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The final biochemical and mechanical performance of an implant or scaffold are defined by
its structure, as well as the raw materials and processing conditions used during its
fabrication. Electrospinning and Additive Manufacturing (AM) are two contrasting
processing technologies that have gained popularity amongst the fields of medical
research i.e., tissue engineering, implant design, drug delivery. Electrospinning
technology is favored for its ability to produce micro- to nanometer fibers from polymer
solutions and melts, of which, the dimensions, alignment, porosity, and chemical
composition are easily manipulatable to the desired application. AM, on the other
hand, offers unrivalled levels of geometrical freedom, allowing highly complex
components (i.e., patient-specific) to be built inexpensively within 24 hours. Hence,
adopting both technologies together appears to be a progressive step in pursuit of
scaffolds that better match the natural architecture of human tissues. Here, we present
recent insights into the advances on hybrid scaffolds produced by combining
electrospinning (melt electrospinning excluded) and AM, specifically multi-layered
architectures consisting of alternating fibers and AM elements, and bioinks reinforced
with fibers prior to AM. We discuss how cellular behavior (attachment, migration, and
differentiation) is influenced by the co-existence of these micro- and nano-features.
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INTRODUCTION

Electrospinning is a nanofabrication technique based on the use of high electric voltages to
produce polymeric fibers with micro-to nanometer diameters and distinct morphological features
(Xue et al., 2019; Jain et al., 2020). A typical electrospinning process consists in ejecting an
electrified polymer jet from the tip of a spinneret by applying a voltage (more than tens of kV)
between the spinneret and a conductive collector. The jet is usually a polymer solution or melt,
while a metallic needle connected to a syringe is used as spinneret, and a plate, disk or cylinder can
be used as metallic collector (Guzman-Puyol et al., 2016). The polymer jet stretches, decreases in
diameter, and solidifies before reaching the collector, where a network of solid fibers is deposited.
Modifications of the standard electrospinning set-up have been proposed over the years to
achieve control over fibers’ density, degree of alignment, porosity, chemical composition, and
production rate. Examples include solution electrospinning, melt electrospinning,
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multi-jet electrospinning, needleless electrospinning, coaxial
electrospinning, and near-field electrospinning (dos Santos
et al., 2020).

The biomedical sector particularly benefits from
electrospinning for the development of advanced systems that
are relevant to tissue engineering and drug delivery (Mele, 2016;
Denchai et al., 2018; Rahmati et al., 2020). One main advantage
offered by this technique is flexible material selection, as
a variety of biocompatible and/or biodegradable materials
can easily be processed, including synthetic polymers,
naturally derived polymers, and nanocomposites. In
addition, the fibrous architecture generated promotes
cellular activity by resembling the extracellular matrix
(ECM) of native tissues. The high exposed nanofiber
surface area (surface-to-volume ratio) aids in the
encapsulation and release of bioactive compounds, within
therapeutic limits. The high porosity control enables the
mechanical performance of the fibrous mats to be tailored,
in order to support cellular growth and promote the diffusion
of nutrients/gases, and cell infiltration.

Strategies to further enhance the relevance of electrospun
materials for tissue engineering applications have recently
led to novel three-dimensional (3D) scaffolds with multi-
scale hierarchical architectures (Moroni et al., 2008;
Dalton et al., 2013; Balzamo et al., 2020; Chen et al., 2020a;
Eom et al., 2020; Rahmati et al., 2020). These have been
produced by combining electrospinning with techniques
such as electro-spraying, gas foaming, phase separation,
freeze-drying, additive manufacturing, leaching, and
moulding.

This review focuses on recent advances in hybrid scaffold
fabrication through the combination of electrospinning (melt
electrospinning excluded) and additive manufacturing, and
discusses how cellular behavior, such as attachment, migration,
and differentiation, is influenced by the co-existence of micro-
and nano-features.

