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Abstract: We live in times of paradigmatic changes for the biological sciences. 

Reductionism, that for the last six decades has been the philosophical basis of biochemistry 

and molecular biology, is being displaced by Systems Biology, which favors the study of 

integrated systems. Historically, Systems Biology - defined as the higher level analysis of 

complex biological systems - was pioneered by Claude Bernard in physiology, Norbert 

Wiener with the development of cybernetics, and Erwin Schrödinger in his thermodynamic 

approach to the living. Systems Biology applies methods inspired by cybernetics, network 

analysis, and non-equilibrium dynamics of open systems. These developments follow very 

precisely the dialectical principles of development from thesis to antithesis to synthesis 

discovered by Hegel. Systems Biology opens new perspectives for studies of the integrated 

processes of energy metabolism in different cells. These integrated systems acquire new, 

system-level properties due to interaction of cellular components, such as metabolic 

compartmentation, channeling and functional coupling mechanisms, which are central for 

regulation of the energy fluxes. State of the art of these studies in the new area of 

Molecular System Bioenergetics is analyzed. 
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Wherever there is movement, wherever there is life, 

Wherever anything is carried into effect in the actual word, 

there Dialectic is at work. It is also the soul of all knowledge 

 which is truly scientific.  

 

Hegel’s Logic 

Translated by William Wallace 

Oxford University Press, Oxford UK, 2005, 

p. 116 

 

1. Systems Biology – New Paradigm and New Perspectives of Biological Research 

    

Within last decade, biological sciences have witnessed a radical change of paradigms [1-19]. 

Reductionism, which used to be a philosophical basis of biochemistry and molecular biology when 

everything – from genes to proteins and organelles – were studied in their isolated state is leaving its 

place to Systems Biology, which favours the study of integrated systems at all levels: molecular, 

cellular, organ, organism, and population [1-19]. The importance and rapid expansion of Systems 

Biology become clear when one opens PubMed with this keyword – tens of thousands of entries from 

different fields of the biological sciences appear. Hundreds, if not thousands of books have been 

published in recent years on this topic; references [1- 9] are just very few examples of them, mostly 

related to the topics of this article. Indeed, suddenly Systems Biology is everywhere. Given the very 

rapidly increasing number of publications, it may even be that the term Systems Biology is not always 

understood in the same way, but nevertheless, there are general and rather precise commonly accepted 

definitions of this scientific direction. In 2005 Alberghina and Westerhoff edited a whole book 

analyzing the definitions and perspectives of Systems Biology [4]. The shortest and most clear 

definition of Systems Biology is given by Westerhoff’s group: “Systems Biology is the science that 
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aims to understand how biological function absent from macromolecules in isolation, arises when they 

are components of their systems” [15]. Very similar definitions have been given by many other  

authors [1-19].  

These very intensive developments make it interesting and necessary to discuss its origins – the 

philosophical basis and historical aspects of System Biology. This is especially interesting for 

scientists who have spent almost all of their time and efforts in studies of mechanisms of integrated 

cellular metabolism (not even knowing before that what they study is Systems Biology). For many of 

them the topics are very familiar, but what is most helpful for them is the development of new 

concepts within Systems Biology that help to make general conclusions and give new tools for further 

research. One of these areas of research concerns the study of integrated energy metabolism in cells 

which we call now Molecular System Bioenergetics, as one can see from the titles of this Special Issue 

and a recent volume published by Wiley VCH [7]. Metabolic studies are not new, for example studies 

of cardiac metabolism started more than 50 years ago, after pioneering works by Richard Bing [20]. 

The great value of Systems Biology for metabolic research is mostly conceptual because of the clear 

definition of system-level properties [1-10,15]. System-level properties are the results of interactions 

between components of the system [1,2,4,7,10-15]. Systems Biology gives also the tools for these 

studies, most important among them are the quantitative methods of modeling and network  

analysis [4-6,8-19] .  

