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Abstract

Tugarinovia (Family Asteraceae) is a monotypic genus. It’s sole species, Tugarinovia mon-

golica Iljin, is distributed in the northern part of Inner Mongolia, with one additional variety,

Tugarinovia mongolica var ovatifolia, which is distributed in the southern part of Inner Mon-

golia. The species has a limited geographical range and declining populations. To under-

stand the phylogeographic structure of T. mongolica, we sequenced two chloroplast DNA

regions (psbA-trnH and psbK-psbI) from 219 individuals of 16 populations, and investigated

the genetic variation and phylogeographic patterns of T. mongolica. The results identified a

total of 17 (H1-H17) chloroplast haplotypes. There were no haplotypes shared between the

northern (T. mongolica) and southern groups (T. mongolica var. ovatifolia), and they formed

two distinct lineages. The regional split was also supported by AMOVA and BEAST analy-

ses. AMOVA showed the main variation that occurred between the two geographic groups.

The time of divergence of the two groups can be dated to the early Pleistocene epoch, when

climate fluctuations most likely resulted in the allopatric divergence of T. mongolica. The for-

mation of the desert blocked genetic flow and enhanced the divergence of the northern and

southern groups. Our results indicate that the genetic differences between T. mongolica and

T. mongolica var. ovatifolia are consistent with previously proposed morphological differ-

ences. We speculate that the dry, cold climate and the expansion of the desert during the

Quaternary resulted in the currently observed distribution of extant populations of T. mongo-

lica. In the northern group, the populations Chuanjinsumu, Wuliji and Yingen displayed the

highest genetic diversity and should be given priority protection. The southern group

showed a higher genetic drift (FST = 1, GST = 1), and the inbreeding load (HS = 0) required

protection for each population. Our results propose that the protection of T. mongolica

should be implemented through in situ and ex situ conservation practices to increase the

effective population size and genetic diversity.
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Introduction

In recent years, phylogeographic studies of the arid region of Northwest China have increased

and mainly focus on the impact of the Quaternary climate fluctuations on species’ phylogeo-

graphic patterns [1–3]. An increasing number of studies have shown that the deserts have an

impact on the genetic structure and phylogeographic pattern of species, causing the speciation

and population differentiation of many desert species [1, 4–6]. Evidence from pollen records

indicates that ice sheets did not appear in arid Northwest China during the Quaternary [7].

However, glacial and interglacial cycles affected the evolutionary processes of species in this

region [1, 8–10], through allopatric divergence [2, 11], range fragmentation, and regional

range expansion [12, 13]. Additionally, the uplift of the Tibetan Plateau and global Pleistocene

cooling promoted the formation and subsequent evolution of the desert [14, 15]. Several previ-

ous studies have shown that the increased aridification and desert expansion led to the specia-

tion, habitat fragmentation, and diversification of desert plant species, as well as the

distribution of montane plants on both sides of the desert [1, 2, 4, 16]. In addition, the desert

zone acted as a geographical barrier that hindered gene flow among populations, which led to

high genetic diversity among the populations and low genetic diversity within populations in

arid Northwest China [4, 5, 16, 17]. However, few researchers have investigated the effects of

desert formation on the evolutionary process of regional species in this arid region.

The arid regions of western Inner Mongolia contain many endemic species, several of which

are considered endangered [18–21]. Specifically, the Alxa-Helan Mountain Range is considered to

be one of eight high-diversity areas in China [22, 23]. Tugarinovia is a monotypic genus (Tugari-
novia mongolica Iljin) with one additional variety (T. mongolica var. ovatifolia). T. mongolica,

which is a member of the China Species Red List [24], is endemic to the gravel slopes of Inner

Mongolia [25]. It is a perennial low herb with a dioecious reproductive system that flowers and

fruits between May and June [26]. T. mongolica var. ovatifolia shows differences in morphology

and habitat [26–28]. The major morphological differences between the two varieties are leaf and

inflorescence size [29]. Based on field observations and herbaria specimen records, we believe this

genus possesses disjunct distributions on the two sides of the desert. We find that T. mongolica is

mostly distributed in the northern regions of the Alxa Desert, whereas its variety T. mongolica var.

ovatifolia only occurs in narrow swaths southeast of the Alxa Desert. Currently, the combination

of narrow distribution and overgrazing has resulted in a rapid decline of the species. Previous

studies of T. mongolica have concentrated on embryology, taxonomy, origin, migratory route,

and distribution patterns [29–32] but, to our knowledge, there have been no discussions of intra-

specific taxonomy, phylogeography, or any aspect of conservation genetics.

