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Abstract
Numerous health benefits are attributed to the n-3 long-chain PUFA (n-3 LCPUFA); EPA and DHA. A systematic literature review was
conducted to investigate factors, other than diet, that are associated with the n-3 LCPUFA levels. The inclusion criteria were papers written in
English, carried out in adult non-pregnant humans, n-3 LCPUFA measured in blood or tissue, data from cross-sectional studies, or baseline
data from intervention studies. The search revealed 5076 unique articles of which seventy were included in the qualitative synthesis. Three
main groups of factors potentially associated with n-3 LCPUFA levels were identified: (1) unmodifiable factors (sex, genetics, age),
(2) modifiable factors (body size, physical activity, alcohol, smoking) and (3) bioavailability factors (chemically bound form of supplements,
krill oil v. fish oil, and conversion of plant-derived α-linolenic acid (ALA) to n-3 LCPUFA). Results showed that factors positively associated
with n-3 LCPUFA levels were age, female sex (women younger than 50 years), wine consumption and the TAG form. Factors negatively
associated with n-3 LCPUFA levels were genetics, BMI (if erythrocyte EPA and DHA levels are <5·6%) and smoking. The evidence for girth,
physical activity and krill oil v. fish oil associated with n-3 LCPUFA levels is inconclusive. There is also evidence that higher ALA consumption
leads to increased levels of EPA but not DHA. In conclusion, sex, age, BMI, alcohol consumption, smoking and the form of n-3 LCPUFA are all
factors that need to be taken into account in n-3 LCPUFA research.
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n-3 Long-chain PUFA (n-3 LCPUFA) are fatty acids with twenty
or more carbons, and they are the elongation and desaturation
products of the essential fatty acid α-linolenic acid (ALA,
18 : 3n-3). Whilst there are emerging health benefits of doc-
osapentaenoic acid (DPA, 22 : 5n-3)(1), the vast majority of
health benefits have been attributed to the n-3 LCPUFA EPA
(20 : 5n-3) and DHA (22 : 6n-3)(2).
n-3 LCPUFA have been shown to be important for neurolo-

gical development in very early pregnancy(3), during later
pregnancy and lactation(4) and cardiovascular health(5,6) and
there is also emerging evidence for mental health(7). Several
mechanisms have been suggested(8), such as their structural
role in the cell membrane influencing signal transduction,
stimulating neuronal growth, influencing neurotransmitter
release and facilitating glucose uptake from the endothelial cells
into the brain. n-3 LCPUFA are also important precursors of the

eicosanoids, resulting in reduced blood clotting and increased
blood flow(8). DHA is a precursor of docosanoids such as
resolvins and maresins, resulting in anti-inflammatory effects(9)

and neuroprotectins which protect neurons(8).
The aforementioned potential health benefits have been

observed from a wide variety of evidence including epide-
miological, observational studies and randomised controlled
trials. However, many studies have failed to measure the n-3
LCPUFA in blood or tissue, and this may severely limit the
interpretations of the results as these n-3 LCPUFA might be
influenced by many factors besides intake.

It is well established that diet and supplementation with n-3
LCPUFA have the largest impact on n-3 LCPUFA levels(10);
however, research has indicated that factors other than diet also
play a role(11). As researchers may not be aware of the many
non-dietary factors associated with the n-3 LCPUFA levels
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per se, and the way these can influence the study outcomes, the
aims of the present paper are to (1) report the results of a
systematic literature review of the well-described non-dietary
factors that are associated with the n-3 LCPUFA levels,
(2) identify important non-dietary factors that should be con-
sidered in future studies and (3) discuss whether measuring n-3
LCPUFA levels is necessary in research that assesses the health
benefits of n-3 LCPUFA.

Methods

Search strategy

A Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) systematic literature search was conducted
using four different electronic databases (ProQuest, Medline,
Web of Science and Cochrane). The search was conducted in
June 2017 and covered all years up to June 2017. Appropriate
truncation and relevant indexing terms were used. Search terms
were related to (1) n-3 LCPUFA (e.g. n-3 fatty acids, EPA, DHA)
and (2) factors or determinants associated with/influencing n-3
LCPUFA levels (e.g. sex, age, genetics, body size, physical
activity, alcohol and smoking). An outline of the search strategy
is available in online Supplementary Table S1.

Comparison of n-3 long-chain PUFA levels across studies

For the present review ‘n-3 LCPUFA levels’ are used as an
umbrella term to describe the n-3 fatty acids with twenty or
more carbon atoms in any blood or tissue fractions measured.
We do not focus on DPA as it appears to have a poor asso-
ciation with diet in epidemiological studies (see Fig. 1(c) in
Sullivan et al.(12)). Please note that various comparable ter-
minologies exist in the literature, including the Holman index;
the Lands highly unsaturated fatty acids(13); long-chain n-3
PUFA(14) and the Harris, von Schacky (HS)-n-3 index(15).
For comparison between different studies, we used the

available n-3 LCPUFA data and re-calculated them into ery-
throcyte EPA and DHA levels using the equations developed by
Stark et al.(16) where applicable.