COMBINATION OF ELECTROSPINNING
AND ADDITIVE MANUFACTURING

In the literature, two main fabrication approaches that combine
electrospinning and additive manufacturing have been reported
so far to produce scaffolds for tissue engineering (Figure 1).
These are: layer-by-layer deposition of electrospun nanofibers
and 3D printed elements, referred to as multi-layered
architectures; 3D printing of inks that contain electrospun
nanofibers, indicated as composite inks. In addition, recent
studies have explored the use of uniaxially aligned electrospun
fibers to functionalise the surface of 3D printed struts to enhance
cellular adhesion, proliferation and differentiation (Yeo and Kim,
2019; Yeo and Kim, 2020).

Multi-Layered Architectures
Depositing electospun mats upon 3D printed substrates is one
strategy used to develop multi-scale composite scaffolds (Moroni
et al., 2008; Park et al., 2008; Mota et al., 2011; Yang et al., 2015;
Naghieh et al., 2017; Rajzer et al., 2018; Yoon et al., 2019; Gao
et al., 2020; Huang et al., 2020; Touré et al., 2020; Vyas et al., 2020;
Yang et al., 2020; Yu et al., 2020). One seminal work proposed the
manufacture of scaffolds consisting of alternating layers of
randomly distributed electrospun nanofibers and 3D printed
meshes (Moroni et al., 2008). It was demonstrated that these
electrospun layers improved primary bovine articular
chondrocyte entrapment within the scaffolds, stimulating
extracellular matrix production for cartilage tissue formation.
Additional research has further explored the co-existence of
electrospun fibers (usually randomly distributed) and 3D
printed elements within the same scaffold to influence cellular
behavior (Mota et al., 2011; Yang et al., 2015). Multi-layer skin
substitutes have been developed by depositing electrospun
polycaprolactone (PCL) and keratin fibers on to the two
surfaces of a PCL 3D printed scaffold (Choi et al., 2021),
aiming at mimicking the histological structure of skin. The top

FIGURE 1 | Schematic representation of the two fabrication approaches that combine electrospinning and 3D printing (elements not in scale). (A) Deposition of
electrospun nanofibers onto one side of a 3D printed element that is placed in contact with the metallic collector of the electrospinning apparatus. Inset: 3D printed layer
covered with a low-density layer of electrospun fibers. (B) 3D printing head depositing a polymeric ink reinforced with electrospun fibers. Inset: composite 3D printed
structure where nanofibers are encapsulated within the struts.
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electrospun layer (100 µm thick) consisted of nanofibers ( ∼ 0.7 µm
average diameter) to support the growth of human
immortalized keratinocytes (HaCaT); while the bottom layer
(300 µm thick) was made of microfibers (∼ 1.7 µm average
diameter) to enable the proliferation of normal human
dermal fibroblasts (NHDF). HaCaT and NHDF cells were co-
cultured onto the scaffolds for 4 days before in-vivo tests.
Animal tests showed that the presence of keratin promoted
would closure, epithelialization, proliferation of both
keratinocytes and fibroblasts, and collagen deposition at the
wound site. In this work, fiber’s diameter was effectively used to
control cellular growth, and promote the formation of
distinctive layers of keratinocytes and fibroblasts by stopping
fibroblasts to infiltrate the nanofibrous layer.

In another study, a rotating drum electrospinning system was
adopted to control the density (fibers per unit area) and the
degree of alignment of electrospun fibers (Huang et al., 2020).
Furthermore, similar systems have been combined with screw-
assisted extrusion-based additive manufacturing to produce

porous PCL scaffolds for bone tissue engineering (Huang
et al., 2020). PCL was firstly 3D printed (0°/90° lay down
pattern, 350 µm square pores) and the resulting 3D printed
element was fixed on the electrospinning collector, which was
rotated at different speeds. The presence of these PCL nanofibers
promoted human adipose-derived stem cell (hADSCs)
attachment and influenced their osteogenic differentiation.
High density electrospun mats exhibited higher cell seeding
efficiencies (∼ 80%) compared to scaffolds with ( ∼ 50%) and
without ( ∼ 30%) aligned nanofibers. Reductions in cell seeding
efficiencies were attributed to the low porosity of the scaffolds,
limiting cellular infiltration (Figure 2). The surface topography of
the hybrid scaffolds greatly affected the behavior of hADSCs and
aligned fibers acted as physical cues for mechano-transduction.
Elongation and stretching of the cellular cytoskeleton along the
direction of the fibers was observed when the hADSCs were
seeded onto scaffolds with highly aligned electrospun fibers.

