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ABSTRACT

Head and neck cancer is the sixth most common cancer worldwide, with 
tobacco as the leading cause. However, it is increasing in non-tobacco users also, 
hence limiting our understanding of its underlying molecular mechanisms. RNA-seq 
analysis of cancers has proven as effective tool in understanding disease etiology. 
In the present study, RNA-Seq of 86 matched Tumor/Normal pairs, of tobacco 
smoking (TOB) and non-smokers (N-TOB) HNSCC samples analyzed, followed by 
validation on 375 similar datasets. Total 2194 and 2073 differentially expressed 
genes were identified in TOB and N-TOB tumors, respectively. GO analysis found 
muscle contraction as the most enriched biological process in both TOB and N-TOB 
tumors. Pathway analysis identified muscle contraction and salivary secretion 
pathways enriched in both categories, whereas calcium signaling and neuroactive 
ligand-receptor pathway was more enriched in TOB and N-TOB tumors respectively. 
Network analysis identified muscle development related genes as hub node i. e. 
ACTN2, MYL2 and TTN in both TOB and N-TOB tumors, whereas EGFR and MYH6, 
depicts specific role in TOB and N-TOB tumors. Additionally, we found enriched gene 
networks possibly be regulated by tumor suppressor miRNAs such as hsa-miR-29/a/
b/c, hsa-miR-26b-5p etc., suggestive to be key riboswitches in regulatory cascade of 
HNSCC. Interestingly, three genes PKLR, CST1 and C17orf77 found to show opposite 
regulation in each category, hence suggested to be key genes in separating TOB 
from N-TOB tumors. Our investigation identified key genes involved in important 
pathways implicated in tobacco dependent and independent carcinogenesis hence 
may help in designing precise HNSCC diagnostics and therapeutics strategies.
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INTRODUCTION

Head and Neck Squamous Cell Carcinoma (HNSCC) 
ranks 6th, amongst the most common cancers in the world, 
contributing to about 5% of all malignancies globally with a 
death rate of nearly half of total cases [1–3]. Tobacco usage 
such as smoking and chewing is the most common cause of 
head & neck and other cancers [4, 5]. Nonetheless, there are 
occurrences where individuals who never used tobacco or 
take liquor developed malignancy [6–9].

In the past decade DNA sequencing technologies 
such as Next generation sequencing technology (NGS) 
has identified key genomic signatures involved in cancer 
development and progression [10–14]. In recent years, 
large consortium based studies such as The Cancer 
Genome Atlas (TCGA) has provided detailed molecular 
map of HNSCC, and improved improved understanding of 
the role of genes in the pathogenesis of HNSCC [15–17]. 
Similarly, several studies has demonstrated the role of 
RNA-sequencing technique in cancers including HNSCC 
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and uncovered differential gene expression signatures of 
therapeutics and prognostics potential [11, 12, 18–25]. 
Identification of altered gene expression signature in 
cancer will help in identifying key biological pathways, 
leading to better understanding of the underlying 
molecular mechanism of the disease and can be use in 
precise therapy selection in the HNSCC management 
[26–28].

Role of tobacco in the pathological process has 
been analysed in recent studies and found genes, which 
are frequently mutated and abruptly expressed, possibly 
due to tobacco exposure [29–31]. Despite these studies, 
our understanding of underlying molecular mechanisms 
influenced by tobacco in HNSCC patients is limited. 
Hence, there is need of uncovering key genes and its 
molecular mechanism in Tobacco induce and non-
Tobacco HNSCC tumors. Therefore, in the present study 
differential gene expression analysis of tobacco smoking 
(we term as TOB) and non-smokers (we term as N-TOB) 
in TCGA HNSCC data set was performed for stratifying 
tobacco dependent and independent biological networks 
and functional pathways.