Inclusion and exclusion criteria

The search results were screened based on the titles and
abstracts. Titles and abstracts which suggested the study iden-
tified one or more factors that are associated with the n-3
LCPUFA levels were selected and screened for eligibility.
Research studies met the inclusion criteria if (1) they were
written in the English language, (2) they were conducted in
humans, (3) the participants were at least 18 years of age,
(4) the participants were not pregnant, (5) the n-3 LCPUFA
levels were reported (EPA or DHA or both) and (6) they were
cross-sectional studies or were intervention studies that inclu-
ded baseline data; the results from the effects of n-3 LCPUFA
intervention studies were excluded (except for the factor
‘bioavailability’, because intervention studies are the only way
to determine this). In addition, (7) relevant previous review
publications were included if they focused on factors associated

with/influencing the n-3 LCPUFA levels. In that case, only
additional publications published after the release date of the
review publications on this respective factor were included.
Publications that did not meet these criteria based on abstract
review were excluded, and those that did were read in detail to
confirm their inclusion. Further studies were then obtained
through hand searching the reference lists of these articles and
applying the above eligibility criteria. Quality checks were
performed and consensus on scores agreed on by all authors,
using either the National Heart Lung and Blood Institute
‘Quality Assessment Tool for Observational Cohort and Cross-
Sectional Studies’ (at https://www.nhlbi.nih.gov/health-topics/
study-quality-assessment-tools)(17) or the Effective Public
Health Practice Project ‘Quality Assessment Tool For Quantita-
tive Studies’ (at https://merst.ca/wp-content/uploads/2018/02/
quality-assessment-tool_2010.pdf)(18), depending on the type
of study.

Review of the literature

Eligible articles were categorised into groups, according to the
factors that they covered. The groups were unmodifiable
factors – ‘sex’, ‘genetics’ and ‘age’; modifiable factors – ‘body
size’, ‘physical activity’, ‘alcohol’ and ‘smoking’; and bioavail-
ability factors – ‘chemically bound form of supplement’, ‘krill oil
v. fish oil’ and ‘conversion of plant-derived ALA to n-3 LCPUFA’.
Some articles covered more than one factor and were therefore
included in each group that they represented.

Four review articles were identified, wherein one evaluated the
association of sex with n-3 LCPUFA levels(19) and three reviewed
the bioavailability factors(20–22). We therefore did not execute a
full systematic review of the factors sex and bioavailability.

Results

The search returned 10 275 articles and after removal of dupli-
cates 5076 articles remained. The flow diagram (Fig. 1) outlines
the number of articles included after the screening and
eligibility criteria were applied.

Sex

A previous systematic literature review(19) demonstrated dif-
ferences in plasma DHA (expressed as weight/weight percen-
tage of total plasma fatty acids) between sexes; namely, women
had 0·12% of total plasma fatty acids and 0·20% of plasma
phospholipids (PL) higher than men (P= 0·002 and P< 0·00001,
respectively)(19). In participants aged 13–50 years, the DHA
values were significantly higher in women (0·16% of total
plasma fatty acids) compared with men; whereas the DHA
values did not differ when aged over 50 years(19). In high fish
intake groups, sex differences in DHA did not exist; however, in
low fish intake groups, the DHA was significantly higher in
women (0·24% of total plasma fatty acids)(19).

Since the publication of the systematic literature review(19),
one large study(23) showed that women from teens to aged 40
years had lower erythrocyte EPA and DPA compared with men,
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but women from teens to age 30 years had higher erythrocyte
DHA levels compared with men.

Heritability

One study(10) identified that heritability (meaning the fraction of
phenotype variability that can be attributed to genetic variation)
explains 24% of the variance of the n-3 LCPUFA levels, see
online Supplementary Table S2.

Genetics

Our systematic literature search revealed sixteen papers on the
association of the factor ‘genetics’ and n-3 LCPUFA levels, as
described subsequently.

Fatty acid desaturase. Nine studies were found, which looked
at the relationship between fatty acid desaturase (FADS)
genotypes and n-3 LCPUFA levels(24–32). A minor allele carrier

of a FADS SNP was negatively associated with plasma EPA in
six studies(24–26,29,31,32) and a negative association with DHA in
three of those studies(24,25,32). Three studies(27,28,30) found no
association between FADS minor allele carriers and plasma EPA
or DHA. In essence, minor allele carriers for FADS1 and FADS2
resulted in decreased plasma levels of γ-linolenic acid (GLA,
18 : 3n-6), arachidonic acid (AA, 20 : 4n-6) and 20 : 5n-3 (EPA)
(Table 1). The comparison of the major allele to the minor allele
(homozygous or heterozygous plus homozygous) for FADS1
and FADS2 and their effects on plasma fatty acid levels are
shown in Table 1.

Elongation of very-long-chain fatty acid 2. Three studies
were identified that looked at the relationship between elon-
gation of very-long-chain fatty acid (ELOVL)2 and EPA, DPA
and DHA plasma levels(26,31,33). Two studies(31,33) observed
lower plasma DHA levels in minor allele carriers, whereas one
of them(31) saw higher EPA levels in minor allele carriers.
Another study(26) found no association of ELOVL2 rs953413 and
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Fig. 1. Flow diagram of systematic literature review search. The flow diagram outlines the identification, screening, eligibility and inclusion process of the systematic
literature search. n-3 LCPUFA, n-3 long-chain PUFA.
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plasma fatty acids (Table 2). The comparison of the major allele
to the minor allele (homozygous or heterozygous plus homo-
zygous) for ELOVL2 and their effects on plasma n-3 LCPUFA are
shown in Table 2.

ApoE4. Only five studies were available on ApoE4, as shown in
Supplementary Table S2, and the results did not suggest a
strong relationship between ApoE4 and EPA or DHA plasma
levels(34–38). One study(34) found ApoE4 carriers had higher
plasma TAG EPA and DHA than non-carriers at baseline, but
baseline EPA and DHA levels were not shown to be different in
any of the participant groups in the additional four papers
reviewed(35–38) (online Supplementary Table S2).

