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Abstract

Background: Although combination antiretroviral therapy (cART) initiated in the acute phase of HIV-1 infection may prevent
expansion of the latent reservoir, its benefits remain controversial. In the current study, HIV-1 RNA transcription patterns in
peripheral blood mononuclear cells (PBMC) were monitored during acute cART to assess the effect of early treatment on
cellular viral reservoirs.

Methodology/Principal Findings: Acutely HIV-1 infected patients (n = 24) were treated within 3–15 weeks after infection.
Patients elected to cease treatment after $1 year of therapy. HIV-1 DNA (vDNA), HIV-1 RNA species expressed both in
latently and productively infected cells, unspliced (UsRNA), multiply spliced (MsRNA-tatrev; MsRNA-nef), and PBMC-
associated extracellular virion RNA (vRex), expressed specifically by productively infected cells, were quantified in PBMC by
patient matched real-time PCR prior, during and post cART. In a matched control-group of patients on successful cART
started during chronic infection (n = 15), UsRNA in PBMC and vDNA were measured cross-sectionally. In contrast to previous
reports, PBMC-associated HIV-1 RNAs declined to predominantly undetectable levels on cART. After cART cessation, UsRNA,
vRex, and MsRNA-tatrev rebounded to levels not significantly different to those at baseline (p.0.1). In contrast, MsRNA-nef
remained significantly lower as compared to pretreatment (p = 0.015). UsRNA expressed at the highest levels of all viral
RNAs, was detectable on cART in 42% of patients with cART initiated during acute infection as opposed to 87% of patients
on cART initiated during chronic infection (Fisher’s exact test; p = 0.008). Accordingly, UsRNA levels were 105–fold lower in
the acute as compared to the chronic group.

Conclusion: Early intervention resulted in profound depletion of PBMC expressing HIV-1 RNA. This is contrary to chronically
infected patients who predominantly showed continuous UsRNA expression on cART. Thus, antiretroviral treatment
initiated during the acute phase of infection prevented establishment or expansion of long-lived transcriptionally active
viral cellular reservoirs in peripheral blood.
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Introduction

Current combination antiretroviral therapy (cART), despite its

potency in suppressing active viral replication [1,2] and its power

in reducing mortality and morbidity of HIV-1 infection [3,4], has

not resulted in eradication or induction of treatment-free periods

of remission of HIV-1 replication [5,6,7]. A pool of HIV-1 infected

long-lived latently infected memory T-lymphocytes has been

reported to be the major reservoir that confers HIV-1 infection

resilient to eradication [8,9,10]. The frequency of latently infected

cells was reported to range from 1 to 20 cells per 106 resting CD4+

T-cells [9]. However, as these assays rely on technically

demanding ex-vivo outgrowth assays, their results likely underes-

timate the size of the latent reservoir. Recent studies used PCR-

based methods, in which latency had been defined as active viral

transcription in the absence of viral progeny production. The

resulting estimates of the size of the peripheral blood latent

reservoir were at least 5–10 times higher in resting CD4+ T-cells

[11] as well as in total PBMC [12] when compared to viral

outgrowth assays [9]. Apart from cells in peripheral blood, other
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sites such as lymphoid tissues [13,14,15], the gastrointestinal tract

[16,17,18,19], the brain [20], and the genital tract [21], have been

reported to contribute to latent viral sanctuaries.

Due to the low expression levels of viral RNA in latently

infected cells [12,14,22,23,24] and viral antigens, the latent viral

reservoir is greatly inaccessible for adaptive and innate immune

defenses. It has been proposed that local bursts of viral replication

are initiated by immune activation in response to specific antigens

[25,26,27] or due to random self-activation by the viral

transactivator Tat [28]. In the presence of potent cART, such

bursts will be dead-ended, because the viral particles produced

may not initiate new rounds of infection. Conversely, after

cessation of cART, this process will lead to rapid viral rebound

[29] initiated stochastically from single or oligoclonal archival

proviruses [30].