Recently, complex scaffolds have been manufactured to treat
intervertebral disc (IVD) degeneration (Zhu et al., 2021). They

FIGURE 2 | (A) hADSCs seeding efficiency of the following types of 3D printed PCL scaffolds (4 h of incubation): without electrospun fibers (PCL); with electrospun
fibers deposited at 0 rpm for 45 s (PLR); with electrospun fibers deposited at 0 rpm for 120 s (PHR); with electrospun fibers deposited at 1,000 rpm for 120 s (PL1000);
with electrospun fibers deposited at 1,000 rpm for 360 s (PH1000). (B) Number of hADSCs detected on the five types of scaffolds at 4, 72 and 168 h of cell culture test.
Scanning electron microscopy (SEM) images of (C) PCL scaffold, (D) PHR scaffold and (E) PH1000 scaffold after 1 day of cell culture. The SEM images show cells
attached on the structures of the scaffolds and the alignment of the cytoskeleton when aligned nanofibers are present. Reprinted from (Huang et al., 2020).
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were composed of three main elements: a 3D printed frame of
poly (lactic acid) (PLA) to simulate the IVD structure; bundles of
oriented porous nanofibres of poly (L-lactide)/octa-armed
polyhedral oligomeric silsesquioxanes (PLLA/POSS-(PLLA)8)
to mimic the annulus fibrosus (AF) structure; a gellan gum/
poly (ethylene glycol) diacrylate (GG/PEGDA) double network
hydrogel that encapsulated living bone marrow mesenchymal
stem cells (BMSCs) to reproduce the nucleus pulposus (NP)
structure. 3D printing offered great control over size and shape of
the scaffolds that were tested in an animal model of IVD
replacement at rat tail vertebra. The tests revealed that, after
6 months of implantation, the artificial scaffolds were effective as
reimplanted autologous discs in terms of maintained disc height
and production of new ECM (proteoglycans and collagen). This
work demonstrates the potential of the hybrid technology (3D
printing and electrospinning) for the manufacturing of
personalized medical devices for IVD regeneration.

Electrospun layers can be used not only as biomimetic
interface to direct cellular attachment and migration, but also
as mechanical reinforcement elements, particularly when
hydrogels are 3D printed (instead of thermoplastic polymers).
For example, PCL electrospun mats were combined with alginate
hydrogel (3D bioprinting) to create multi-layered hybrid
constructs (Yoon et al., 2019).

Alginate-PCL scaffolds recorded a 4-fold increase in
compressive tangential modulus ( ∼ 89 kPa with nanofibers
and ∼ 23 kPa without nanofibers) at 30% strain. Furthermore,
alginate-PCL scaffolds witnessed elastic recovery (without failure)
up to a strain limit of 45% vs. 30% for specimens constructs without
fibers. These results were credited to the elastic nature of PCL,
which improved the resilience of the scaffolds. In addition, the
nanofibrous layers increased the proliferation rate of NIH 3T3
fibroblasts (1.8-fold increase compared to constructs without
fibers) by offering favorable perfusion conditions i.e., open
porosity throughout their scaffold structure.

Electrospun nanofiber interleaves have been proposed to
improve the mechanical properties of PLA 3D printed
structures (He and Molnár, 2021). The nanofibrous mats were
incorporated between 3D printed layers following a multi-step
process. The first step was to electrospin PLA onto an aluminium
foil by controlling the process time to achieve mats with the
desired density/thickness. The first 3D printed layer was then
deposited onto one surface of the electrospun mat. Interfacial
bonding between the printed struts and the nanofibres was
achieved by controlling the printing parameters and specifically
the nozzle temperature (∼220°C) that reduced the viscosity of the
polymer melt and facilitated adhesion. After peeling off the
aluminium foil, the composite was turned upside down and a
second layer was printed on the other surface of the electrospun
mat. The mechanical properties of the produced 3D printed
composites with nanofiber interleaves were tested in tension. It
was observed a 34.3% increase in Young’s modulus for composites
with a nanofiber content of 10.1 wt% if compared with neat PLA.
Increases in tensile strength and elongation were also detected
when 6.5 wt% and 10.1 wt% of fibres were used, indicating that the
nanofibrous mats were effective in connecting adjacent printed
layers and toughen the composites.