Age

Twenty-six articles, which looked at ‘age’ as a factor associated
with n-3 LCPUFA levels, were included(10,23,39–62). Most publica-
tions reported plasma EPA and DHA and only four studies
reported erythrocyte levels of EPA and DHA(23,39,53,57). Twenty-
four found a positive association, one found no association(57),
and another(54) an inverse association between age 40–60 and
age 61–82 years and n-3 LCPUFA (specifically DHA levels in
elderly women) (Figs. 2 and 3). See online Supplementary Table
S3 for detailed information on the range of age groups and the
relevant outcomes for each of the twenty-six studies reviewed.

Plasma EPA and DHA levels are positively associated with
age in the majority of studies. Erythrocyte EPA and DHA levels
only tended to be positively associated with age in adults(39,53),
with only statistical significance shown in men(53). One study
did not show associations with increased age(57). One large
study(23) showed that the net effect on erythrocyte EPA and
DHA was an overall 7% increase per decade up to 70 years of
age and not much change after that.

Body size

Of the fourteen studies that looked for associations between the
factor ‘body size’ and n-3 LCPUFA levels(10,11,47,49,52,58–61,63–67),
eight studies used ‘BMI’(11,47,49,52,60,63–65), three used
‘girth’(58,59,61) and three studies(10,66,67) used both to compare
the weight-based association and n-3 LCPUFA. Despite the
strong correlations, we chose to report BMI and girth in relation
to n-3 LCPUFA separately, because they provide different
information about the participants’ fat distribution and require
very different methodology for measurement.

BMI. Overall, of the eleven cross-sectional studies that inves-
tigated the association of BMI and n-3 LCPUFA levels, five
identified negative associations(10,49,64,66,67), whereas six found
no association(11,47,52,60,63,65).

As shown in Table 3, it appears that there is no association
when erythrocyte EPA and DHA is >7% of total fatty acids and
that there is a negative association when it is lower than 5·6% of
the total fatty acids (Table 3). An exception to this is the study
by Block et al.(52) in which the mean erythrocyte EPA and DHA
was 4·3% and no association was found, wherein thisTa
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population group comprised mostly overweight and obese
(Table 3).

Girth. Six studies were identified dealing with girth and n-3
LCPUFA levels. Three studies(58,59,61) showed positive associa-
tions. Three studies(10,66,67) found inverse associations; one of
them(66) found this only in the obese group, another study(67)

found this only in females, whereas the third study(10) found
that 1SD increase (14·7 cm) in girth was associated with 2%
lower n-3 LCPUFA status.
Given the small number of studies available for review and

the differing results between studies, the relationship between
girth and n-3 LCPUFA levels remains inconclusive.

Physical activity

Many studies observed associations between exercise and n-3
LCPUFA levels; however, not all studies included EPA and DHA
in their analyses(68). Therefore, only eight studies were inclu-
ded(11,60,63,69–73) in this review. Studies that investigated the
effect of acute exercise were excluded.

One cross-sectional study that compared muscle fatty acids in
male endurance athletes (mean training time of 74 (SD 24)min/d)
with sedentary men (no regular physical activity) showed that DHA
was approximately 30% higher in male endurance athletes(70).

Two studies found a positive association(11,71), two studies
found a negative association(60,69), whilst four studies(63,70,72,73)

found no association between n-3 LCPUFA levels and physical
activity (Table 4).

Table 2. Comparison of major allele with minor allele (homozygous or heterozygous plus homozygous) for ELOVL2 on fatty acid levels
(Percentage increase or percentage decrease)*†

rs953413 (ELOVL2) rs3734398 (ELOVL2) rs2236212 (ELOVL2)

Fatty acid Gillingham(26) Alsaleh(33) Tanaka-InCHIANTI(31) Tanaka-GOLDN(31) Alsaleh(33) Alsaleh(33) ELOVL2 average

20 : 5n-3 NS NS ↑ 14 NS NS NS ↑ 2
22 : 5n-3 NS NS NR ↓ 1·1 NS NS ↓ 1
22 : 6n-3 NS ↓ 7 ↓ 8 ↓ 7 ↓ 6 ↓ 6 ↓ 6

ELOVL2, elongation of very-long-chain fatty acid 2; InCHIANTI, a study involving people in Chianti in Italy; GOLDN, Genetics of Lipid Lowering Drugs and Diet Network Study in the
USA; NR, not reported.

* NS, for the calculation of the average, NS was taken as being 0.
† The data in Table 2 are the fatty acid data taken from the publications that reported fatty acid data and then expressed as percentage increase or percentage decrease in the fatty

acid compared with the major allele (no mutation). This is a rough estimate of the magnitude of effect and therefore needs to be interpreted with caution.
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Alcohol intake

Twelve papers were suitable for inclusion when looking at
the association between alcohol and n-3 LCPUFA
levels(11,58,59,61,63,74–80). Six papers identified positive associa-
tions(59,74–76,78,79); three found no association(11,63,77) and four
studies found negative associations(58,61,76,80). One study(76) is
mentioned twice as they found erythrocyte PL EPA to be
positively associated, whereas DHA was negatively associated.