Already several books and articles have been written on the philosophy and origin of the systemic 

approach in biology [1-4,13,21,22]. Among them are recent publications by Noble [2,13,14], who has 

traced Systems Biology back to the works by Claude Bernard [23], concluding that Systems Biology is 

in fact physiology at new higher level [2,13,14] and that a genuine, quantitative theory of biology is to 

be developed in future research [14]. This is a very optimistic conclusion for new generation of 

scientists - they still have immense task ahead to work on, and this task attracts both attention and 

funding. Landmark precedents of Systems Biology are the work of N. Wiener associated with the 

development of cybernetics, along with the impact of E. Schrödinger’s contributions [24,25]. Another 

aim of this review is to show that the philosophical foundations of Systems Biology may be found in 

Hegel's dialectical philosophy, as applied to biology [26-30]. Finally, a critical analysis of the current 

state of the art in Molecular System Bioenergetics will be given, in addition to those discussed in our 

recent book [7]. We have found this general presentation of Systems Biology and Molecular System 

Bioenergetics very useful for explaining and teaching these new disciplines to doctoral students at 

Grenoble University.  

 

2. Hegel’s Dialectic and Systems Biology. Some Important Steps in History 

 

According to Thomas Kuhn’s definition, a paradigm represents a specific, widely accepted way of 

viewing reality in science [26]. In this sense, Systems Biology is a new paradigm of biological 

sciences; it has been became widely popular within the last 10 - 15 years [1-19]. However, its history 

can be traced back into the two last centuries of biological and medical research, starting with Claude 

Bernard’s theory of permanence of the internal milieu of organisms, later called homeostasis [13,23]. 

From that time and up to the modern times of Systems Biology, life sciences appear to perfectly fit and 

strictly follow the dialectic principles of general historical developments discovered by Hegel [27-30].  
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2.1. Hegel’s dialectic laws 

 

Georg Wilhelm Friedrich Hegel (1770 – 1831), one of most famous German philosophers, gave in 

his philosophy the most profound description of the logic and rules of historical developments [27-30]. 

An excellent description of this rather complicated philosophy is given by Bertrand Russell in his 

famous book “History of Western Philosophy” [30], explaining in easily way the dialectic laws. Hegel, 

as a most serious philosopher, was thinking about the relations of our thinking and the real world. For 

him, the real knowledge was to understand not only parts but the Whole, the Absolute Idea [27-30]. 

From our practical point of view (not to be involved in deep discussions between materialism and 

idealism in philosophy), Absolute Idea may be taken to represent the perfect, detailed knowledge of 

the integrated, whole systems. That in fact is what Systems Biology wants to find out, to know all 

about the life in its complexity, to comprehend the Whole, an Absolute Idea of the living systems. The 

process of development, the way to achieve this, the logic of finding out the Absolute Idea, according 

to Hegel, is the triadic movement called dialectic [30]. Dialectic consists of thesis, antithesis and 

synthesis [30]. Thus, knowledge as a whole has its triadic movement, and the process is essential to 

understand the results. To move from one stage to another, thinking as a dialectic process must “fall 

into the negative of itself” ([27], p. 35). Each later stage contains all the early stages, and all stages are 

given their proper place as a movement [30]. Thus, a thesis is first giving rise to its reaction, an 

antithesis which contradicts or negates the thesis, and the tension between the two being resolved by 

means of a synthesis [30].  

 

Figure 1. Hegelian dialectic of historical movement from thesis to antithesis to synthesis. 

 
 

These dialectic movements were explained by Hegel and his followers by three basic concepts: 1) 

everything is made out of opposing forces/opposing sides (contradictions); 2) gradual changes lead to 

turning points, where one force overcomes the other (quantitative change leads to qualitative change); 

3) change moves in spirals not circles (sometimes referred to as "negation of the negation") [30]. 