Nevertheless, the canon that HIV-1 replication, as measured by

levels of plasma viremia, will inevitably proceed in the absence of

cART [31,32] or recur soon after its cessation [29,33] has been

challenged by important exceptions. Due to strong and specific

immunological responses, so called elite-controllers contain viral

replication to levels below a clinically relevant threshold (,50

copies/ml) in the absence of cART (reviewed in [34]). Further-

more, in some instances treatment initiated during the acute or

early phases of HIV-1 infection had resulted in control of viremia

after treatment cessation [35,36,37,38]. These anecdotal cases

have been used as precedents supporting early treatment. In

addition, two rationales have been proposed to affirm possible

benefits of early treatment of HIV-1, despite considerable side

effects [39,40,41] as well as costs [42,43], which need to be

considered in relation to decades of expected treatment time.

Paul Ehrlich’s paradigm to ‘‘hit early and hard’’ in treatment of

infectious disease [44] to limit spread of an infectious pathogen

and to contain its population size, toxicity, and its potential to

escape immunological and chemotherapeutic/medical control

[45] is still valid and accepted. This concept was substantiated

for HIV-1 by Strain et al., who showed that the size of latent

reservoirs was smaller in patients with treatment initiation in the

acute phase than in those who initiated cART during chronic

infection [46]. In addition to that, the notion that acute HIV-1

infection is generally associated with oligoclonal viral quasispecies

of low phylogenetic diversity [47,48], led to the hypothesis that by

early treatment viral escape to specific HIV-1 antibody- and

cytotoxic T-cell responses may be avoided or deferred resulting in

clinical benefit and/or virological control of the virus. This

concept was corroborated by a study showing that transmission of

multiple quasispecies was associated with faster disease progression

than mono- or oligoclonal primary infection [49]. Low viral

diversity has also been shown to be associated with modest but

significant control of viremia in chronic infection [50]. Moreover,

superinfection can lead to the loss of control of viremia

[51,52,53,54,55,56].

To elucidate these issues in the current study, intra- and

extracellular viral dynamics were assessed before, during, and after

treatment of acute HIV-1 infection. For this purpose HIV-1 RNA

transcription patterns in PBMC and levels of plasma viremia were

monitored. Comparison with a group of patients, who had

initiated cART during chronic infection, was performed cross-

sectionally. Unexpectedly, cell-associated viral RNA burden in

PBMC became mostly undetectable in the acutely infected patient

group. The levels of UsRNA, the most abundant cellular HIV-1

RNA in vivo, were at least one order of magnitude lower during

cART initiated in acute than in chronic infection. These results

strongly indicate that patients initiating cART in the acute phase

of infection may attain a substantial virological benefit from early

intervention.

Results

Kinetics of viral RNA levels in response to treatment and
cessation of cART

Acutely HIV-1 infected patients (n = 24) were treated with

cART within 3–15 weeks after infection. Plasma viremia was

monitored using standard diagnostic quantitative PCR-assays

(qPCR) and PBMC-associated HIV-1 nucleic acids (figure 1) were

quantified by patient matched qPCR [11,12,57,58]. HIV-1 DNA

(vDNA) was assessed as a measure of total infected cells,

comprising latently and productively infected cells as well as cells

harboring defective genomes.

Figure 1. Map of HIV-1 amplica for qPCR assays. Splice acceptors and donor sites are shown by red and blue vertical lines, respectively. Exons
are depicted in grey bars. Blue dotted lines show documented or predicted splice events. Sense primers used in qPCR assays are depicted by red
arrows antisense/cDNA primers by blue arrows. Fluorescent hydrolysis probes [58] (FH-probes/TaqManH-probes) are shown by green/pink bars.
Assays for MsRNAs share a common antisense/cDNA primer and in some instances, when a probe for MsRNA-tatrev was not available, a common FH-
probe 39 of the splice-acceptor of the 2nd major intron. Note that this map does not show mRNAs encoding Env because these transcripts were not
assessed in the current study.
doi:10.1371/journal.pone.0013310.g001
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To investigate the activity of these HIV-1 infected cells, distinct

PBMC-associated viral RNA species (vRNAs) were quantified:

unspliced RNA (UsRNA) and 2 types of multiply spliced encoding

tat and rev (MsRNA-tatrev) or nef (MsRNA-nef). These RNAs

were found to be expressed both in latently [12,23,59] and

productively infected cells, however, at much higher levels in the

latter cell population. As a marker for productively infected cells,

PBMC-associated extracellular virion RNA (vRex) was measured

[11,12,14,22,57].