 RESULTS

Detection of differentially expressed genes

RNA-seq analysis of 86 matched Tumor normal 
pairs of HNSCC have identified total 5968 upregulated & 
5698 downregulated genes in habituated (tobacco smokers) 
tumors; and in non-Habituated tumors (non-tobacco users), 
total 6698 & 5896 genes showed up and downregulation 
respectively with p-value <0.1. Filtering based on fold 
change (padj(FDR)<0.05, Log2Foldchange>1) showed 
total total 6371 and 7003 DEGs in TOB and N-TOB 
samples respectively. Further filtering was done to 
consider genes which shows significant (padj(FDR)<0.05, 
Log2Foldchange>2) expression changes between Tumor 
and control samples. Total 2194 and 2073 genes were 
observed to show significantly altered expression in TOB 
and N-TOB tumors respectively (Figure 1, Supplementary 
Tables 1, 2). Among DEGs, 954 genes were up regulated 
and 1240 were down-regulated in TOB tumors. In case of 
N-TOB tumors, 890 and 1183 genes were found be up and 
downregulated respectively.

Additionally, Principal Component Analysis was 
performed using the PCA function from the sklearn 
Python module. Prior to performing PCA, the raw gene 
counts were normalized using the logCPM method, 
filtered by selecting the 2500 genes with most variable 
expression, and finally transformed using the Z-score 
method (Supplementary Figure 1).

A list of the top 20 most significantly up- and 
down-regulated DEGs of TOB and N-TOB tumors was 
shown in Figure 2. The most significant upregulated genes 
were CA9, GRIN2D, HOXC-AS2, GPR158, TGFBI 

etc. and genes i. e. EDN3, FAM107A, MYZAP, DLG2, 
SLC38A3, PRH1 etc. were observed to be most significant 
downregulated genes in TOB tumors. In N-TOB tumors, 
most significant upregulated genes were i. e. CD276, 
ADAM12, RPLP0P2 etc. and downregulated were 
KRT36, CRISP3, MYOC etc.

In order to identify common Transcriptional 
signature shared between Tobacco smokers and non-
tobacco smoker’s patients, comparison of DEGs between 
the two categories was performed. Of the total DEGs, 
1344 genes were observed to be altered in both categories 
whereas, 850 and 729 genes were observed to be unique in 
TOB and N-TOB tumors respectively (Figure 3).

Gene ontology and pathway enrichment analysis

In order to gain insights into the biological roles 
of the DEGs in HNSCC, we performed Gene ontology 
enrichment (p value<0.05) analysis using Gorilla software. 
The GO terms for biological process was found to be 
enriched in muscle contraction (GO:0006936; P = 2.14E-
7, P = 1.95E-9) and retinal homeostasis (GO:0001895;  
P = 3.81E-6, P = 4.36E-7) in both TOB and N-TOB 
tumors (Figure 4).

Further, biological significance for the DEGs was 
evaluated using KEGG and Reactome pathway enrichment 
analysis (p-value ≤ 0.05). The most significant pathway 
based on right sided hypergeometric test and bonferroni 
(pV) adjustments was muscle contraction (pV = 2.55E-
13, pV = 9.09E-16), Extracellular matrix organization 
(pV = 9.28E-09, pV = 1.70E-18) and salivary secretion 
(pV = 1.83E-07, pV = 5.76E-5) in both TOB and N-TOB 
tumors (Figure 5). In addition to this, pathway related 
to Neuroactive ligand-receptor interaction (pV = 1.49E-
09, pV = 1.70E-18) was observed to be enriched more in 
N-TOB tumors (Figure 5).

Protein-protein (PPI) interaction analysis of 
DEGs of Tobacco and non-Tobacco patients

The PPI network of DEGs were constructed for 
both TOB and N-TOB tumors by mapping genes onto 
STRING interactome database with higher confidence 
score cutoff of 0.900. The PPI network consists of 1552 
nodes and 2576 edges in Tobacco DEGs, whereas N-TOB 
DEGs were observed to have 1913 nodes and 2969 
edges. Hub genes were identified based on the number of 
interacting partners they have in the biological network. 
It was found that, genes such as ACTN2, PLK1, TPM2, 
MYL2, AURKA, AR, CCNB2, EGFR, TTN, CENPA, 
were observed to be top 10 hub genes in TOB tumors, 
whereas N-TOB tumors showed ACTN2, MYH6, MYL2, 
TPM2, TTN, TNNI2, TNNT3, TNNI1, TNNT1, TNNC1 
as hub genes in the network (Figure 6). Of these, hub 
genes ACTN2, MYL2, and TPM2 were observed to be 
downregulated in both the cases. However, upregulated 
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hub genes i. e. PLK1 (Degree = 13; Betweenness = 
1898), AURKA (Degree = 11; Betweenness = 1216), AR 
(Degree = 10; Betweenness = 4872), CCNB2 (Degree 
= 10; Betweenness = 1045) and EGFR (Degree = 9; 
Betweenness = 2234) were observed in Tobacco tumors.