These Hegelian dialectic rules are illustrated by the Scheme in Figure 1. Thomas Kuhn’s description of 

the structure of scientific revolutions [26] gives an excellent illustration of the second basic concept of 

Hegelian dialectic when applied to science. When we look into the history of Systems Biology, we 

find an excellent illustration of the validity of these dialectic laws. If Hegel had been a biologist, he 

could have predicted the appearance of Systems Biology as a necessary and inevitable step in our way 

to find out the final truth, the Absolute Idea of the life. What we know now is only the beginning of 

this long way. 
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2.2. Claude Bernard and the theory of permanence of internal milieu – homeostasis 

 

Claude Bernard (1813-1878), a famous French physiologist, was a founder of experimental 

medicine, and according to Denis Noble [13] the first system biologist, one of the first instigators of 

Systems Biology (or integrative biology). The scope of his works was very wide: discovery of the 

pancreas function, discovery of the gluconeogenesis in liver, neurophysiology, toxicology, anesthesia 

and asphyxia. One of the main theories developed by Claude Bernard is the theory of the permanence 

of the milieu intérieur (later called homeostasis) due to integrated regulatory mechanisms. Analysis of 

the milieu intérieur is the study of the physiological mechanisms with which the organism can adapt 

itself to the milieu extérieur and maintain its functional balance in spite of the external constraints [23]. 

According to Claude Bernard “the fixity of the interior medium is the condition of a free and 

independent life” [23]. At his time, he had to separate himself and fight against popular theory of 

vitalism [21,22]. This theory postulated, in some way analogously with Systems Biology, that the 

whole living cell or organism is more than simple sum of its parts, but explained life by action of a 

vital force which neutralizes the “negative effects of physico-chemical forces” in living organism 

[21,22]. Bernard had to fight against this mystification of life [23]. He emphasized that an organism is 

able to adjust itself to external physical and chemical variations by maintaining permanence of its 

milieu intérieur and this adaptation is possible because the cells, the organs or the organisms are 

integrative systems. He was always attentive not to explain all his observations only by anatomy, 

claiming that anatomy has to serve physiology because of its complexity. He indicated that the 

function of an organ is not a strict one and that a function can be due to the interactions of two or 

several organs (for example the digestion process). According to him, physiologists must start from 

studies of physiological phenomena to explain them in the whole organism and not try to explain a 

function from an organ [23]. 

The strength of Claude Bernard’s theories comes also from his ability to extrapolate his works to 

chemistry, physics and mathematics. He understood the importance of the mathematical modeling to 

understand the natural phenomena because “Cette application des mathématiques aux phénomènes 

naturels est le but de toute science, parce que l’expression de la loi des phénomènes doit toujours être 

mathématique” - “This mathematical application at natural phenomena is the aim of all sciences, 

because the expression of the laws of phenomena should always be mathematical” [23]. And time 

proved that he was right. Applied mathematics, cybernetics and computer sciences are now very 

powerful tools in biological research. But Bernard understood also that the application of mathematical 

modelling should be based on very firm experimental data, which were not available at his time: 

« C’est par elle seule [l’application mathématique] que, dans la suite, la science se constituera; 

seulement j’ai la conviction que l’équation générale est impossible pour le moment, l’étude qualitative 

des phénomènes devant nécessairement précéder leur étude quantitative. » « It is by it alone [the 

mathematical application] that, in the continuation, science will be created but I have the conviction 

that the general equation is impossible at the moment, the qualitative study of phenomena must 

necessary precede their quantitative study” [23]. 