Wine and n-3 long-chain PUFA levels. Six papers found
positive associations with wine and n-3 LCPUFA levels, and there

were no studies showing negative or no associations. Three
studies had cohorts that of mostly (>88%) wine drinkers(74,78,79),
one study separated wine from beer or spirits and found that
drinking ‘only’ wine was positively associated with n-3 LCPUFA
levels but drinking ‘only’ beer or spirits was not(75); and two
studies(59,76) did not mention the type of alcohol consumed but
consisted of participants living in locations (France and Quebec)
where wine is the most regularly consumed alcoholic bev-
erage(74,81). Fig. 4 shows the increases in plasma EPA or DHA
associated with increasing wine intake among three studies that
had sufficient data(74,75,78). The optimal amount of wine con-
sumption seems to plateau between two to three glasses per d
(Fig. 4). In addition, it was found that erythrocyte PL EPA was
positively associated (β= 0·182, P= 0·011) with alcohol intake
in a French cohort, whereas DHA was negatively associated
(β= –0·218, P= 0·01)(76) and one study(79) found significantly
higher DHA in phosphatidylethanolamine among wine drinkers
compared to non-drinkers (P< 0·05) but no differences in EPA.
Whilst five studies found increases in EPA with increasing alcohol
(mostly wine) intake(59,74,75,78,79), Simonetti et al.(79) and Di
Giuseppe et al.(75) were the only studies to find a positive
association between wine intake and plasma DHA.

Alcohol type not further specified. Two studies(11,77) found
no association between alcohol and n-3 LCPUFA levels,
whereas one study(63) identified a positive association in
females only. Three studies found negative associations with
alcohol intake and EPA and/or DHA levels (Fig. 5)(58,61,80).
None of these studies reported the type of alcohol consumed by
participants, and relevant intake surveys or research to indicate
the types of drinks most commonly consumed by these popu-
lations have not been reported.

Smoking

Twelve studies were identified(10,11,49,52,58–61,63,77,82,83) of which
eight found a negative association between smoking and n-3
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Fig. 3. Erythrocyte EPA levels and DHA (wt% of total fatty acids) of different
age groups from studies reviewed in this systematic literature review. Each line
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measured in that study. , Kawabata et al.(53) (women subjects) NS;

, Kawabata et al.(53) (male subjects); , Babin et al.(57) NS; ,
Walker et al.(39) NS.

Table 3. Overview of studies investigating associations between BMI and n-3 long-chain PUFA levels presented in order of decreasing erythrocyte EPA and DHA

Reference Subjects (n) BMI range and (mean) Erythrocyte EPA and DHA*: range and (mean) Association

Ogura(47) 75 16·5–37·8 kg/m2 (26·2 kg/m2) Range not given (9·6%) No
Makhoul(65) 330 Range not given (28·1 kg/m2)

71% overweight or obese
Erythrocyte EPA range: 0·2–9·6%
Erythrocyte DHA range: 1·6–10·3%
EPA+DHA range not given (9·6%)

No

Itomura(60) 456 16–38 kg/m2 (22·5 kg/m2) 3·9–12·9% (8·5%) No
Sala-Vila(11) 198 21·2–38·5 kg/m2 (29·2 kg/m2) Interquartile range: 6·1–8·1% (7·1%) No
Kuriki(63) 106 Range not given (female mean 21·5 kg/m2) (male mean

22·3 kg/m2)
Range not given (7·1%†) No

Harris(10) 3196 Range not given (28·4 kg/m2) Range not given (5·6%) Negative
Howe(67) 476 18–59 kg/m2 (female mean 34 kg/m2) (male mean 31·4 kg/m2) Range not given (female 5·3%) (male 5·1%) Negative
Sands(49) 163 18–47 kg/m2 (26·2 kg/m2) 1·7–12·4% (4·9%) Negative
Block(52) 704 Range not given (28 kg/m2)

Study reports most participants were overweight or obese
Range not given (4·3%) No

Cazzola(64) 100 Range and mean not given 4·2–6·3% (3·7%) Negative
Micallef(66) 124 20–40 kg/m2 (mean not given)

Twenty-one subjects between 20 and 24·9 kg/m2

Forty subjects between 25 and 29·9 kg/m2

Sixty-three subjects between 30 and 40 kg/m2

Range and mean not given Negative

∗ Plasma levels were converted to erythrocyte EPA+DHA using the Stark et al.(16) equation.
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LCPUFA levels(10,11,52,58,59,77,82,83) and four studies found no
association(49,60,61,63).
Of the twelve studies, four studies(58,59,61,83) provided

numerical data on FA levels of smokers and non-smokers.
Using the Stark et al.(16) equation or the already available
data(10,52,83), erythrocyte EPA and DHA levels in smokers and
non-smokers were determined and ranged from 6 to 17% lower
in smokers compared with non-smokers. Three studies had no
numerical data(11,77,82), but each also reported lower n-3
LCPUFA levels among smokers compared with non-smokers.