Initiation of cART resulted in a decay of viral RNA production

(figure 2A/B left panel). Whereas plasma viremia followed kinetics

which were consistent with a 2–3 phasic exponential decay, vRex

dropped to undetectable levels almost instantly after initiation of

cART. Decay of UsRNA and MsRNAs was intermediate between

that of plasma viremia and vRex (data not shown). Upon cessation

of cART, rebound of HIV-1 nucleic acids occurred quickly in

plasma (figure 2A, right panel), but was apparently delayed in

PBMC (figure 2B, right panel, figure 3B).

Time to event analysis of HIV-1 RNA detection during and
after cART

To corroborate these observations and to extend them to

UsRNA and MsRNAs, empirical distributions of the proportions

of patients with detectable viral RNAs after initiation of cART

were plotted (figure 3A). Similarly, distribution of the proportion

of patients experiencing viral rebound after therapy cessation was

addressed (figure 3B). Upon initiation of cART, disappearance of

vRex took a median time of 4.5 weeks (quartiles 4, 6 weeks).

Taking into account that the second sample following baseline in

the current study was obtained at a median time of 4.4 weeks

(quartiles 4, 5 weeks) depletion of vRex occurred instantaneously

after cART initiation. MsRNAs declined significantly later to

undetectable levels (Mann-Whitney, p = 0.002), namely within a

median time of 8.4 weeks (quartiles 5, 13 weeks). The next

parameter to reach its detection limit with a significant delay

compared to MsRNA (Mann-Whitney, p = 0.003) was UsRNA

with a median time to the first undetectable measurement of 13.5

weeks (quartiles 9, 47 weeks). Finally, plasma viremia dropped to

Figure 2. Longitudinal course of HIV-1 virion production. Levels
of plasma viremia (A) and of PBMC-associated virions, vRex (B) of 24
acutely infected patients, were plotted against time after initiation of
cART (0 weeks, left panels) or against time after cART cessation (defined
as 0 weeks in the right panels). Note that some data points are depicted
in the left panels are also shown in the right panels to facilitate
visualization of the effects of cART cessation. The amount of vRex
measurements is lower, because cell sampling was done less frequently
than plasma HIV-RNA was measured. Data within the grey horizontal
areas show PCR-negative samples below the detection limit of the
assays applied. The black line in panel A depicts the clinically used
threshold for plasma viremia of 50 RNA copies/ml.
doi:10.1371/journal.pone.0013310.g002

Figure 3. Empirical distribution of times to virological end-
points. Time to event analysis showing the percentage of patients
before reaching their first PCR-negative measurement after initiation of
cART (A) or reaching measurable viral RNA levels above a defined
threshold after cessation of cART (B). Thresholds are indicated in
parentheses in panel B and were defined as approximately 3-fold
elevation over mean on cART levels for cellular HIV-1 RNAs. Threshold of
plasma viremia was set at 50 copies/ml. On average vRex (red lines),
MsRNAs (magenta), UsRNA (blue) and plasma viremia (red broken lines)
dropped to undetectable levels 4.5, 8.4, 13.5, and 24.6 weeks after
initiation of cART, respectively (A) and rebounded within 17.9, 9.8, 8.0,
and 4.2 weeks after treatment cessation (B), (dotted lines). Note that for
analysis of plasma viremia only time-points were considered for which
also UsRNA and MsRNA measurements had been available.
doi:10.1371/journal.pone.0013310.g003
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undetectable levels within a median time of 24.6 weeks (quartiles

12, 44 weeks), which was not significantly different to the decay of

UsRNA (Mann-Whitney, p = 0.52). In general, after detection of

the first undetectable HIV RNA value, all RNA species measured

remained undetectable at almost all timepoints measured during

treatment.

After cessation of cART, plasma viremia reached levels above

the threshold of 50 copies/ml in a median time of 4.2 weeks

(quartiles 3, 10 weeks). Rebound of UsRNA and MsRNA

proceeded with some delay without reaching statistical difference

(Mann-Whitney, p = 0.30 and p = 0.07, respectively): Median time

to rebound was 8.0 weeks (quartiles 4, 12 weeks) and 9.8 weeks

(quartiles 4, 19 weeks) for UsRNA and MsRNA, respectively.