In this study, we sequenced two chloroplast DNA sequences (psbA-trnH and psbK-psbI) to

investigate the phylogeographic pattern of 16 populations of the genus Tugarinovia through-

out its distributional range. Our study had the following aims. First, determine whether intra-

specific phenotype variations of the genus are consistent with genetic differentiation. Second,

identify whether Quaternary climate fluctuations (such as aridification and desert formation)

affect the differentiation of Tugarinovia. Third, based on the genetic diversity and genetic

structure of T. mongolica and T. mongolica var. ovatifolia populations, propose effective pro-

tection measures for the species.

Materials and methods

Sample collection

The study area was not a nature reserve and no specific permissions were required by the

authoritative organization. Only one leaf was used as experimental material, so there was no
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serious damage to the target plant during field sampling. We collected leaf samples of 16 natu-

ral populations, which covered nearly the entire region occupied by T. mongolica from the

northern part of the Alxa Desert to east of the southern part of the Alxa Desert, Inner Mongo-

lia (Table 1, Fig 1). Ten populations belonging to T. mongolica (1–10) were sampled from

northern Alxa, and six populations belonging to T. mongolica var. ovatifolia (11–16) from

southeastern Alxa. We collected between 11 and 22 individuals from each population. Fresh

leaves were sampled and dried immediately using silica gel in the field. Then, one sample of

each population was deposited as a voucher specimen at the Herbarium of Xinjiang Institute

of Ecology and Geography, Chinese Academy of Science (XJBI). We selected Brachylaena huil-
lensis and Atractylodes lancea as outgroups in the phylogenetic analysis [31].

DNA extraction, PCR amplification, and sequencing

The total genomic DNA was extracted using a modified cetyltrimethy ammonium bromide

(CTAB) protocol [33]. Initially, we screened ten pairs of chloroplast DNA regions (trnS-trnG,

psbA-trnH, psbK-psbI, rps16-trnK, rpl32-trnL, ycf6-psbM, trnC-rpoB, trnV, trnD-trnT and

trnL-trnF); however, only two plastid intergenic spacers (psbA-trnH and psbK-psbI) were

found to be highly variable among individuals in the populations. Polymerase chain reaction

(PCR) amplifications were performed in a total volume of 25 UL reactions with the

Table 1. Sample and genetic variation information for 16 populations of Tugarinovia mongolica in northwest China.

Species name Population Sample Location Latitude/Longitude(N/

E)

Altitude(m) N Haplotypes Hd(±SD) π(±SD)