miRNA enrichment analysis

miRNA Enrichment results were generated by 
analyzing the up-regulated and down-regulated gene sets 
using Enrichr. Significant results was obtained using cut-

off of p-value<0.05 after applying Benjamini-Hochberg 
correction (FDR<0.05). The most enriched miRNAs terms 
were hsa-miR-29 family, which are regulating DEGs in 
both TOB and N-TOB tumors (Table 1). Interestingly, 
TOB has more enriched miRNAs terms than N-TOB 
tumors. microRNA-29a/b/c were enriched miRNAs terms 
and observed to be upregulating 25, 33 and 24 target 
genes, in the TOB tumors respectively. In case of N-TOB, 
only hsa-miR-29b-3p* were found as enriched miRNA, 
possibly involved in upregulation of 20 target genes. 
Addition to this, TOB tumors has other enriched miRNAs 

Figure 1: (A) Volcano plot showing gene expression significantly (FDR<0.05; LogFC>2) altered (highlighted in red colour) in TOB 
sample. (B) Volcano plot showing genes significantly (FDR<0.05; LogFC>2) altered in expression, highlighted in red colour in N-TOB 
patients.

Figure 2: Top 20 DEGs identified in TOB and N-TOB tumors. Genes were ranked based on p-values ≤ 0.05 and adjusted false 
discovery rate using the Benjamini–Hochberg procedure.
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i. e. hsa-miR-215-5p*, hsa-miR-193b-3p*, hsa-miR-192-
5p*, hsa-miR-124-3p*, hsa-miR-615-3p*, hsa-miR-26b-
5p*, hsa-miR-92a-3p* which regulates 75, 77, 81, 70, 50, 
82 and 65 target genes respectively.

Potential biomarker

In order to find candidate genes, which behave 
differently and can be used to separate TOB tumors 
from N-TOB tumors, Log2fold change of gene of both 
tumors were compared. Surprisingly, three genes namely 

PKLR1, CST1 and C170rf77 were observed to expressed 
differently in both TOB and N-TOB tumors, which means 
the same genes is upregulating in one category, whereas 
downregulating in another categories of HNSCC tumors 
(Figure 7).

External validation of the DEGs in non-matched 
tumors

Further, the consistency of the identified altered 
gene expression profile was checked in other non-

Figure 3: Venn diagram showing DEGs common and unique between Tobacco and non-Tobacco patients. Genes 
highlighted in blue and pink red are showed altered expression in Tobacco and non-Tobacco patients only; and genes highlighted in dark 
red are observed to be altered in both Tobacco and non-Tobacco patients.

Figure 4: Gene Ontology Enrichment Analysis Results. The figure contains interactive charts displaying the results of the Gene 
Ontology (GO) enrichment analysis generated using GOrilla. The x-axis indicates the enrichment score for each term. Significant terms 
are highlighted in bold.
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matched tumors samples of tobacco smoking and non-
smoking patients. For this, non-matched tumors samples 
having tobacco smoking history and those who never 
smoked, were searched in TCGA database. Total 224 and 
151 samples of smoking habit and non-smokers patients 
were selected respectively. For DGE analysis, the normal 
control from the matched pairs (as used in the above 
analysis) were taken and process further using same 
pipeline (see method).

Results showed, nearly 83% of matched tumor 
DEGs (padj(FDR)<0.05, Log2Foldchange>1), were 
also observed to be deregulated in non-matched tumors, 
whereas 88% (1722 of total 2194 in TOB; 1643 of total 
2073 in N-TOB) concordance was observed with fold 
change 2 (Log2Foldchange>2) (Supplementary Tables 
3, 4). In addition to similar DEGs pattern, the top 
differentially expressed genes and three candidate genes of 
matched pairs were also found to be abruptly expressed in 

non-matched tumors. The expression pattern of candidate 
genes i. e. PKLR1, CST1 and C170rf77 in non-matched 
samples showed similar pattern with little low fold change 
as compared to matched tumors (Supplementary Figure 2).