Lastly, within a median time of 17.9 weeks (quartiles 8, 56 weeks)

vRex rose to detectable levels. Its rebound was statistically

different from that of plasma viremia and of UsRNA (Mann-

Whitney, p = 0.007 and 0.02, respectively) but not from MsRNA

(Mann-Whitney, p = 0.06). It has to be noted that vRex was

measured less frequently than plasma or PBMC viremia.

Therefore the median time to rebound may have been

overestimated.

Magnitude of viral nucleic acid levels at baseline and
post-cessation

To investigate whether cART initiated in acute infection had an

impact beyond its cessation, the levels of HIV-1 nucleic acids at

baseline and after treatment cessation were compared. Maxima

were used to represent post-cessation HIV-1 nucleic acid levels, to

account for the variability among the different parameters

regarding the time to reach stable set-points.

Plasma viremia (figure 4A) was significantly reduced after

treatment cessation as compared to baseline (Wilcoxon signed

rank test, p = 0.002). This reduction can be attributed in part to

the early treatment effect of cART (Gianella, von Wyl et al.,

unpublished data), but also to a naturally occurring ‘‘first peak’’ of

viremia observed in acute HIV-1 infection [60]. We observed a

less pronounced impact of early cART on cellular viral nucleic

acid levels after treatment cessation. Only MsRNA-nef showed

persistent significant reduction after cART (Wilcoxon signed rank

test, p = 0.02), whereas the remaining parameters, vDNA, vRex,

UsRNA, and MsRNA-tatrev (figure 4B–E) tended to be lower

after treatment stop compared to baseline but without reaching

statistical significance (Wilcoxon signed rank test, p.0.10).

Figure 4. Virological parameters before, during, and after cART. Viral nucleic acid levels at baseline (diamonds), and average values during
the time windows defined as on cART (circles, vRex $2 weeks, plasma viremia, PBMC-associated UsRNA and MsRNAs $24 weeks) and post-cessation
maximal values (triangles). Data-points within the grey horizontal areas show PCR-negative samples below the detection limit of the assays applied.
P-values within panels show significance levels (Wilcoxon signed rank test) between baseline and post-cessation. Bars show medians and quartiles.
The dotted line in panel A depicts the clinically used threshold for plasma viremia of 50 RNA copies/ml.
doi:10.1371/journal.pone.0013310.g004
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Viral reservoirs during cART
As opposed to baseline and post-cessation viral nucleic acid

levels, which were represented by single measurements, on-cART

levels were estimated by calculating means. Taking into account

the rapid decay of vRex, the mean of samples at time-points $2

weeks after initiation of treatment was used. For all other

parameters measurements taken at time points $24 weeks were

used for calculation of mean values. The rationale for choosing this

time-window was that the parameter with the slowest decay

kinetics, plasma viremia, reached undetectable levels within a

median time of around 24 weeks as shown in figure 3A.

Accordingly, the resulting mean values for plasma viremia on

cART were well below the clinically used threshold of 50 copies/ml

(figure 4A), except for one patient (#133; 59 copies/ml).

HIV-1 DNA persisted at a level of 8236253 copies/106 PBMC

(mean6sem) during cART initiated in acute infection. However,

proviruses in these infected cells were transcriptionally almost

completely silent. Expression of MsRNAs and vRex was mostly

undetectable and attenuated to mean levels ,1 copy/106 PBMC

(MsRNA-tatrev: 0.3460.24, MsRNA-nef: 0.6560.30, vRex:

0.2960.19; mean6sem). Only expression of UsRNA was

occasionally detected at a mean level of 2.661.2 copies/106

PBMC. The absence of vRex during cART observed in the

current study was similar to findings of previous studies

[11,12,14,22] indicating a fast and complete loss of productively

infected cells as a consequence of cART. However, the almost

complete depletion of MsRNA and the profound reduction of

UsRNA were highly unexpected, as we and others have shown

their presence at measurable levels in latently infected cells of

HIV-1 infected patients on cART [11,12,59].

