R-SAP and
Cufflinks expression quantifications may be due to the
fact that only uniquely mapped reads were allowed to be
used for quantification. Also, RSEM inherently uses
BowTie as an aligner and BowTie is not a gapped or
spliced aligner like BLAT, SSAHA2 and TopHat.
Hence, reads with INDELs larger than a few base pairs,
or those resulting from novel splicing events such as
exon-skipping or exon-extension may fail to map to the
transcript sequence. Both of these factors may have
lowered the total number of mapped reads that in-turn
may affect the detection power and quantification
accuracy of RSEM. In our ENCODE RNA-Seq dataset,
TopHat mapped nearly 38 million reads where as RSEM
mapped only �26 million reads.

Evaluation of the chimer-detection module

In order to assess the accuracy of the chimer-detection
module of R-SAP, we compared R-SAP’s chimeric predic-
tions with those 206 high-confidence chimeric transcripts

generated by ChimerDB 2.0. We observed a �79.6%
(164/206) overlap with the ChimerDB 2.0 predictions
(Supplementary Table S2). Manual inspection indicated
that the 42 chimeric transcripts un-classified by R-SAP
had multiple hits on the reference genome and were thus
rejected as false positives by R-SAP during the filtering
step in the chimer-detection module. Although R-SAP’s
filtering criteria were designed to minimize false positives,
it should be noted that, RNA-Seq data may inherently
contain some chimeric cDNA artifacts that are generated
by template switching during reverse transcription, and/
or amplification and ligation reactions (44). Further ex-
perimental methods such as RT-PCR followed by
re-sequencing should be used to validate the putative
chimeric transcripts generated from RNA-Seq data
(14,15).

Evaluation of R-SAP’s run time performance

We benchmarked R-SAP’s runtime performance and
effect of parallelization against Cufflinks. For the test
run purposes, we selected reference genome alignments
of 20 million reads from our ENCODE RNA-Seq test
dataset that was aligned to the reference genome (hg18)
previously using BLAT and TopHat. These 20 million

Figure 6. Comparison of R-SAP estimated RPKM (reads per kilobase of exon model per million mapped reads) (Y-axis) values versus Affymetrix
microarray and TaqMan qRT–PCR expression values (X-axis). (A) Correlation of 0.67 (Affymetrix microarray) and (B) 0.88 (TaqMan qRT–PCR)
(B) were obtained using the MAQC Human reference sample (C) A higher correlation of 0.78 (Affymetrix microarray) was obtained using the
Gm12878 reference cell line from the ENCODE project.

Table 5. Comparison between R-SAP characterizations and Cuffcompare’s novel-isoforms classification from transcripts assembled by Cufflinks

using ENCODE Gm12878 cell line RNA-Seq dataset (R-SAP characterizations include reads from ‘multiple-annotations’ category)

(Supplementary Table S6)

R-SAP characterization Cuffcompare
classifications

Number of associated
assembled transcripts

Cuffcompare Overlap

R-SAP #Reads %Cuffcompare %R-SAP

Exon-
skipping

Novel-isoform 7184 24 752 6961 28.12% 96.9%

Exon-deletion 3233 2809 11.3% 86.9%
Internal-exon-extension 24 652 14 428 58.3% 58.2%
Intron-retention 5735 1870 7.5% 32.6%
AlternativeTSS 6952 4292 17.5% 61.7%
AlternativePolyA 9358 5380 21.73% 57.5%
Total novel transcriptional events 40 025 21 365 86.3% 53.3%
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reads were selected from high-scoring reads previously
classified by R-SAP. In order to make the comparison
between R-SAP and Cufflinks fair, we ran Cufflinks
only in its quantification mode while R-SAP was
allowed to run only characterization and transcript
expression estimation modules. RefSeq transcripts (hg18)
were used as the reference annotation set. Running time
for R-SAP and Cufflinks with varying number of parallel
threads is shown in Figure 7. Although we observed a near
linear scalability in R-SAPs performance, Cufflinks per-
formed better than R-SAP for any given number of
threads.
Cufflinks was implemented in C while R-SAP was