Bioavailability factors

Chemically bound form of n-3 supplement. One study(22)

reviewed the different factors associated with the bioavailability
of n-3 LCPUFA. This review and another subsequently pub-
lished study(84) showed that the chemically bound form TAG
are more bioavailable than ethyl ester (EE) forms and that there
is no enough evidence to suggest that PL (like krill oil) are more
bioavailable than the TAG form from fish oil. They also showed
that matrix effects such as sufficient amounts of fat in the meal

Table 4. Cross-sectional studies looking at differences in n-3 long-chain PUFA levels at different physical activity levels

Reference Sex Subjects (n) Exercise Biomarkers reported Findings

Sala-Vila(11) Women and
men

198 Not specified Whole blood Physical activity positively ↑ associated with
EPA and DHA

Kamada(71) Men 6 long-distance runners
9 sprinters
10 sedentary controls

Athletes v. controls Erythrocytes EPA higher ↑ in long-distance runners
compared with controls

No difference in DHA levels between groups
Itomura(60) Men and

women
456 Not specified Erythrocytes Physical activity negatively ↓ associated with

EPA and DHA
Sumikawa(69) Sex not

specified
12 rowers
9 sedentary controls

Athletes v. controls Erythrocyte PC
PS

Athletes had lower ↓ DHA composition in PS
No difference in PC DHA levels
EPA not measured

Andersson(70) Men 15 endurance athletes
16 sedentary controls

Endurance athletes v.
untrained

Serum No differences in EPA or DHA between
groups

Arsic(72) Women 15 waterpolo players
19 footballers
14 sedentary controls

Athletes v. controls Erythrocytes and
plasma

No differences in EPA or DHA between
groups

Kuriki(63) Women and
men

84 Not specified Plasma Physical activity was not associated with
EPA and DHA

Tepsic(73) Men 23 basketballers
24 footballers
16 sedentary controls

Athletes v. sedentary
controls

Erythrocytes and
plasma

No differences in EPA or DHA between
groups

PC, phosphatidylcholine; PS, phosphatidylserine.
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have the greatest bioavailability effect of up to three times
higher(85). It appears that some studies from the Schuchardt
review(22) showed that the galenic form (i.e. microencapsula-
tion, emulsification) had an effect on increased bioavailability
(e.g. up to 4-fold(86)) of emulsification and microencapsulation
compared with oil, whilst others showed no effect.

Krill oil v. fish oil. A review(20) identified fourteen articles
comparing krill oil and fish oil, and they found that some stu-
dies showed increased bioavailability with krill oil v. fish oil, but
other studies did not show any difference and concluded that
more studies are needed. Following the publishing of this
review, two more clinical trials have been published. One
study(87) found no difference in bioavailability of fish oil (TAG-
rich or EE-rich) and krill oil supplements when identical doses
were used in a 4-week intervention. Another study examined
the amount of PL in krill oil(88) and showed no difference
between krill oil with high PL content and krill oil with low PL
content in plasma n-3 LCPUFA levels. However, the high PL
supplement significantly increased erythrocyte EPA, EPA +DHA
and n-3 PUFA concentrations compared with the low PL
supplement(88).

Conversion of plant-derived n-3, α-linolenic acid to n-3
long-chain PUFA. The International Society for the Study of
Fatty Acids and Lipids (ISSFAL) statement five (http://www.
issfal.org/statement-5) concludes that ‘With no other changes in
diet, improvement of blood DHA status can be achieved with
dietary supplements of preformed DHA, but not with supple-
mentation of ALA, EPA, or other precursors’. Furthermore, a
comprehensive review on the metabolism of ALA and stear-
idonic acid (SDA, 18 : 4n-3)(21) suggests that each 1 g increase in
ALA intake results in approximately 10% relative increase in
EPA plasma PL content, whereas no change occurs in plasma PL
DHA content. With high intake of EPA and DHA, however, the
metabolism of ALA to EPA and DHA appears to become down-
regulated(21). High intakes of linoleic acid (LA, 18 : 2n-6) can

also impact the metabolism of ALA to its longer chain meta-
bolites. Furthermore, increased LA intake have been shown to
decrease the metabolism of ALA to EPA(21).

It was also demonstrated(21) that SDA intake between 0·25
and 2 g/d can increase plasma EPA anywhere from 19 to 190%.
No superior ability was noted for SDA to increase the DHA
levels, and some studies actually noted a decrease in DHA
levels when participants consumed SDA(21).

Discussion

Besides dietary intake, many factors affect n-3 LCPUFA levels.
Generally women have higher plasma DHA compared with
men(19,23), and this appears to be independent of diet(89).
Women also have increased levels of EPA derived from ALA(90)

which is believed to be indicative of increased synthesis(91,92).
The sex differences can be explained by (1) decreased rates of
ALA β-oxidation(91,92), therefore making more ALA available for
metabolism to DHA; (2) women having more DHA in their
adipose tissue(62) and therefore can mobilise more DHA (but it
is still not known whether this occurs in non-pregnant women);
(3) the fasting state wherein NEFA are released from adipose
tissue; and women have increased NEFA compared with
men(89), and this is likely due to increased adipose tissue stores;
(4) the total fractional excursions of EPA, DPA and DHA in
plasma phosphatidylcholine were greater in younger women
(74%) compared with men (59·6%)(93) and (5) the influence of
different sex hormones on the n-3 pathway(94), which is likely
due to the up-regulation mechanism of oestrogen on the
desaturase–elongase n-3 pathway and a possible down-
regulation by testosterone(94). This may partially explain why
women >50 years of age have DHA levels that are comparable
with men. Increased requirements during pregnancy and lac-
tation could provide a biological explanation to why higher
DHA levels have been observed in women(21). Certainly, in
very early pregnancy, the requirement to increase maternal
circulating DHA at the time of the neural tube closure is likely
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due to increased synthesis of DHA from ALA as well as an
increase in the mobilisation of DHA from maternal adipose and
other tissues(3). Later pregnancy shows maternal erythrocyte
DHA levels being 38% higher in the third trimester (3·85%)
compared with the post-partum levels (2·79%)(95), demon-
strating that the magnitude of effect of increased DHA in
pregnancy is much higher than the differences seen in non-
pregnant women v. men.
In terms of genetics, when comparing the baseline cross-