Thus, he understood the possible danger of misuse of the powerful method of mathematical 

modelling in biology: construction of mathematical models of a metabolic pathway or network can 

indeed lead to an erroneous model if the amount of physiological data is not sufficient. The richness of 
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experimental data ensures the fidelity of the model. And we always have to keep in mind that a model 

is only a reflection of a complex system, a model will never be a system but only a representation of a 

system or a part of a system. The computer sciences are a very useful tool in Systems Biology but this 

tool must be used with caution inseparably from collection of experimental data, to avoid creating a 

virtual world far from reality. This very clever advice of Claude Bernard is still often forgotten or 

simply ignored in our times by a new generation of applied mathematicians coming into biological 

research with easy access to computing technologies but with rather weak knowledge of experimental 

data (see below). What we need to do first is to collect the maximally possible amount of experimental 

data describing the system level properties, with the aim to finally reach the “general equation” evoked 

by Claude Bernard. What did lack in Claude Bernard’s time was a sufficient amount of quantitative 

experimental data. Systems Biology is now in much more favourable position and following the 

advices given by Claude Bernard, we can go ahead taking up the challenge of finding the general 

equation of life, its Absolute Idea.  

 

2.3. Cybernetics of Norbert Wiener and Systems Biology 

 

Norbert Wiener (1894 – 1964) was an American mathematician who studied the communication 

and control processes both in technical electronic systems and in biology, notably in physiology, by 

analysis of information transmission and treatment processes [24]. He was a founder of cybernetics, a 

science of control and governing, which studies the structure and function of regulatory systems [24] 

and has very wide application in computer sciences, engineering, logic modeling as in electronic and 

information network (including Internet) theories, in physiology, evolutionary biology, neuroscience, 

anthropology, psychology, sociology. Application of cybernetics in biology is now known in general 

as biocybernetics, which is a part of theoretical biology, and plays a major role in systems biology, 

seeking to integrate different levels of information to understand how biological systems function. One 

of the most important achievements of cybernetics developed by Wiener was the theory of feedback 

regulation and its application for explanation of the mechanisms of homeostasis [24] discovered by 

Claude Bernard and described above. Discovery of the feedback mechanisms by Wiener is still 

probably the most important contribution of cybernetics into Systems Biology. Another direct 

application of biocybernetics is network biology [18,19]. As it was emphasized by Barabasi in his 

reviews on network biology, “quantifiable tools of network theory offer unforeseen possibilities to 

understand the cell’s internal organization and evolution, fundamentally altering our view of cell 

biology. The emerging results are forcing the realization that, notwithstanding the importance of 

individual molecules, cellular function is a contextual attribute of strict and quantifiable patterns of 

interactions between the myriad of cellular constituents” [19]. That tells us that understanding cell 

biology means understanding of system level properties.    

 

2.4. Systems Biology: from Hegel to Noble 

 

Systems Biology uses the methods of both experimental studies and computing, focusing on the 

studies of interactions within the system with the aim of understanding the biological function. In this 

vast area, there are many new particular directions of research, such as the Physiome Project [17]. And 
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there are very numerous scientists and groups who have made significant contributions into this area 

[1-19]. The philosophy, general principles of these important studies on cellular and organ level have 

been analyzed and described by Denis Noble, who has summarized them in 10 basic principles, “10 

commandments” [14].  

 

Figure 2. Presentation of development of biological sciences as Hegelian dialectic 

movement. In times of Claude Bernard, the problems of experimental physiology and 

medicine were formulated from the point of view of the theory of homeostasis at the organ 

level. To solve these problems, the components of the cell (proteins, genes, mitochondria 

etc.) were studied in the isolated state. In Systems Biology, these components are again 

studied in their interaction within the intact systems of interest. 

 
Among these principles, transmission of information by feedback mechanisms is most important, 

but these mechanisms are to be discovered yet [2,14]. Thus, the whole process of development of 

biological sciences during last 150 years, from the times of Claude Bernard (experimental physiology, 

medicine) to that of molecular and structural biology, enzymology, membrane bioenergetics and then 

to Systems Biology perfectly follows the Hegelian dialectic principles, with triadic movement from 

thesis (formulation of problems of experimental biology and medicine)  to antithesis (the systems are 

divided into components which are studied separately) to synthesis (coming back at new level to 

studies of biological function of whole system), as it is shown in Figure 2.  
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2.5. Erwin Schrödinger: negentropy production as a basis of metabolism, central role of bioenergetics 