Overall 219 17 0.9086

±0.0070

0.0092

±0.0047

NG North Group 139 11 0.8250

±0.0148

0.0065

±0.0034

1 HLT Hailiutu,NM 41.60˚/108.51˚ 1346 11 H1 0 0

2 DLS Delingshan,NM 41.29˚/108.67˚ 1120 10 H1 0 0

3 CJSM Chuanjinsumu,

NM

41.89˚/108.22˚ 1336 12 H1,H2,H3 0.6818

±0.0910

0.0055

±0.0032

4 BYH Bayinhua,NM 42.13˚/110.05˚ 1267 22 H4 0 0

T. mongolica 5 BYHT Bayinhatai,NM 41.54˚/108.66˚ 1341 16 H2 0 0

6 SQ Shuiquan,NM 41.31˚/108.43˚ 1047 12 H1,H2 0.1667

±0.1343

0.0015

±0.0011

7 SZ Saizhen,NM 41.54˚/106.95˚ 1582 15 H5 0 0

8 BYT Baoyintu,NM 41.71˚/106.99˚ 1396 16 H1,H5,H6 0.5750

±0.0799

0.0012

±0.0009

9 WLJ Wuliji,NM 40.82˚/104.47˚ 1448 11 H5,H7,H8 0.6909

±0.0861

0.0041

±0.0026

10 YG Yingen,NM 40.80˚/104.79˚ 1338 14 H1,H5,H7,H8,H9,H10,

H11

0.8462

±0.0742

0.0131

±0.0071

T. mongolica var.
ovatifolia

SG South Group 80 6 0.8408

±0.0085

0.0045

±0.0025

11 LSM Lashenmiao,NM 39.29˚/106.83˚ 1134 11 H12 0 0

12 DZT Dizhentai,NM 39.68˚/106.85˚ 1172 13 H13 0 0

13 BRBL Barunbieli,NM 38.39˚/105.72˚ 1576 17 H14 0 0

14 QPJ Qipanjing,NM 39.47˚/107.08˚ 1426 13 H15 0 0

15 QLG Qianligou,NM 39.80˚/107.01˚ 1518 13 H16 0 0

16 HBW Haibowan,NM 39.65˚/106.85˚ 1178 13 H17 0 0

Hd: haplotype diversity, π: nucleotide diversity. Bold letters indicate that the population has high genetic diversity.

https://doi.org/10.1371/journal.pone.0211696.t001
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amplification of two cpDNA regions, which were conducted by the following procedure: 95˚C

for 4 min, 36 cycles at 94˚C for 30 s, 52˚C for 30 s, 72˚C for 1 min and, finally, 72˚C for 10

min. PCR products were detected on 1.0% agarose gel and were purified using the QIAquick

Gel Extraction Kit (Qiagen). These were then sequenced using an ABI Prism 3730 automated

sequencer from Sangon Biotech Co., Ltd., Shanghai, China. Sequencing alignments were car-

ried out in CLUSTAL W [34] and were both refined and adjusted manually. Finally, sequences

representing all haplotypes were submitted to GenBank with accession numbers

MK299501-MK299518.

Genetic diversity and population structure

To understand the levels of genetic diversity of the species, haplotype diversity (Hd) and nucle-

otide diversity (π) for each population, the two geographic groups, and across all populations

were calculated in ARLEQUIN 3.5 [35]. The total genetic diversity (HT), within-population

genetic diversity (HS), and genetic differentiation (NST, GST) were estimated using the program

Permut 1.0 with 1,000 permutation tests [36]. We used the parameters NST and GST to check

whether a phylogeographic structure existed for all populations and the two geographic

groups. Analysis of molecular variance (AMOVA) [37] was also performed to estimate the

genetic structure by Arlequin 3.5, with significance tests based on 1,000 permutations [35].

The phylogenetic relationship among the haplotypes was constructed using Network v. 5.0

[38], followed by the median-joining (MJ) algorithm. Gaps were treated as a single mutation

event. The spatial analysis of molecular variance (SAMOVA) was used to test the spatial

genetic structure of cpDNA genetic variation using SAMOVA v. 1.0, where these analyses

were performed for the range of 2� K� 8 [39]. Finally, the best grouping was determined

when the number of groups retained was maximized, FCT. However, this configuration was

excluded when a single population appeared in the geographic group [40, 41].

Population demographic analyses

To test whether the species experienced demographic expansions, the parameters of Tajima’s D

and Fu’s FS were estimated [42, 43]. A significant Tajima’s D value or a significant and large

Fig 1. Study regions of Tugarinovia mongolica. Red dots represent T. mongolica, and black dots represent T.

mongolica var. ovatifolia.

https://doi.org/10.1371/journal.pone.0211696.g001

Phylogeography and conservation genetics of the endangered Tugarinovia mongolica

PLOS ONE | https://doi.org/10.1371/journal.pone.0211696 February 7, 2019 4 / 14

https://doi.org/10.1371/journal.pone.0211696.g001
https://doi.org/10.1371/journal.pone.0211696


negative Fu’s FS value indicated that the population had experienced demographic expansion. The

sum of squared deviations (SSD) and raggedness index of Harpending (HRag) were also calcu-

lated [44]. At the same time, we calculated a mismatched distribution of pairwise differences [45].

The SSD value was measured using the P-value, for which a nonsignificant P-value and unimodal

distribution of pairwise differences indicated that the population experienced recent expansion,

whereas a significant P-value and multimodal mismatched distribution of pairwise differences

indicated that the population did not experience recent expansion. Significant tests of the above

analyses were estimated using Arlequin 3.5, with 1,000 permutation tests [35].

Divergence time estimation

We estimated divergence times among the cpDNA haplotypes using BEAST v. 1.6.1 [46].