sectional n-3 LCPUFA levels between major and minor allele
carriers for FADS1 and FADS2, we deduced that there was
decreased enzyme activity at the first Δ-6 desaturase and Δ-5
desaturase in the minor allele carriers (Fig. 6) and therefore this
resulted in decreased levels of EPA, GLA and AA. However, as
the FADS1 and FADS2 genotypes are strongly associated,
controlling for one FADS1 or FADS2 would be sufficient.
Similarly, when comparing baseline cross-sectional n-3 LCPUFA
levels between major and minor allele for ELOVL2, we deduced
that there was decreased enzyme activity between EPA and
DHA in the minor allele carriers (Fig. 6), which explains the
reduced DHA levels seen with these mutations. These findings
are supported by a meta-analysis(96). Dietary supplementation
with pre-formed EPA and DHA (1·8 g/d) may overcome these
decreased enzyme activities as EPA and DHA in minor allele
carriers were 26–30 and 8–9% higher, respectively, than
non-carriers(33). Therefore, in supplementation trials with
pre-formed EPA and DHA, it may not be necessary to measure

the minor allele SNP. Furthermore, heritability explains 24% of
the variance of n-3 LCPUFA levels(10), which is more relevant
than genetics alone.

It appears that higher plasma EPA and DHA levels are
associated with increased age, that is, up until 70 years of
age(10,23,39–41,44–53,55,56,58–62). Based on studies that reported no
differences in DHA levels between elderly and young
groups(42,43), those studies that included elderly participants of
over 70 years of age(42,43,57) and women aged 40–82 years
showed lower levels of plasma EPA and DHA in the 60- to 82-
year-olds compared with the 40- to 60-year-olds(54), which
could be explained by the 60- to 82-year-old women being
post-menopausal and therefore likely to have lower oestrogen
levels and hence lower synthesis of DHA from ALA.

Negative associations between n-3 LCPUFA levels and BMI
have been found in participants with erythrocyte EPA and DHA
of 5·6% or lower (Table 3). No associations have been found
with higher than 7% erythrocyte EPA and DHA and BMI. With
the contradictory evidence in terms of girth and n-3 LCPUFA
levels and taking into account that the majority of populations’
erythrocyte EPA and DHA is likely to be lower than 5·6% of the
total fatty acids, future studies should take BMI into account in
their analyses.

The following different mechanisms have been suggested for
the negative associations occasionally observed: (1) higher
susceptibility to peroxidation in overweight and obese indivi-
duals, compared with normal-weight individuals(64,97,98),

18 : 3n-3
(�-Linolenic acid)

18 : 4n-3
(Stearidonic acid)

20 : 4n-3 20 : 5n-3
(Eicosatetraenoic acid) Δ-5 desaturase (FADS1) (EPA)

22 : 5n-3 22 : 6n-3
( DPAn-3)

24 : 5n-3 24 : 6n-3
(Tetracosapentaenoic acid) Δ-6 desaturase (FADS2) (Tetracosahexaenoic acid)

(TPAn-3)

18 : 2n-6
18 : 3n-6(Linoleic acid)

(�-Linolenic acid)

20 : 3n-6 20 : 4n-6
(Dihomo-�-linolenic acid) Δ-5 desaturase (FADS1) (Arachidonic acid)

22 : 4n-6 22 : 5n-6
(Adrenic acid) (DPAn-6)

24 : 4n-6 24: 5n-6
(Tetracosatetraenoic acid, TPAn-6) Δ-6 desaturase (FADS2) (Tetracosapentaenoic acid)

Δ-6 desaturase (FADS2)

Long-chain fatty acid
Elongase (ELOVL5)

Very long-chain fatty
acid elongase (ELOVL2)

Very long-chain fatty
acid elongase (ELOVL2)

�-Oxidation

Δ-6 desaturase (FADS2)

Long chain-fatty acid
Elongase (ELOVL5)

Very long-chain fatty
acid elongase (ELOVL2)

Very long-chain fatty
acid elongase (ELOVL2)

�-Oxidation

(DHA)

Fig. 6. Mammalian PUFA synthesis pathway showing the n-3 PUFA pathway and the n-6 PUFA pathway, including the enzymes responsible for the elongation and
desaturation steps. ELOVL, elongation of very long-chain fatty acid; DPA, docosapentaenoic acid.
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Table 5. Summary of factors affecting n-3 long-chain PUFA (LCPUFA) levels

Factor Conclusion 1 and quantification Conclusion 2 and quantification Conclusion 3 and quantification
Should take factor into
account yes or no

Sex DHA in all women is 0·12% of total plasma
fatty acids higher than men

DHA in women aged 13–50 years is 0·16% of total
plasma fatty acids higher than men

In low fish consumers, DHA in women is
0·24% of total plasma fatty acids
higher than men

Yes

Genetics Mutations in FADS1 and FADS2 generally
result in decreased levels of EPA, GLA
and AA

Supplementation of EPA and DHA at doses of 1·8g/d
seemed to overcome the genetic differences, and
therefore in supplementation trials, measuring these
mutations may not be necessary

No in supplementation
trials

Age Plasma EPA and DHA is positively associated
with age (approximately 38% increase
from age 20 to 79 years)

Erythrocyte EPA and DHA tended to be positively
associated with age (approximately 19% increase
from age 20 to 75 years)