Comparison of the effects of cART initiated in primary
versus chronic infection

To investigate whether the observed depletion of viral

transcription could be attributed to the early initiation of cART,

PBMC obtained from patients, who had initiated antiretroviral

therapy in the chronic phase of HIV-1 infection, were assessed for

the presence of viral RNA in PBMC. Latently infected cells

expressing solely UsRNA had been shown to persist during cART

at the highest frequency among all cell classes expressing viral

RNA and UsRNA had been consistently detected at the highest

levels during cART in previous studies [11,12,57,61]. Therefore,

UsRNA and vDNA were quantified in patients in whom cART

had been initiated during chronic infection (n = 15, for patient

characteristics see Table S1) using identical conditions as for the

acute patient group, including RNA extraction, use of patient

matched primers, and PCR input volumes. Levels of plasma

viremia in the chronic control group were ,50 copies/ml (mean:

10 copies/ml, range 0–28) and treatment had lasted for a median

time of 50 weeks (36–183 weeks). In this group of patients, 86% of

specimens were positive for UsRNA, which is significantly higher

than the percentage of patients in the acute group showing any

UsRNA positive PCR on cART (42%, Fisher’s exact test,

p = 0.008). Furthermore, the average level of UsRNA in the

chronic control group (mean = 272 copies/106 cells, range 0–

1486) was 105-fold higher than in the acute group (Mann-

Whitney, p,0.0001, figure 5A).

Levels of vDNA were significantly elevated (Mann-Whitney,

p = 0.04) in the chronic group as compared to the patients treated

during acute infection. To adjust for this difference in the total

number of infected cells, the average viral transcriptional rate i.e.,

the ratio of viral RNA to vDNA, was calculated [11]. Similarly as

the absolute levels of UsRNA, viral transcriptional rates were

elevated with high statistical significance (12-fold, Mann-Whitney,

p = 0.0002) in the chronic group as compared to patients in the

acute group (figure 5B).

Discussion

The main aims and rationales for antiretroviral therapy in acute

HIV-1 infection are confinement of genetic diversity of viral

quasispecies to prevent escape from adaptive immunity, restriction

of CD4+ T-cell loss, preservation of immune functions, and

inhibition of initial viral spread throughout the possible sites of

replication. Despite considerable efforts from various research

Figure 5. Viral nucleic acid expression in acute and chronic patients during cART. Mean levels of vDNA (grey symbols) and UsRNA (blue
symbols) (A) or viral transcription rates (B) of patients that had initiated cART during acute infection (acute, n = 24, circles) were assessed during the
on-cART time window ($24 weeks) and compared to single measurements in patients that had initiated cART during chronic infection (chronic,
n = 15, triangles, median treatment time 50 weeks, range 36–183, see Table S1 for details). Data-points within the grey horizontal areas show PCR-
negative samples below the detection limit of the assays applied. P-values within panels show significance levels (Mann-Whitney test) between the
acute and the chronic group. Bars show medians and quartiles.
doi:10.1371/journal.pone.0013310.g005
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groups, to date evidence from clinical studies in humans to

empirically substantiate these concepts remains limited. Here we

performed a longitudinal in-depth analysis using patient matched

highly sensitive qPCR assays to detect different HIV-1 gene

trancripts to assess effects of early treatment on cellular reservoirs

of HIV-1 in peripheral blood.

HIV-1 transcription was monitored longitudinally before,

during, and after cessation of treatment of acute HIV-1 infection

in well characterized patients [60,62]. This analytical approach

was applied because numerous studies revealed persistence of

cellular HIV-1 RNA for years in patients on cART despite

suppression of plasma viremia [14,15,17,57,61,63,64,65]. By

choosing a patient matched approach for qPCR with single copy

sensitivity, it was anticipated that not only levels of UsRNA, but

also the less abundant multiply spliced RNAs could be quantified

and used to assess the viral transcription pattern of the PBMC

reservoir of HIV-1 during cART [11,12,57].

The major finding of this study was that early cART initiated

during acute HIV-1 infection significantly depleted the number of

transciptionally active proviruses by an order of magnitude when

compared to levels detected in patients treated during chronic

infection.