Since there were no fossil records, we used the reported substitution rate (1 and 3×10−9 s/s/y)

based on the cpDNA substitution rates of most angiosperm species [47]. Based on the uncer-

tainty of the rate values, we used a mean of 2×10−9 and an SD of 6.080×10−10 of the distribu-

tion to estimate the divergence times in this study [4, 48, 49]. We used the GTR substitution

model and a coalescent tree prior. The Markov chain Monte Carlo (MCMC) permutations

were run for 10,000,000 generations, sampling every 1,000 generations. The effective sample

sizes (ESS) for the relevant estimated parameters were well above 200 by TRACER v. 1.5. We

applied FigTree v. 1.3.1 to edit trees.

Results

Sequence analysis and haplotype distribution

The sequences of psbA-trnH and psbK-psbI were both successfully amplified and sequenced in

the 219 individuals from the 16 natural populations. The total length of the combined align-

ments was 897 bp. We were able to detect 21 variable sites, which included 16 substitutions

and 5 indels (S1 Table). A total of 17 haplotypes were identified from all variable sites

(Table 1). The results from the network analysis indicated that two clades, a northern group

(NG) and southern group (SG) existed, with the northern group including 11 haplotypes

(H1-H11) and the southern group including 6 haplotypes (H12-H17) (Figs 2 and 3). Impor-

tantly, no haplotype was shared between the two regions (Fig 3). In the northern group, haplo-

types H1 and H5 were widespread, while haplotypes H3, H4, H6 and H9, H10, and H11 were

fixed in the populations of CSJM, BYH, BYT and YG, and in the southern group, each of the 6

populations corresponded to a specific haplotype (Fig 2).

Genetic diversity and population structure

The results of the SAMOVA also showed that as the number of groups increased to three, a

single population emerged. We found that the optimal population grouping pattern of K = 2

was optimal: (1) populations 1–10 belonged to the northern group (T. mongolica), and (2) pop-

ulations 11–16 belonged to the southern group (T. mongolica var. ovatifolia).

The total haplotype diversity (Hd = 0.9086±0.0070) was high, and the haplotype diversity of

the southern group (Hd = 0.8408±0.0085) was slightly higher than that of the northern group

(Hd = 0.8250±0.0148) (Table 1). The total nucleotide diversity (π) was 0.0092±0.0047, with the

northern group (π = 0.0065±0.0034) exhibiting higher diversity than that of the southern

group (π = 0.0045±0.0025) (Table 1). Throughout all populations of T. mongolica, the total

genetic diversity, HT, was 0.947 and the average within-population diversity, HS, was 0.185.

Although NST (0.841) was greater than GST (0.805), there was no significant difference between

these two values (P>0.05). At the regional level, HT and HS were 0.858 and 0.296, and NST

Phylogeography and conservation genetics of the endangered Tugarinovia mongolica
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(0.623) was less than GST (0.655) for the northern group; for the southern group, the genetic

diversity, HT, was 1; the average within-population diversity, HS, was 0; and NST (1) was equal

to GST (1) (Table 2). We found no significant phylogeographical structures, either regionally

or overall, in T. mongolica.

For the whole population, the results of AMOVA revealed that most of the total variance

that occurred among the groups, among populations within the groups, and within the popu-

lations were small. A strong population genetic structure was detected in the species (FST =

0.88853, P<0.0001). In the northern group, variations among populations and within pop-

ulations were 66.15% and 33.85%, respectively, whereas in the southern group, all variations

were mainly presented among populations, with no variation within populations (FST = 1,

P<0.0001) (Table 3).

Fig 2. Geographic distribution of 17 cpDNA haplotypes detected in 16 populations of Tugarinovia mongolica from Inner Mongolia. Pie charts

show the frequency of haplotype in each population. Red dots represent the population of the northern group (NG), and black dots represent the

population of the southern group (SG). The blue line outlines represent the location of Helan Mountain. The nomenclature of NG and SG

populations (See Table 1) is: HLT, Hailiutu; DLS, Delingshan; CJSM, Chuanjinsumu; BYH, Bayinhua; BYHT, Bayinhatai; SQ, Shuiquan; SZ, Saizhen;

BYT, Bayintu; WLJ, Wuliji; YG, Yingen; LSM, Lashenmiao; DZT, Dizhentai; BRBL, Barunbieli; QPJ, Qipanjing; QLG, Qianligou; HBW, Haibowan.

https://doi.org/10.1371/journal.pone.0211696.g002
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Population demographic analyses

Demographic analysis of all populations and the two groups showed that the values of Fu’s FS

and Tajiam’s D were positive and not significant (S2 Table), which indicated that neither all

Fig 3. Statistical parsimony network of 17 haplotypes of Tugarinovia mongolica based on two cpDNA regions.