DISCUSSION

Tobacco usage is a major factor in the development 
of various cancers including Head and neck squamous 
cell carcinoma (HNSCC). Present study attempted to 
identify differential expressed genes (DEGs) signature 
and its underlying possible molecular mechanism in 86 
matched tumor normal pairs of 43 HNSCC patients having 
Tobacco smoking (17 samples) and non-smoking (26 
samples) history. Findings was further validated on 375 
non-matched HNSCC tumors having tobacco smoking 
history (tobacco smoking = 224; non-smokers = 151) 
available in the TCGA database. Total, 2194 (954 up 

Figure 5: Network representing enriched pathways integrated KEGG and Reactome pathways of both TOB and 
N-TOB tumors. Highest significance of enriched pathway was obtained using advanced statistical settings such as Hyper-geometric 
(right-handed) enrichment distribution tests, p-value < 0.05, and Bonferroni adjustment. The size and colour represents number of DEGs 
involved and enrichment significance respectively- deeper the colour, the higher the enrichment significance.
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regulated and 1240 down regulated) and 2073 (890 up 
regulated and 1183 down regulated) genes were observed 
to be differentially expressed in TOB and N-TOB tumors 
respectively (Figure 1).

In order to uncover the biological roles of the 
DEGs in each TOB and N-TOB tumors, we performed 
a gene ontology (GO) enrichment analysis. GO terms 
related to muscle contraction, retinal homeostasis were 
enriched in TOB tumors; whereas cell cycle, cell division 
and DNA repair in N-TOB tumors were observed to be 
highly enriched biological process. Genes related to 
muscle contraction has been reported to be altered in 
Oral squamous cell carcinoma (OSCC) and suggests the 
presence of myofibroblasts in tumor stoma of patients with 
lymph node involvement [32].

Pathway enrichment analysis identified pathways 
related to extracellular matrix organization, muscle 
contraction, calcium signaling and salivary secretion 
to be the most significantly enriched pathways in both 
categories. In case of N-TOB patients, pathways of 
Neuroactive ligand-receptor interaction were found to 

be enriched. Extracellular matrix organization genes 
regulates cell proliferation, adhesion, differentiation, 
death and alteration leads to tissue fibrosis and cancer 
[33], whereas muscle contraction pathways were reported 
to be deregulated in lymph node metastasis OSCC [32]. 
Deregulation of the calcium signal is reported to be 
involved in tumor initiation, angiogenesis, progression 
and metastasis [34, 35] and a promising pathway for 
therapeutics strategy designing [26].

In recent years, effects of etiological factors such 
as lifestyle, diet, environment and exposure on molecular 
pathogenesis has been well studied due to emergence 
of the field i. e. molecular pathological epidemiology 
(MPE) [36, 37]. MPE is an integrative field, which 
incorporates molecular pathology into epidemiologic 
research and dissect the link between heterogeneous 
etiological factors such as environmental, dietary habits, 
microbiota, lifestyle, exposure and genetic factors with 
tumor initiation and progression in cancers of breast, 
prostate, lung and colorectal [38–42]. Moreover, the 
present study identified calcium-signaling pathway to 

Figure 6: Network based meta-analysis of hub genes. Zero-order interaction network of DEGs obtained from RNA-seq data 
using force-directed algorithm with Fruchterman-Rengold layout; green nodes represents over-expressed and red nodes represents under-
expressed genes.
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be enriched in TOB tumors, and may have association 
of smoking exposure with molecular pathogenesis of 
HNSCC. Calcium signaling is known to be affected by 
etiologic factors such as cigarette smoke exposure and 
results into increase calcium levels in cells and plays an 
important role in proliferation, migration, invasion or 
tumor growth and metastasis in cancers including drug 
resistance of pancreatic cancer [43–47]. Hence, in HNSCC 
it is possible that cigarette smoke increases intracellular 

calcium levels and affects normal cellular functions by 
promoting proliferation, motility, invasion and survival. 
Therefore, targeting calcium-signaling pathway in future 
HNSCC research, will provide detailed molecular insights 
of smoking related cancers and help in developing more 
effective treatment strategies in HNSCC. Neuroactive 
ligand-receptor interaction pathway has been reported to 
be implicated in many cancer types [26, 48–50] including 
OSCC [51] and represented promising candidates for 