 

In the history of biological sciences, one of the most influential events has been publication of 

Erwin Schrödinger’s book “What is life?” in 1944 [25]. And it is still one of the most influential books 

in biology. Probably, it is not too much to say that scientists working in biology have successfully 

accomplished, with brilliant results, realizing the ideas described in the first chapters of this book 

related to foundation of molecular genetics, and are now busy in collectively reading the chapter 6 in 

this short book, related to the principles of organization of cellular metabolic processes, and all that 

together is now called Systems Biology.  

 

Figure 3. General scheme of cellular metabolism. A cell is a thermodynamically open 

system, in accordance with the Schrödinger’s principle of negentropy extraction. 

Increasing the entropy in extracellular medium, and decreasing it in the cell via metabolism 

is necessary for maintenance of the structural organization of both biopolymers as proteins, 

DNA and RNA, and also maintenance of the fine structural organization of the cell for 

effectively running compartmentalised metabolic processes. In this way, the cell can live in 

agreement with the thermodynamic laws (see the text). The Scheme shows the central role 

of bioenergetic processes in the cellular life by coupling catabolism with anabolism. 

Adapted from ref. [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main conclusion made by Schrödinger was that the living cells need to be open systems with 

energy and mass exchange with surrounding medium, with the aim of maintaining their high structural 

and functional organization and thus internal entropy low, achieving this by means of increasing the 

entropy of the medium by catabolic reactions. Thus, Schrödinger wrote: “ The essential thing in 
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metabolism is that the organism succeeds in freeing itself from all entropy it cannot help producing 

while alive” [25]. In cellular metabolic systems, catabolic reactions which increase entropy in 

surrounding medium are coupled to anabolic reactions (biosynthesis) which maintain cell structure 

and organization with necessary decrease in entropy. Catabolic reactions are mostly oxidative 

degradation of fatty acids and carbohydrates such as glucose. They are also the source of metabolic 

energy for the performance of any kind of cellular work. This is shown by the general scheme in 

Figure 3 describing the integrated metabolism of the cell as an open system exchanging both energy 

and masses with surrounding medium. This Scheme shows that the processes of free energy 

conversion are central for coupling catabolism to anabolism, emphasizing the central role of 

bioenergetics in studies of integrated metabolism of the cells. To live, the metabolic systems need to 

be in the steady state far from equilibrium, and how they maintain intracellular organization and low 

entropy state is explained by non-equilibrium thermodynamics: the organized states are maintained by 

energy and matter dissipation, therefore they are also known as dissipative structures [31-34]. 

 

3. Application of the Systems Biology Approach to Metabolic Studies. Metabolic 

Compartmentation as System Level Property 

 

In studies of integrated metabolic processes, one of the most important problems is that of diffusion 

in the organized intracellular medium. In fact, all mathematical models of metabolism, and practical 

values of these models depend upon the authors’ views on cell structure and diffusion of metabolites, 

and still popular oversimplified theories of cell interior as a homogenous diluted solution of 

metabolites are sources of grave errors and may lead to meaningless models (see below). In our recent 

article in International Journal of Molecular Sciences we have analyzed in details the problems of 

diffusion of metabolites in organized intracellular medium [35]. Here, we emphasize some of the 

important conclusions made. The problem starts with the intracellular mobility of water, which is 

significantly reduced, leading to partitioning of metabolites between different water phases and to 

changes in binding constants [36-38]; then there is low-affinity adsorbtion of metabolites, especially if 

charged as ATP, to intracellular surfaces increasing the viscosity, and due to this the diffusion 

coefficient of metabolites is decreased by a factor of (1+C/Kd)
-1 where C is concentration of binding 

sites and Kd is dissociation constant of solute from these complexes [36]; macromolecular crowding 

and cytoskeletal structures create the barriers which increase the effective path-length of diffusion, and 