The size of each circle is proportional to the frequency of the haplotype. The haplotypes H1-H11 are found exclusively

in the northern group (NG), while haplotypes H12-H17 are found exclusively in the southern group (SG).

https://doi.org/10.1371/journal.pone.0211696.g003

Table 2. Estimation of gene diversity (HS, HT) and gene differentiation (GST, NST) values of the total populations, the northern group (NG) and southern group

(SG).

Region N HS HT GST NST

All region 219 0.185(0.0782) 0.947(0.0290) 0.805(0.0840) 0.841(0.0747)

NG 139 0.296(0.1126) 0.858(0.0638) 0.655(0.1267) 0.623(0.1022)

SG 80 0 1 1 1

https://doi.org/10.1371/journal.pone.0211696.t002
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populations nor the two groups experienced range expansion. We found further support from

the mismatched distribution for all populations and for the two geographical groups, which

were both multimodal (S1 Fig). Although the SSD value and raggedness index (P>0.05)

showed a sudden expansion model, the results of Fu’s FS, Tajiam’s D and the mismatch analy-

sis indicated that recent range expansion did not occur in T. mongolica (S2 Table, S1 Fig).

Divergence time estimation

We found that the divergence time between the northern group (T. mongolica) and southern

group (T. mongolica var. ovatifolia), which was determined from the BEAST analysis, occurred

at 2.4976 (95%HPD: 1.2094–4.2318) Mya (Fig 4), during the early Pleistocene epoch.

Discussion

Allopatric divergence of Tugarinovia mongolica in Inner Mongolia

Based on the haplotype network and BEAST analysis of T. mongolica, there were two distinct

clades that were clearly distributed in the northern and southern regions of Inner Mongolia

(Figs 3 and 4). Furthermore, the AMOVA results showed that most of the genetic variation

occurred between these two groups, along with a significant phylogeographic break that

occurred between them. The SAMOVA showed the same results, divided into two groups, one

northern group and one southern group. These results clearly indicate an allopatric divergence

in T. mongolica. Several causes of this divergence could be: habitat fragmentation resulting

from periodic oscillations of the Quaternary climate [50–52], lack of long distance dispersal

[53], and geographic isolation [1, 4, 54, 55].

Based on morphological characteristics of T. mongolica, there are clear differences between

T. mongolica and its variety T. mongolica var. ovatifolia. The leaves of T. mongolica are pin-

nately divided, long oval or rectangular, whereas the leaves of T. mongolica var. ovatifolia are

ovate or oval, with a nondivided leaf margin and larger capitulum. We found evidence that T.

mongolica var. ovatifolia in the southern group should be recognized as an independent species

based on our molecular results, which is consistent with the morphological classification pro-

posed by Zhao [29].

Table 3. Results of analysis of molecular variance of cpDNA sequence data of Tugarinovia mongolica.

Source of variation d.f. SS VC PV(%) Fixation index

Among groups 1 349.346 3.13894 52.86 FCT = 0.52857��

Among populations within groups 14 416.909 2.13763 36 FSC = 0.76356��

Within populaitons 203 134.375 0.66194 11.15 FST = 0.88853��

Total 218 900.630 5.93851

NG

Among populations 9 262.359 2.03571 66.15

Within populaitons 129 134.375 1.04166 33.85 FST = 0.66151��

Total 138 396.734 3.07737

SG

Among populations 5 154.550 2.32668 100

Within populaitons 74 0.000 0.00000 0 FST = 1.00000��

Total 79 154.550 2.32668

Degrees of freedom (d.f.), sum of squares (SS), variance components (VC), percentage of variation (PV).

��, p<0.001, 1000 permutations.

NG: northern group, SG: southern group.

https://doi.org/10.1371/journal.pone.0211696.t003
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High genetic differentiation due to vicariance

All populations of T. mongolica showed high levels of haplotype diversity (Hd = 0.9086) and

low nucleotide diversity (π = 0.0092). Low nucleotide diversity is usually associated with a low

seed amount and a small effective population size in some endangered species [18]. However,

the low nucleotide diversity that was observed for T. mongolica may be attributed to the small

effective population sizes that are associated with the reproductive barrier (male sterility). In

general, species that have narrow distributions and small effective population sizes show high

genetic differentiation among populations [17, 18], which we detected in this species (Table 2).