Table 1: miRNA enrichment analysis results 

Rank miRNA P-value FDR Target Rank miRNA P-value FDR Target

TOB N-TOB

1 hsa-miR-215-5p* 6.08E-25 1.62E-21 75 upregulated 1 mmu-miR-29a-3p* 0.000002 0.004102 9 upregulated

2 hsa-miR-193b-3p* 5.10E-23 6.78E-20 77 upregulated 2 mmu-miR-29b-3p* 0.000004 0.00419 9 upregulated

3 hsa-miR-192-5p* 2.30E-21 2.03E-18 81 upregulated 3 hsa-miR-29b-3p* 0.00001 0.006585 20 upregulated

4 hsa-miR-29b-3p* 1.94E-14 1.29E-11 33 upregulated 4 mmu-miR-124-5p 0.002887 1 3 downregulated

5 hsa-miR-29a-3p* 1.34E-08 7.12E-06 25 upregulated 5 mmu-miR-1897-5p 0.017333 1 4 downregulated

6 hsa-miR-29c-3p* 2.73E-08 1.21E-05 24 upregulated 6 mmu-miR-3098-5p 0.019988 1 2 downregulated

7 hsa-miR-124-3p* 6.95E-08 2.64E-05 70 upregulated 7 mmu-miR-467e-5p 0.019988 1 2 downregulated

8 hsa-miR-615-3p* 8.43E-08 2.80E-05 50 upregulated 8 mmu-miR-467h 0.019988 1 2 downregulated

9 hsa-miR-26b-5p* 3.43E-07 1.01E-04 82 upregulated 9 mmu-miR-543-3p 0.023748 1 3 downregulated

10 hsa-miR-92a-3p* 1.06E-06 2.83E-04 65 upregulated 10 hsa-miR-502-5p 0.037752 1 5 downregulated

The table displaying the results of the miRNA enrichment analysis generated using Enrichr. Every row represents a 
miRNA; significant (p-value < 0.05; FDR < 0.005) miRNAs are highlighted in bold. Displays results generated using the 
miRTarBase library.

Figure 7: Differential gene expression pattern of key genes in both TOB and N-TOB tumors. Log2fold change values of 
genes showing opposite regulation of the same gene in between TOB and N-TOB tumors.
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therapeutic intervention in OSCC patients [26]. Therefore, 
targeting Neuroactive ligand-receptor interaction pathway 
in N-TOB tumors may open new avenues in HNSCC 
therapeutics intervention.

PPI network analysis elucidated detailed interaction 
among TOB and N-TOB DEGs and highlighted top 10 
centrality hub genes. Interestingly, MYH6 (Degree = 
13; Betweenness = 183) hub gene is observed to be 
downregulated only in N-TOB tumors, hence suggested 
to play important role in tobacco independent disease 
development and progression. Role of myosin heavy chain 
6 (MYH6) gene has earlier been associated in familial 
dilated cardiomyopathy [51, 52]. However, some study 
using RNAi in vivo screen identified MYH6 frequently 
altered in HNSCC MOC lines [53] and consider as novel 
putative cancer genes [54]. EGFR gene was observed to be 
upregulated in TOB tumors only, hence may be possibly 
involved in tobacco mediated carcinogenesis. Previously it 
was reported [55] that EGFR was overexpressed in about 
30% of human epithelial tumors including HNSCCs [55, 
56]. Ansell et al. 2016 found that the amount of EGF had a 
determinant function in cell proliferation and the response 
to treatment of cetuximab in tongue cancer, and emerged 
as a potential predictive biomarker of poor cetuximab 
response [57]. High level of EGFR enhanced proliferation, 
promote tumor growth leading to poor prognosis [58–60] 
and resistant to radiotherapy [61–63].