Through the combination of electrospinning techniques and
flexible material selection, naturally derived polymer scaffolds
that can release bioactive compounds to promote soft tissue
engineering, such as cartilage regeneration, have been
explored. For example, fused filament fabrication (FFF)
technologies were used to manufacture poly l-lactic acid
(PLLA) scaffolds, prior to the deposition of electospun gelatine
and osteogenon (ossein-hydroxyapatite complex containing
osteocalcin and type I collagen) nanofibers onto a single
scaffold surface (Rajzer et al., 2018). Although the gelatine
fibers were crosslinked with vapors of glutaraldehyde to
improve their stability in aqueous solutions, the fibrous
network was lost during mineralisation tests in simulated body
fluid (SBF) (fusion between fibers occurred and a gel-like layer
formed). After 7 days in SBF, the gelatine layer was covered by
apatite crystals due to osteogenon mineralisation. In addition,
in vitro cytotoxicity tests showed that murine fibroblasts L929
attached and proliferated onto the gelatine layer, indicating that
the composite scaffolds were biocompatible.

Literature suggests that introducing electrospun nano-fibers
into multi-layered scaffolds (produced by combination of
electrospinning and 3D printing) has the ability to manipulate
both the porosity and mechanical performance of the 3D printed
constructs, as well as modulate cellular behavior (elongation and
differentiation) through their intrinsic topological features.
Structures made of various biocompatible and biodegradable
polymers (synthetic and naturally derived) can be easily
embedded within the same scaffold to obtain the desired
functionality. Moreover, cell infiltration and proliferation
within the scaffold can be promoted by altering density and
thickness of electrospun fibrous membranes. So far,
biodegradable aliphatic polyesters (PCL, PLA and PLA-based)
have been primarily used for the 3D printing process, because
they have a relatively low melting point, are generally inexpensive
and widely available, and do not need post-processing to be
crosslinked (Moetazedian et al., 2021). These polymers, however,
are hydrophobic and can limit cell attachment. Future research
could focus on replacing PCL and PLA with more hydrophilic
materials that contain bioactive compounds to promote cell
growth (proteins, growth factors, ceramic nanoparticles).

Nanofiber-Reinforced Bio-Inks
The incorporation of electrospun nanofibers into hydrogels is
discussed in the literature to create injectable composite systems
that can stimulate, for example, the growth of nerve cells (Rivet
et al., 2015; Omidinia-Anarkoli et al., 2017). However, so far, only
a few works have reported on bio-inks that are both reinforced
with electrospun nanofibers and suitable for 3D printing (Chen
et al., 2019; Chen et al., 2020b). In the first paper published on this
topic (inks based on electrospun nanofibers for additive
manufacturing), a bio-ink containing gelatin/poly lactic-co-
glycolic acid (PLGA) electrospun nanofibers was used for
cartilage regeneration (Chen et al., 2019). The preparation of
the composite bio-ink required multiple complex processing
steps, such as the dehydration of the gelatin/PLGA mats, their
homogenisation in a solvent (tert-butanol) to obtain short fibers,
complete evaporation of the solvent, dispersion of the short
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gelatin/PLGA fibers into a viscous water solution of hyaluronic
acid and polyethylene oxide (PEO). Scaffolds were then 3D
printed by extrusion, before freeze-drying and crosslinking to
improve their mechanical stability. This fabrication procedure
enabled the formation of scaffolds with interconnected multi-
scale porosity due to the 3D printed strands and the electrospun
fibrous network (whose structure was preserved). In
compression, gelatin/PLGA fibers determined an increase in
the Young’s modulus, with scaffolds reporting values of ∼
600 kPa; while 3D printed scaffolds containing gelatin/PLGA
powder (no fibers) were characterised by Young’s modulus of
∼ 100 kPa. The ability of the 3D printed scaffolds to regenerate
cartilage tissue was investigated in vitro with chondrocytes and in
vivo on mice. After 6 weeks of cell culture, chondrocytes
produced ECM to cover the 3D scaffolds and cartilage-like
tissue was formed. Similarly, 8 weeks after animal
implantation, cartilage tissue with the structure and
composition to the native tissue was generated (DNA and
collagen content, and Young’s modulus). These results were
attributed to the porosity of the scaffolds, that allowed
uniform cells infiltration and nutrients diffusion.