T. mongolica showed strong genetic differentiation (GST = 0.805) and low genetic diversity

within populations (HS = 0.185). The above results indicated a high level of genetic differentia-

tion among populations in T. mongolica that was due to restricted gene flow.

The divergence between the northern and southern groups can be traced back to the early

Pleistocene epoch (Fig 4) during the development of arid conditions that led to the formation

of the deserts that are located in Northwest China [15]. We speculate that the creation of the

extreme climate may have resulted in the diversification of T. mongolica. In addition, the diver-

gence time of two geographic groups (Fig 4) is consistent with the formation of the Hobq Des-

ert [56, 57], which, as a geographical barrier, may have blocked the genetic flow between the

northern and southern groups. Previous studies have shown that the desert, as a geographical

barrier, promotes the allopatric divergence of species [4]. The pollination and fertilization

requirements of T. mongolica make long-distance dispersal between the southern and north-

ern groups impossible, because they were separated by deserts. Thus, we speculate that the des-

ert may have acted as a geographic barrier that blocked gene flow between the two geographic

groups, thereby resulting in allopatric divergence. Consequently, populations became isolated

and independent in the northern and southern regions of the Alxa Desert.

Fig 4. The divergence time (Mya) of 17 cpDNA haplotypes of the northern group (NG) and southern group (SG) of

Tugarinovia mongolica based on BEAST analysis.

https://doi.org/10.1371/journal.pone.0211696.g004
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In this study, each population of the southern group contained one specific haplotype, and

most populations in the northern group shared one haplotype (Fig 2). The differentiation of

haplotypes within the two groups occurred in the middle and late Pleistocene (Fig 4), and this

period coincides with the formation period of the desert [14, 15]. The expansion of the desert

may have led to habitat fragmentation [1]. Here, we use desert expansion to explain the frag-

mented distribution of T. mongolica. In addition, the biological characteristics (dioecious with

male sterility and pistil abortion) of T. mongolica could have resulted in the distribution of

extant populations. The fragmentation distribution of T. mongolica var. ovatifolia may also be

related to desert expansion, but evidence of male sterility and pistil abortion in this group

requires further research.

Implications for Tugarinovia mongolica conservation

The results of genetic diversity and population structure are important to consider for the

implementation of effective conservation strategies, particularly for endemic and endangered

species [58, 59]. The risk of extinction is higher for species with narrow distributions and small

population sizes, especially if the gene flow among populations is lower than those with large

and stable populations. In addition, small population sizes are sensitive to reduced genetic

diversity through genetic drift and inbreeding [60, 61].

According to the analysis of cpDNA data, the high genetic drift load (FST = 0.88853, GST =

0.805) and inbreeding load (HS = 0.185) showed a significant extinction risk in the genus

Tugarinovia (Table 2). This extinction risk is particularly noticeable in the populations of T.

mongolica var. ovatifolia, which showed fragmented distributions, small population sizes, high

genetic drift load (FST = 1, GST = 1), and high inbreeding load (HS = 0) (Tables 2 and 3). All of

the above indices can increase sensitivity to environmental changes and the risk of extinction.

In addition, populations LSM, DZT, BRBL, QPJ, QLG and HBW of the southern group exhib-

ited unique haplotypes, which offer some protection from extinction for the population of T.

mongolica var. ovatifolia. In the northern group, the CJSM, WLJ and YG populations of T.

mongolica exhibited higher genetic diversity than other populations. Since T. mongolica is a

critically endangered, protected species with a second-class national priority [24], it is recom-

mended that the hotspots of populations that contain the highest genetic diversity be protected

[62, 63].

To mitigate genetic drift and the inbreeding load and increase the effective population size

of T. mongolica, we propose establishing the following conservation measures. First, enact

additional in situ conservation measures for the species, such as the creation of additional

nature reserves in the northern and southeast Alxa Desert, especially the CJSM, WLJ, and YG

populations of the northern areas. (The Wuhai location has established nature reserves for

some endangered and rare species [19])’. In particular, nature reserves for T. mongolica
var. ovatifolia, as an independent species with an unique haplotype, should be established.

Second, a protocol should be developed for ex situ conservation actions, such as seed collec-

tion from natural populations and reproduction in botanical gardens or other places,

which can ensure maximum conservation of the genetic diversity of species in those particular

areas.
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