The prominent nodes with lowest p-values signify 
presence of muscle contraction pathways and associated 
altered expression of genes such as, TTN, TNNT3, 
TNN2 and MYL2 in both TOB and N-TOB tumors. This 
is in concordance with earlier microarray based gene 
expression profiling study, which revealed a distinction 
signature pattern belonging to muscle contraction pathway 
[32]. Furthermore, different studies have already proved 
the presence of myofibroblasts of tumor stroma by gene 
expression analysis in lymph nodes establishing their role 
in metastatic migration, invasion and association with 
poor survival rate in OSCC patients [64–66]. Troponin 
(TNN) gene family reported to be altered in TSCC and 
might serve as future clinical prognostic marker for 
TSCC [67]. These genes might play a regulatory role in 
control of cellular locomotion, cytoplasmic streaming, 
and cytokinesis in non-muscle cells. Further studies are 
warranted to elucidate the role of muscle related genes in 
OSCC carcinogenesis.

Polo-like kinase 1 (PLK1) encodes the protein 
which is important regulators of the cell cycle and cell 
division. PLK1 has been reported to be upregulated in 
various cancers [67, 68] and their expression level are 
associated with a poor prognosis and a lower overall-
survival in many cancers [69–71] including HNSCC 
[72]. Recent study has demonstrated this as a promising 
target for chemopreventive treatment of preneoplastic 
cells, and could be applied to prevent HNSCC and local 
relapses [72, 73]. Aurora kinase A (AURKA) has been 

implicated in numerous types of cancer [72–78] and 
reported to promotes cell migration & invasion [79] 
tumor progression in patients with laryngeal squamous 
cell carcinoma (LSCC) [80]. Both PLK1 and AURKA 
hub genes were observed to be upregulated, which is in 
concordance with the above earlier reports.

Interestingly, three genes i. e. PKLR, CST1 and 
C17orf77 were observed to expressed differently in the 
TOB and N-TOB tumors, means there is upregulation in 
TOB, whereas downregulation in N-TOB and vice versa. 
Surprisingly, role of PKLR gene in HNSCC cancer not well 
studied. However, recent study, have demonstrated that 
PKLR promotes colon cancer cell metastatic colonization 
of the liver by increasing glutathione synthesis, which is 
the primary endogenous antioxidant [80, 81]. CST1 gene 
encodes Cysteine proteases (CST1) enzymes, generally 
involve in protein degradation, which is associated with 
a diversity of diseases and facilitates the development and 
progression of cancer cells [82–84]. Cystatins (CST1) 
play important roles in tumor invasion and metastasis 
in colorectal cancer [84–86]. Recent study reported that 
elevated expression of CST1 may promotes breast cancer 
progression and predicts a poor prognosis [87]. Role of 
Chromosome 17 Open Reading Frame 77 (C17ORF77) 
gene in cancer has not been well studied yet. Therefore, 
these three genes will be gene of interest in future studies 
for better understanding of molecular insight of tobacco 
habituated and non-habituated associated HNSCC.

Additionally, the present study also identified 
enriched riboswitches i. e. miRNAs regulating their target 
genes for understanding regulatory cascade of tobacco and 
non-tobacco induced carcinogenesis. microRNA-29a/b/c 
were observed to be the most enriched miRNAs (P-value 
< 0.05) across both TOB and N-TOB categories, as it 
regulate genes, which are detected to be upregulated in the 
present study. In earlier studies, miR-29 family members 
(i. e., miR-29a, miR-29b, and miR-29c) are reported to 
be frequently downregulated in many cancers [87–91] 
including their antitumor functions in HNSCC [91–93]. 
Therefore, downregulation of miR-29 family leading to 
loss of tumor suppressor activity, which subsequently 
results in the upregulation of several oncogenic genes in 
HNSCC. TOB tumors possesses other enriched miRNAs i. 
e. hsa-miR-215-5p*, hsa-miR-92a-3p*, hsa-miR-26b-5p* 
etc. Among these, the largest number of upregulated i. e. 
82 genes were found associated with miR-26b, which is 
reported to be downregulated in various cancers, including 
OSCC, indicating its tumor suppressive nature in oral 
cancer progression [93, 94]. hsa-miR-26b-5p was also 
reported as tumor suppressors in cancers of oral cavity 
[2, 89] and suggested that, loss of tumor-suppressive 
miR-26a/b enhanced cancer cell migration and invasion 
in OSCC [2]. Therefore, identification of gene networks 
regulated by these tumor suppressor miRNAs may provide 
novel insights into designing therapeutic strategies in 
HNSCC.
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METHODS

Identification of relevant datasets and 
differential expression analysis

RNA-seq data was retrieved from The Cancer 
Genome Atlas, TCGA-HNSC project for gene expression 
profiling of HNSCC patients for our study. Total 86 Tumor/
Normal pairs samples of 43 HNSCC patients were found 
having tobacco habit details (Table 2). Of these, 34 sample 
pairs from 17 Tobacco habituated patients and 52 sample 
pairs from 26 non-habituated patients were considered 
for further analysis. Raw read counts (HTSeq read 
counts) of total 86 Tumor/Normal pairs were downloaded 
using TCGA GDC Data Transfer Tool (Figure 8).  