again diffusion coefficient is decreased by λ-2 where λ is relative increase in path attributable to the 

barriers [36-38]; finally, the movements of individual molecules become co-ordinated and vectorially 

directed due to organization of enzymes into the complexes, and the randomness of molecular events 

may be lost [36]. The results of these local diffusion restrictions are microcompartmentation of 

metabolites and their channeling within organized multienzyme complexes which need to be 

accounted for to explain biological phenomena [39,35]. Compartmentation and 

microcompartmentation of metabolites are system-level properties resulting from interactions between 

cellular components. Indeed, none of important observations in cellular bioenergetics could be 

explained by a paradigm describing a viable cell as a “mixed bag of enzymes” with homogenous 

metabolite distribution still sometimes in use: this simplistic theory excludes any possibility of 

metabolic regulation of cellular functions [35]. Due to macromolecular crowding and hindered 
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diffusion cells need to compartmentalize metabolic pathways in order to overcome diffusive barriers. 

Biochemical reactions can successfully proceed and even be facilitated by metabolic channeling of 

intermediates due to structural organization of enzyme systems into organized multienzyme 

complexes. Metabolite channeling directly transfers the intermediate from one enzyme to an adjacent 

enzyme without the need of free aqueous-phase diffusion [40,41,7,42-46]. Enzymes are able to 

associate physically in non-dissociable, static multienzyme complexes, which are not random 

associations but an assembly of sequentially related enzymes, very often due to their association with 

cytoskeleton [42,43, 47]. Thus, principal mechanisms of functioning and regulation of cell metabolism 

are system-level properties: macro- and microcompartmentation, metabolic channeling and functional 

coupling, resulting from specific structural interactions between cellular components. For this reason 

Systems Biology approaches are most important for further advancement of metabolic studies. At the 

cellular level, it is becoming clear that most of biological characteristics arise from complex 

interactions between the cell’s numerous constituents, and based on protein-protein interactions, 

cellular metabolism is likely to be carried out in a highly modular manner within hierarchically 

organized networks [7,48]. The real problems and challenges for further studies are both to measure 

local concentrations of metabolites, including those of ATP in different cellular microcompartments 

and its metabolic channelling within microdomains (local fluxes), and to fully understand the nature of 

these restrictions of diffusion upon which intracellular compartmentation is based. This difficult work 

is necessary for reasonable computer modeling of the hierarchical modules of metabolic networks as a 

part of Molecular System Bioenergetics [7] and Systems Biology in general [11,17]. 
 

4. Molecular System Bioenergetics: Structural and Dynamic Organization of Cellular Energy 

Metabolism, Mitochondrial-Cytoskeletal Interactions, Mitochondrial Dynamics, Energetic 

Modules and Regulatory Mechanisms 

 

Molecular Systems Bioenergetics is a science describing a new area of cellular bioenergetics in 

transition from molecular to the system level [7]. Miguel Aon has proposed the following definitions 

for this new direction of research [7]: Molecular System Bioenergetics is a broad research field 

accounting not only for metabolism as reaction networks but also for its spatial (organization) and 

temporal (dynamics) aspects. The main focus of Molecular System Bioenergetics are the processes of 

energy conversion both at molecular and cellular levels, with special emphasis on the structure and 

function of energy transfer and regulatory networks, mechanisms of interaction between their 

components, and a quantitative description of these networks by computational models. An important 

consequence of the organization of the enzymes into multienzyme complexes is vectorial metabolism 

and ligand conduction, a general principle proposed by Peter Mitchell after extensive enzymological 

studies and detailed characterization of mitochondrial proteins (reviewed in refs. [7] and [39]). The 

molecular system approach to the study of energy conversion in cells allows to fully explaining many 

classical observations in the cellular physiology of respiration, such as the metabolic aspects of the 