Yes

BMI n-3 LCPUFA levels is negatively associated
with erythrocyte EPA and DHA of 5·6%
or lower

No association with erythrocyte EPA and DHA >7% Yes

Girth Inconclusive No
Physical activity Inconclusive No
Alcohol No or negative association between alcohol

consumption and n-3 LCPUFA levels
(except for wine)

Positive association between wine drinking and n-3
LCPUFA levels

The optimal amount of wine
consumption seems to plateau
between two and three glasses per d

Yes, but specified
according to type and
amount of alcohol

Smoking Smoking is negatively associated with
erythrocyte EPA and DHA

High intakes of n-3 LCPUFA seem to overcome this at
least partially

Smoking is associated with a 6–17%
lower erythrocyte EPA and DHA

Yes

Bioavailability chemically-bound
form

TAG form is better than EE form Yes

Bioavailability krill oil v. fish oil Inconclusive No
Bioavailability ALA conversion to

n-3 LCPUFA
ALA is converted to EPA but not DHA Higher conversion of ALA to DHA in women compared

with men

FADS, fatty acid desaturase; GLA, γ-linolenic acid; AA, arachidonic acid; EE, ethyl ester; ALA, α-linolenic acid.
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(2) individuals with higher BMI may be more likely to consume
lower intakes of n-3 LCPUFA(63), although the opposite was
found(49), (3) alternatively, a relationship between weight and
dose might exist for n-3 LCPUFA(99), as supported by a study
showing a three-unit rise in BMI is associated with a decrease in
the n-3 LCPUFA status by 0·3 units, independent of fish
intake(49).
There is no conclusive evidence on whether an association

exists between physical activity and n-3 LCPUFA, though sev-
eral potential underlying mechanisms have been sug-
gested(72,73,100,101), and more research is warranted. Potential
associations might depend on type, duration and intensity of
physical activity, as higher DHA in skeletal muscle was
observed in endurance athletes compared with sedentary con-
trols(70) but not in participants who followed a low-intensity
exercise programme for 6 weeks(102). Differences in fatty acid
composition between athletes from different sports have also
been found(72,73).
The association between alcohol consumption and n-3

LCPUFA levels is either negative or neutral, except for wine
consumption where there is a positive association(59,74–76,78,79),
in particular for EPA(59,74–76,78). Studies that did not demonstrate
the type of alcohol consumed showed conflicting results
between papers(11,58,61,63,77,80); the majority of these showed
negative associations with alcohol intake(58,61,76,80). Mechan-
isms for the negative associations between alcohol intake and
n-3 LCPUFA are still not fully understood in humans; however,
animal and in vitro studies propose lipid peroxidation and
changes in desaturase activities(103–105). Different findings
observed between the studies might be due to the differences in
amounts of alcohol consumed, the regularity with which alco-
hol is consumed and whether participants consumed more
quantity of alcohol for prolonged periods(106).
The positive associations between wine drinking and n-3

LCPUFA seem to partly contradict the mechanisms discussed
above. This poses the question whether components in wine
other than alcohol might be responsible for the positive asso-
ciations observed. This warrants further research but could
explain why one study(75) saw no association for beer or spirits
and n-3 LCPUFA but a positive association between wine and
n-3 LCPUFA. Diet is the main contributor of n-3 LCPUFA
levels(10); and therefore, differences in dietary intake between
drinkers and non-drinkers could also influence associations,
though this is not uniformly supported by the litera-
ture(11,61,63,74,107). Any research on n-3 LCPUFA levels should
capture not only alcohol consumption but also the type and
amount of alcohol.
Smoking is associated with a lower erythrocyte EPA and DHA

(from 6 to 17% lower) and thus smoking is a factor that needs to
be controlled for in research studies. A plausible reason for
lower erythrocyte EPA and DHA in smokers compared with
non-smokers could be diet(108–110), though others suggest the
involvement of non-dietary factors, as they found this negative
association regardless of the dietary intake(10,52,77). It has been
suggested that the pro-oxidative state caused by smoking
degrades PUFA(111); n-3 LCPUFA oxidation has been shown to
be increased in smokers. Of the four studies that showed no
association between smoking and n-3 LCPUFA, three consisted

of cohorts with high n-3 LCPUFA intakes, providing mean
annual daily intake of EPA and DHA of 1293mg(60), 2115mg(61)

and 885mg/d(63), and one study had a very low number (n 13
of 163) of smokers in their cohort(49). It could be that the high
intake of n-3 LCPUFA negates the effect of smoking on ery-
throcyte EPA and DHA. It should be noted, however, that in the
Spanish cohort(11) the erythrocyte EPA and DHA were very
similar to the cohort of Nunavik Inuit(61), thereby showing a
negative association between smoking and erythrocyte EPA
and DHA.

The major contributor to increased bioavailability of n-3
LCPUFA appears to be fat in the meal when supplements are
being taken. The biological plausibility is that the fat in the
meal stimulates the release of pancreatic lipase necessary for
fat digestion(112). The increased bioavailability of the emulsi-
fied forms compared with the larger oil droplets supports that
these emulsified forms are more readily available for pan-
creatic lipase. The limited evidence suggests that the EE form
of n-3 LCPUFA is less bioavailable compared with the TAG
form. Compared to low PL krill oil, high PL krill oil resulted in
higher erythrocyte EPA and DHA(88), which has been
demonstrated in only one study. There is no definitive evi-
dence to support that krill oil or fish oil is superior to the other
in terms of bioavailability as studies to date (1) were under-
powered(22), (2) used different doses of EPA and DHA(20) and
(3) involved short duration of supplementation, that is, for
4 weeks(87), which was not enough, given the mean ery-
throcyte lifespan of 115 d(113). One cross-over study(22) noted
the high standard deviations, even though each person was
their own control, thereby contribute to the lack of definitive
evidence.