In follow-up studies, the bioactivity of such composite bio-
inks and their regenerative potential were further enhanced by
adding cartilage decellularized matrix (CDM) (Chen et al.,
2020b). CDM particles were obtained from cow scapular
cartilage after acellularization, freeze drying and pulverisation.
They were dispersed in a hyaluronic acid solution together with
gelatin/PLGA nanofibers and scaffolds were 3D printed as
previously described. Articular cartilage regeneration in rabbits
was observed after 12 weeks of implantation with significant
deposition of collagen type II; while scaffolds without CDM
showed a partially filled defect with limited collagen deposition.

The literature here discussed shows that the inclusion of
electrospun nanofibers in bio-inks for additive manufacturing
is an approach far more complex and time-consuming than the
multi-layering methods described inMulti-Layered Architectures
Section, because it requires additional dehydration, freeze-drying
and cross-linking procedures. Nevertheless, it offers advantages
in terms of obtaining scaffolds with enhanced porosity, controlled
mechanical properties, and improved cellular viability. This is in
line with previous research on the 3D bioprinting of hydrogels
reinforced with polymeric nanofibers but not electrospun ones,
including inks containing PLA nanofibers (produced by
extrusion) (Narayanan et al., 2016; Kosik-Kozioł et al., 2017),
and silk fibroin fibers (produced by mechanical grinding of
degummed silkworm silk fibers) (Sakai et al., 2020).

FUTURE OUTLOOK

The need to create functional and structurally complex scaffolds
for tissue engineering has motivated the research of novel

manufacturing methods that operate across different length
scales. One strategy that has shown potential is the
combination of electrospinning and 3D printing to enable, as
discussed in this review, the production of scaffolds with
multiscale porosity and hierarchical architecture. The presence
of electrospun nanofibers and 3D printed micro-features within
the same scaffold provides morphological and biomechanical
cues that can regulate cellular behavior and promote tissue
regeneration. Although a promising approach, combining
these two techniques is currently time consuming and limited
to research laboratories, because two separate set-ups, namely one
for electrospinning and one for 3D printing, are typically required.
In addition, post-processing procedures, such as freeze drying and/
or crosslinking, are used to stabilise the complex structures created.
Future works could focus on developing high-throughput
automated systems, which integrate electrospinning and 3D
printing (Mendoza-Buenrostro and Rodriguez, 2015), to achieve
further control over the deposition of the nanofibers (density,
thickness, and alignment degree) and increase the production rate
of hybrid scaffolds.

In a recent work, a 3D printer was specifically modified to
include electrospinning units (within its construct), for
vascular tissue engineering applications (Fazal et al., 2021).
The hybrid system can produce layered structures formed of
electrospun mats and hydrogel, because it consists of one
bioprinting head and two electrospinning heads (for co-
electrospinning). Preliminary tests have demonstrated the
fabrication of hollow tubular constructs. Gelatin
methacrylate was first 3D printed around a rotating needle
and photo-crosslinked; subsequently, electrospun fibers of
PCL, polyvinylpyrrolidone (PVP) or polyethylene glycol
(PEG) were deposited onto the external surfaces of the
gelatine tubes.

The inclusion of multiple-electrospinning units within the
confines of the hybrid technology could enable the fabrication
and precise placement of nanofibers, constructed from different
materials. This could promote localized cell-specific
differentiation from Mesenchymal Stem Cells (MSCs) within
the scaffold, leading to the generation of highly tunable
interconnected multi-cellular/tissue systems. Such scaffolds
could be used to develop sophisticated tissue models, better
resembling natural tissue architectures, for future drug delivery
and tissue replacement therapies. Alongside such prospects,
protocols surrounding best practice e.g., sterilization methods
for multi-cellular scaffolds would need to be investigated prior to
implantation.
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