implemented using Perl. It has been previously shown
that Perl performs five to ten times slower than C (45).
Therefore, the relatively slower performance of R-SAP
may be attributed to its implementation in Perl. Also,
R-SAP was designed to generate multiple output files to
provide detailed annotation information and data statis-
tics. Writing multiple files involves extensive number of
disk operations that may create high volumes of
system-overheads for large datasets and may ultimately
lower the running time of the program. We also
compared the performance of R-SAP with Trans-ABySS
by comparing the time required to perform the character-
ization of high-scoring reads on MAQC RNA-Seq data.
Since Trans-ABySS cannot be run on multiple threads for
the characterization step, we noted processing time on
single thread only. R-SAP was observed to be almost
twice as fast as Trans-ABySS (R-SAP: 319.29min,
Trans-ABySS: 728.58min). Overall we observed that
R-SAP performs slower than Cufflinks but faster than
Trans-ABySS. It is known that the absolute running
time is not an accurate measure of an algorithm’s perform-
ance. More accurate evaluation of the performance is
only possible if other factors such as time and space
(memory) complexity, number of instructions and
frequency and duration of function calls are taken into
consideration (46) which is currently beyond the scope
of this study.

SUMMARY AND CONCLUSION

R-SAP is a bioinformatics tool for the processing and
analyses of the high-throughput RNA-Seq data that inte-
grates reference genome alignments of sequencing reads
with known transcripts models.

Using three publically available datasets (MAQC,
ENCODE and ChimerDB 2.0) to evaluate different
modules of the pipeline, we have shown that R-SAP can
systematically detect novel transcriptional events
including various classes of RNA isoforms and other tran-
script structures such as intra-genic and inter-genic
chimeras. R-SAP’s performance in categorizing tran-
scripts represents a significant improvement over currently
available pipelines as exemplified by Trans-ABySS and
Cufflinks/Cuffcompare. Moreover, R-SAP’s RNA expres-
sion level estimates are highly correlated with independent
gene-expression microarray analyses and experimentally
derived qRT–PCR measurements. Currently, R-SAP
simply excludes multi-hit reads from further analysis
because they cannot be assigned to unique genomic loci.
We expect a significant improvement in R-SAP’s expres-
sion estimates once bias-correction and multi-hit read
re-distribution methods are included in R-SAP’s future
releases.

R-SAP’s ability to accurately detect alternative splicing
and chimeric transcripts is optimal for sequencing reads
>40–50 bp. We do not consider this to be a significant
shortcoming given that most current and envisioned
sequencing methodologies do or soon will generate read
lengths well above this threshold (47). R-SAP’s character-
izations of sequencing reads are also dependent on the
choice of the reference set of the transcripts. In our test
analyses, we conservatively used RefSeq transcripts as our
reference set. We believe that characterization can further
be improved by using a more informative, non-redundant
and inclusive set of all established transcript models such
as UCSC, Ensembl, RefSeq and AceView (18,48).

One of our major goals in constructing R-SAP was to
develop a pipeline that can be fine-tuned according to the

Figure 7. Benchmarking of R-SAP’s running time as compared with Cufflinks. R-SAP (gray line) and Cufflinks (black line) running time (Y-axis) for
the quantification of 20 million reads from ENCODE Gm12878 RNA-Seq dataset was compared. R-SAP shows near linear scalability as the number
of parallel threads (X-axis) are increased. Inset shows the same plot magnified for Cufflinks running time.
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nature of the data. We sought to achieve this goal by
incorporating various user adjustable cutoffs in the
workflow that can be used to alter the stringency of each
analysis. For example, in case of poor quality of the ref-
erence genome or lower quality sequencing reads, a high
rate of mismatches and small gaps can be compensated for
by lowering the coverage, identity and/or deletion cutoff
values. Similarly, for poorly annotated exon boundaries
where alignments may extend slightly beyond the edge of
the exon, the exon-extension, the cutoff can be increased
accordingly to accommodate for alignment errors at exon
boundaries.

The characterization of transcriptomes using RNA-Seq
is a multi-faceted problem that includes cataloguing of
coding and non-coding transcripts, uncovering and char-
acterization of novel RNA isoforms and chimeric tran-
scripts, detection of new splice-sites, discovery of new
transcriptional structures, measurement of RNA expres-
sion levels and estimation of RNA isoforms specific
expression levels (11,44). We hope that R-SAP will
prove useful as a user-friendly bioinformatics tool to com-
pliment more specialized programs in the quantitative and
qualitative analysis of RNA-Seq data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Methods section, Supplementary Tables
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