Supplementation with ALA increases plasma EPA but not
DHA, and high intake of LA reduces the conversion of ALA to
EPA(21). Limited evidence suggests that SDA supplementation
increases plasma EPA to a greater extent than supplementation
with ALA, but SDA supplementation does not increase plasma
DHA levels(21). More research is warranted on SDA.

Given all the non-dietary factors that are associated with n-3
LCPUFA levels as discussed above and summarised in Table 5
below (but keep in mind that fish, seafood and n-3 supplement
consumption have the biggest influence), it is difficult to
stipulate how these non-dietary factors relate to each other, as
these factors are associated with n-3 LCPUFA levels and do not
show cause and effect. Furthermore, no scientific evidence is
available that shows the relationship between these factors;
however, one could speculate about these relationships. The
global data of the prevalence of smoking and drinking alcohol
are higher among males compared with females(114–116).
Therefore, future investigators should consider when studying
males, who smoke more than women do and drink more
alcohol than wine, that their n-3 LCPUFA levels would likely be
lower than that in females who smoke less and drink wine
rather than beer/spirits(114–119). Furthermore, the prevalence of
overweight and obesity is high in many western coun-
tries(120,121); and taken together with the low n-3 LCPUFA levels
globally(122), the negative association between BMI and n-3
LCPUFA is also of concern. Overall, given the potential lower
levels of n-3 LCPUFA in males, they are likely to see a benefit
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through n-3 LCPUFA supplementation. Conversely, given the n-
3 LCPUFA levels may be higher in females compared with
males, researchers need to be careful not to reach the potential
ceiling effect. Given that n-3 LCPUFA levels are positively
associated with age, researchers need to carefully consider the
age range within studies. The best advice would be to measure
the n-3 LCPUFA levels in all types of research including at
baseline and post-supplementation in clinical trials.
Whilst the focus of this systematic review was not to assess

the effect of n-3 LCPUFA interventions, a few points regarding
the importance of measuring n-3 LCPUFA levels pre- and post-
supplementation are warranted. Assessing only dietary or
supplemental intake of n-3 LCPUFA is not good enough to
really demonstrate the efficacy of n-3 LCPUFA supplementa-
tion. For example, a study investigating the effect of 1·4 g/d of
n-3 LCPUFA supplementation for 6 months in young people at
ultra-high risk of psychotic disorders failed to show the effi-
cacy of n-3 LCPUFA; but this was most likely due to the lack of
compliance as more than half of the participants were non-
compliant, and a limitation of this study was the lack of
measuring the blood n-3 LCPUFA levels(123). Another study
measured blood n-3 LCPUFA levels pre- and post-
supplementation where the participants consumed 1 g/d of
n-3 LCPUFA through the consumption of n-3 LCPUFA-
enriched foods, and this resulted in an increase in n-3
LCPUFA erythrocyte levels from 4 to 7·1% of total erythrocyte
fatty acids(124). This increase in n-3 LCPUFA was associated
with improvements in arterial compliance and chronic
inflammation as assessed by serum C-reactive protein(124),
demonstrating the importance of measuring n-3 LCPUFA
levels pre- and post-supplementation in terms of not only
compliance but also assessing the effect of n-3 LCPUFA in
relation to health outcomes. Furthermore, we recently
reviewed the trials investigating the effect of n-3 LCPUFA
supplementation in cardiac mortality and demonstrated that
the dose of n-3 LCPUFA is important, but also ensuring that the
study populations’ n-3 LCPUFA levels are not too high at
baseline in order to alleviate a potential ceiling effect(125).
More recently two large clinical trials have been published,
where the study using high dose (4 g/d, Reduction of Cardi-
ovascular Events with IcosapentEthyl-Intervention Trial
(REDUCE-IT)) showed efficacy in cardiovascular risk reduc-
tion(126), and another study using a lower dose (1 g/d, VITamin D
and omegA-3 triaL (VITAL)) did not show efficacy in the
prevention of cardiovascular disease and cancer(127). These
trials further highlight the importance of dose of n-3 LCPUFA
in clinical trials. Moreover, blood analyses of n-3 LCPUFA pre-
and post-supplementation will (1) ensure the baseline levels
are not too high to potentially reach a ceiling effect and (2)
after supplementation show compliance to n-3 LCPUFA as
well as being able to attribute the health outcomes to the effect
of n-3 LCPUFA supplementation. Therefore, it is recom-
mended that research into the health benefits of n-3 LCPUFA
should include blood analyses of n-3 LCPUFA pre- and post-
supplementation.
In conclusion, as summarised in Table 5 those scientifically

supported factors that are associated with the n-3 LCPUFA
levels must be considered in future (design of) studies. It is

recommended that blood or tissue n-3 LCPUFA levels are mea-
sured in all types of research (including cross-sectional, cohort
and clinical research), which assesses the health benefits of n-3
LCPUFA. Furthermore, in randomised controlled trials, n-3
LCPUFA levels should be measured pre- and post-
supplementation. It is beyond the scope of this review to
recommend which tissue or fraction of blood to measure, but
there are a couple of good reviews available on this topic(128,129).
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