Specifically, productively infected PBMC, hallmarked by

expression of cell attached virions (vRex) were depleted within a

median time of 4.5 weeks after cART initiation. The remaining

HIV-1+ PBMC, expressing solely intracellular viral RNA, can

therefore be viewed as latently infected [11,12,14]. These cells

faced depletion within a median time of 24 weeks. This resulted in

.100-fold reduction of viral transcription levels and at least 10-

fold lower average viral transcriptional rates as compared to

patients who had started cART during chronic infection. It is

unlikely that the strong reduction of viral transcription in PBMC

in primary HIV infected patients was due to the potency of

treatment rather than to timing of antiretroviral therapy because

the control group of chronically infected patients received similar

treatment.

Decay of HIV-1+ cells in response to treatment occurred in a

significantly staggered mode according to their pattern of viral

RNA expression and life-span as previously described [12].

Productively infected cells expressing vRex vanished almost

instantly after initiation of treatment, then cells expressing

MsRNA followed with a delay of about 4 weeks, ultimately a

further 5 weeks later, cells expressing solely UsRNA pursued.

Thus, even HIV-1 RNA expressing cells with the longest life spans

[12] approached depletion.

These findings imply that early cART led to the clearance of

long-lived cells harboring transcriptionally active latent proviruses.

In an early study, Markowitz and colleagues showed persistence of

viral transcription in PBMC when antiretroviral therapy was

initiated within 90 days after onset of primary symptoms [17]. This

discrepancy can most likely be explained by a 5–6 week earlier

initiation of therapy in the present study. Of note, our findings are

in agreement with the observations of Strain and colleagues [46].

In their study, using viral outgrowth assays of resting CD4+ T-

lymphocytes, a cohort of patients on early cART showed lower

levels of latently infected cells than a control group with deferred

cART initiation. In addition, two small studies in humans and in

the SIV model also suggest that HIV-1 suppression as measured

by unspliced HIV-1, respectively SIV RNA can be reduced by

treatment during primary HIV infection in the gut associated

lymphoid tissue [66,67].

After cessation of cART, virological parameters reappeared

inverted to their decay. UsRNA rose to significant levels after 8

weeks, followed two weeks later by MsRNA and finally vRex

reappeared with a significant delay. The observations that viral

rebound in plasma preceded that of cellular viral RNAs and

plasma viremia was the last parameter to decay during cART,

implies that PBMC can be viewed as independent compartment to

some degree separate from the source of virus appearing in

plasma. These dynamics potentially suggest that repopulation of

the PBMC compartment of rebounding transcriptionally active

PBMC was most likely due to ‘‘de novo’’ infection of PBMC by

plasma virions rather than by reactivation of latently infected

PBMC. The rebounding virus most likely originates from distinct

compartments such as the secondary lymphoid organs (e.g., gut

associated lymphoid tissue (GALT), lymph nodes, spleen), the

cerebral nervous system, the kidneys, or the genital tract. Very

recent data by Yukl et al. [19] suggests that most likely more than

83% of all HIV-1 infected cells under therapy are to be found in

the GALT and that the RNA/DNA ratio on treatment tends to be

higher in this compartment than in the peripheral blood.

Furthermore, GALT is continuously exposed to bacterial antigenic

stimuli from gut commensals. In aggregate, the high HIV burden

together with continuous antigenic stimulation makes this large

reservoir a prominent candidate as a source for the rebounding

virus. Of note, the RNA/DNA ratios of GALT and PBMC in the

study by Yukl was measured with exactly the same methods as in

our study.

The fact that post-cessation control of viral RNA expression was

achieved in several patients during the post treatment observation

period supports this hypothesis: Plasma viremia was undetectable

in patient #72, control of UsRNA expression was experienced in

patient #25, control of MsRNA expression was achieved by

patients #25, #56, and #92, and control of vRex was

experienced by patients #72 and #99.

The observation that MsRNA-nef levels, a parameter reported

to be associated with viral latency [57,68] were significantly

reduced as compared to baseline further indicates that the latent

reservoir was reduced by initiation of cART during acute

infection. Conversely, it cannot be fully excluded that the

decreased levels of MsRNA-nef after therapy cessation may be

explained by the ‘‘first peak’’ of viral replication in acute HIV-1

infection and its subsequent spontaneous decay independent of

cART [69].