Raw read counts were normalized to log10-Counts Per 
Million (logCPM), followed by the application of a log10-
transform using DESeq R package and differentially 
expressed genes (DEGs) were identified for each TOB 
and N-TOB tumor.

Gene ontology (GO) and pathway enrichment 
analysis

In order to understand the biological significance of 
the DEGs, we performed Gene Ontology (GO) enrichment 
analysis using GOrilla tool [95] with p-value threshold of 
0.05. Enriched pathways of DEGs were identified using 
KEGG and Reactome pathway databases integrated in 
ClueGO [95, 96] v2.3.5 plugin of Cytoscape 3.4.0 with 

Table 2: Patients details including age, stage, Tobacco habit, alcohol consumption status, demography and gender 
shown in the table

Study Characteristic No.

Age at diagnosis, years

Mean ± SD 64.9 ± 14.5

Median 42

Clinical stage

Stage I 2

Stage II 15

Stage III 8

Stage IVa 17

Not reported 1

Tobacco habit (Smoking)

Yes 17

No 26

Alcohol consumption status

Yes 22

No 19

Not reported 2

Gender

Male 29

Female 14

Demographic details

White 39

Asian 1

Black or african american 2

not reported 1

Matched Tumor/Normal pairs of each HNSCC patient was retrieved from TCGA database.
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p-value cut-off 0.05. Additional filtering was performed 
using advance statistical option such as Two-sided 
hypergeometric test for calculating importance of each 
term and Bonferroni step-down for p-value correction.

PPI network construction

Protein-protein interaction (PPI) of analysis was 
performed for DEGs of both categories to identify key 
proteins and their significance in the complex biological 
systems. We used STRING interectome database [97] with 
high confidence score cut-off (0.900) and constructed PPI 
network of DEGs using NetworkAnalyst [98]. Further, 
filtering of zero-order network was performed to retain 

only seed proteins that directly interact with each other 
and finally highly interconnected hub nodes was identified 
based on two centrality measure such as degree and 
betweenness centrality.

miRNA enrichment analysis of DEGs

microRNAs enrichment analysis was performed 
to identify regulatory cascade of DEGs of HNSCC. 
Two databases viz. TargetScan [98, 99] and MiRTarBase 
[100] integrated in Enrichr [100, 101] tool was used to 
retrieved enriched (p-value<0.05) riboswitches involve in 
transcriptional regulation of DEGs.

Figure 8: Detail workflow of the study. Study workflow consists of three components i. e. 1) data set search and selection of relevant 
data; 2) mining of the selected data (RNA-seq read count) from TCGA; and 3) data analysis which includes differential gene expression 
(DEGs) analysis and annotations.
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CONCLUSIONS

In conclusion, we performed analysis of HNSCC 
RNA-seq data and identified key deregulated genes 
associated with functional pathways and biological 
networks, which may be contributing in Tobacco dependent 
and independent carcinogenesis of the disease. Pathway 
analysis identified key DEGs involves in calcium signaling, 
and suggests playing key role in tobacco dependent 
molecular pathogenesis in HNSCC. Our findings suggest 
that, three genes i. e. PKLR, CST1 and C17orf77 may hold 
putative role in both pathogenesis of smoking and non-
smoking related HNSCC tumors and can be consider as 
potential biomarker for separating these tumors from each 
other. The identified differentially expressed genes can be 
integrated in multiple biological pathways and provide 
improved understanding of key molecular mechanisms in 
smoking and non-smoking associated HNSCC tumors, and 
be useful in precision therapy selection. However, further 
research is needed to understand influence of smoking and 
other etiological factors such as environment, lifestyle, diet, 
alcohol consumption and HPV infection on the molecular 
pathogenesis of the disease.
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