Taken together, our data demonstrate a profound virologic

effect of treatment initiation during acute HIV-1 infection. The

unprecedented finding that residual viral transcription was almost

completely depleted, suggests that the latent reservoir of HIV-1

during cART can be reduced by early intervention and that proof

of concept studies aiming at HIV-1 eradication or remission of

HIV-1 replication should be initiated in patients during acute

infection.

Materials and Methods

Ethics Statement
In accordance with the guidelines of the Ethics Committee of

the University Hospital of Zurich, written informed consent was

obtained from all participants of the studies analyzed: the Zurich

Primary HIV Study (ZPHI), the Swiss Spanish Intermittent

Therapy Trial (SSITT), and the Zurich HIV-1 Transcription

Study.

Patients and specimens
Patients with treatment initiated in the acute phase of

HIV-1 infection (acute group). Patients (n = 24; Table S1)

included in our study were enrolled in the Zurich Primary HIV

Study (ZPHI, http://clinicaltrials.gov, NCT00537966) [62] a

HIV RNA in Primary Infection
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substudy of the Swiss HIV Cohort Study (SHCS). All 24 subjects

had a documented acute or recent primary HIV-1 infection at

presentation. Estimation of time after infection was as described by

Rieder et al [60]. Patients were included in the analysis only if

sequences were available to match primers in pol, tat, and env.

Blood samples were collected at the day of the very first cART

application ( = baseline sample), longitudinally during treatment,

and after treatment cessation. EDTA-blood samples were collected

and separated into cells and plasma according to standard

procedures [22]. Cellular material was split into aliquots, each

comprising 2 million cells, and finally stored at 280uC as dry cell

pellets. Sampling of specimens for analysis of plasma viremia and

cellular nucleic acids was performed as described in Methods S1.

All patients were extensively tested for genotypic drug resistance:

Only one patient showed the D67N mutation at baseline in the

routine genotyping test and in addition, one patient showed 0.02%

K103N and one 2.4% M184V harboring minority species [62].

Patients with treatment initiated in the chronic phase of

HIV-1 infection (chronic group). PBMC samples for a cross-

sectional control group of 15 patients treated in the chronic phase

after seroconversion were obtained from the Swiss Spanish

Intermittent Therapy Trial (SSITT) [33] at the last time-point

before treatment cessation. In addition, specimens collected for

The Zurich HIV-1 Transcription Study (INFZ VTA 02.00 [12])

were analyzed (n = 9). As in the acute group, patients in the

chronic group participated also in the Swiss HIV Cohort Study

(SHCS) and HIV-1 pol-sequences were available from the SHCS

genotypic drug resistance database [70]. Patient characteristics of

the chronic group are listed in Table S1.

Nucleic acid extraction/preparation
Total PBMC RNA was extracted with the RNeasy extraction

kit on the ‘QIAcube’ extraction device (Qiagen Hombrechtikon,

Switzerland) using an initial volume of 0.35 ml for cell lysis,

DNAse I digestion on the extraction column and a final elution

volume of 0.1 ml.

Selective isolation of PBMC-associated extracellular, virion-

encapsidated genomic HIV-RNA, vRex, free of intracellular

nucleic acid, was performed as described [14,22,71] using an

elution volume of 0.1 ml. Preparation of protease digested total

cell-lysates for DNA quantification was performed according to

Christopherson et al. [72] with minor modifications [11].

Design of HIV-1 patient matched qPCR
To ensure accurate quantification a patient matched approach

reaching single copy sensitivity was used for qPCR measurements

of RNA and vDNA [11,12,57,58] using specifically designed

fluorescent hydrolysis probes [58]. The location of qPCR primers

and probes is shown in figure 1; sequences are outlined in detail in

Table S2 and Methods S1. Individual sequence information to

adjust qPCR assays for UsRNA, vRex, and vDNA, was obtained

from the SHCS genotypic drug resistance database (HIV-1 pol-

sequences) [70].

To obtain sequence information to match qPCR primers and

probes for MsRNAs of predominant quasispecies, two regions

were amplified from each patients total DNA by a nested PCR

scanning approach as described [11] (positions 5833-6152 and

7992-8567 in the HXB2 genome, GenBank accession number

K03455).

As previously described [11,12,57] two different assays for

MsRNA were performed: MsRNA-total and MsRNA-tatrev from

which the MsRNA-nef was calculated using the difference in copy

numbers between the two measurements. To avoid redundancy,

MsRNA-total was not reported. Thus, only MsRNA-tatrev and

MsRNA-nef are shown in the current data-set and used for

statistical calculations. In 11% of measurements, it occurred that

copy numbers of MsRNA-total were nominally lower or equal to

MsRNA-tatrev. Calculation of MsRNA-nef was considered as not

applicable in these cases.

Quantitative real-time PCR measurements
Assays for RT-qPCR were performed as described [57,73] using

an ABI 7500 real-time thermocycler (Applied Biosystems,

Rotkreuz, Switzerland) with 0.005 mM ROX as passive reference,

0.2 mM fluorescent probe and 5 ml RNA as template in a final

volume of 35 ml aqueous phase plus 15 ml paraffin. Quantification

of vDNA was performed as described by Althaus et al. [58] in an

IQ5 real-time thermocycler (Biorad, Basel, Switzerland) in a

volume of 60 ml with 10 ml DNA template using HotStarTaq

master mix (QIAGEN, Hilden, Germany) supplemented with

PCR primers (1 mM each), probe (0.3 mM), and additional MgCl2
(1.5 mM) by incubation for 15 min at 95uC and 60 cycles of 10 s at

95uC, 5 s at 55uC and 40 s at 60uC.

Calculation of HIV-1 nucleic acid copy numbers from
qPCR data

Patient-nucleic acids were directly used to generate HIV-1

standard-curves. To obtain standard curves with maximal

dynamic range, baseline specimens were used as standards for

vDNA-measurements. Post-cessation time points with high plasma

viremia and high vDNA were chosen. Standards were prepared as

serial 3-fold dilutions in quadruplicates. Specimens other than the

ones chosen as standards were measured in duplicate.

Linear regression used in standard real-time PCR analysis was

applied for calculation of HIV-1 copy numbers:

Ct~IzS|log10 copy numbersð Þ, ð1Þ

where I is the Y-axis intercept of the regression line, depicting the

point where Ct equals one copy ( = 100) and S is its slope. I and S

were determined as described in Methods S1. In cases where only

one duplicate HIV-1 PCR was positive and/or calculation resulted

in less than 1 nominal copy number per reaction, HIV-1 nucleic

acid copy numbers were censored to 1 copy per PCR [11,12].

Normalization to cellular input
To control for input and/or differences in qPCR efficiencies in

RNA PCR the expression of glyceraldehyde 3-phosphate

dehydrogenase (GAPDH) against a standard dilution series of in

vitro transcribed GAPDH RNA was measured in duplicates as

described previously [73] and in Methods S1. Linear regression, as

applied by the ABI7500 software, was used to evaluate GAPDH

measurements. Mean GAPDH-RNA copies per 106 cell equiva-

lents were empirically determined in PBMC specimens with

known cell numbers (26106 cells sample, n = 310) resulting in a

conversion factor of 2.856107 copies GAPDH-RNA/106 PBMC.

Cellular input for DNA was quantified by beta-actin PCR using

primers and probe described in Methods S1. As quantification

standard for cellular input, 15 million PBMC were lysed in 1 ml

cell lysis buffer, serial two-fold dilutions were measured and

cellular input per PCR was calculated by linear regression using

the software provided with the IQ5-system. Both for vDNA and

viral RNA, the mean of duplicate PCR measurements was

normalized to cellular input and finally expressed as HIV-1 nucleic

acid copies per 106 PBMC.
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Statistical analysis
GraphPad Prism 5.0 software (GraphPad Software, San Diego,

CA) was used for statistical analyses. P,0.05 was considered as the

level of significance. Mann-Whitney testing was applied unless

otherwise indicated for group comparisons. Fisher’s exact test was

used in analysis of contingency tables. No adjustment for multiple

testing was applied.

Supporting Information

Table S1 Characteristics of patients.

Found at: doi:10.1371/journal.pone.0013310.s001 (0.01 MB

PDF)

Table S2 Oligoucleotides used for patient-specific qPCR.

Found at: doi:10.1371/journal.pone.0013310.s002 (0.10 MB

PDF)

Methods S1 Supplementary methods.

Found at: doi:10.1371/journal.pone.0013310.s003 (0.05 MB

PDF)
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