Frank- Starling law of the heart and the regulation of substrate supply to the cell [7, 49]. This approach 

helps us to understand how a cell senses its energy status in adjusting its functional activity under 

stressful conditions, or others aspects of its life. 
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4.1. Unitary organization of energy metabolism and compartmentalized energy transfer in cardiac cells 

 

As we have seen above, coupling of catabolism with anabolism (the metabolism) is the way through 

which “negentropy” or free energy is extracted from the medium. Evolution has selected the adenine 

nucleotides to fulfil this important task of coupling catabolism and anabolism (Figure 3). A possible 

explanation is the rather high standard free energy change (ΔGo = 31.5 kJ/mol) and high affinity of 

ATP and ADP for many enzymes and carriers [50]. Cellular energetics is thus based on the reactions 
of ATP synthesis and utilization, ATPPADP i   + H2O. Taking water content as a constant and in 

excess (not changing in the reaction), the mass action ratio of the reaction of ATP synthesis is usually 

written as: 

 
  iPADP

ATP
       (1) 

By maintaining high mass action ratio for the reaction of ATP synthesis, catabolic reactions supply 

also free energy for cellular work. Free energy available in the cellular system is a function of the 

ratio of Γ to the equilibrium constant of the ATP synthesis, or: 

 
  i

ATPATP PADP

ATP
RTGG ln0       (2) 

This function is usually called phosphorylation potential [51,52]. The principal purpose of free 

energy transformation associated to catabolic reactions is to keep a high value of the phosphorylation 

potential which is mostly achieved through mitochondrial oxidative phosphorylation or photosynthesis 

in autotrophic organisms. The theory of phosphorylation potential for the analysis of the cellular life 

was first used by Veech et al. [51] and Kammermeier et al. [52].  

However, now it has become clear that applying Eq. 2 as well as any quantitative theory of physical 

chemistry to the real intracellular medium is not a simple task, namely due to the complex organisation 

of cell structure and metabolism. It has become clear that it is not the global ATP content which is 

important, but the ATP and the free energy available in micro- and macrocompartments which have to 

be accounted for, as it will be described below.  

Studies by using pulsed-gradient 31P-NMR showed that the diffusion of ATP and phosphocreatine 

is anisotropic in muscle cells [53,54]. Recent mathematical modelling of the decreased affinity of 

mitochondria for exogenous ADP in situ in permeabilized cardiac cells also showed that the ADP or 

ATP diffusion in cells is heterogeneous and the apparent diffusion coefficient for ADP (and ATP) may 

be locally decreased (diffusion locally restricted) by an order, or even several orders of magnitude 

[55]. A similar limited diffusion of ATP in the subsarcolemmal area in cardiac cells was proposed by 

the Terzic and Dzeja group [56,57]. 

Application to cells of Eq. 2 in its general form is complicated by the compartmentation of ATP and 

adenine nucleotides, making the use of the easily measurable total ATP content very questionable and 

practically useless. ATP compartmentation has been studied in normal and ischemic heart for a long 

time (reviewed in ref. [7]), and recently demonstrated in several cell types by imaging techniques [58]. 

Most important recent data showing the significance of compartmentation phenomenon for cardiac 

energy metabolism have been collected by Neubauer’s group [59]. By using 31P-NMR spectroscopy in 
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combination with imaging for investigation of cardiac muscle energy metabolism in patients, the 

authors showed that in the patients with cardiac disease – dilated cardiomyopathy (DCM) the 

decreased PCr/ATP ratio (lower than 1.6) is very clear and strong diagnostic index of increased 

mortality. In the heart of patients with DCM the ATP content remained the same as in healthy control 

patients, but PCr decreased by 70 % as compared to control. This shows the vital importance of the 

phosphocreatine – creatine kinase energy transfer network described below for the cardiac muscle 

normal function and life. 

 

4.2. Cardiac cells as highly organized metabolic systems 

 

Cardiac cells present a highly organized structure where mitochondria are localized at the A-band 

level within the sarcomere [60-62]. These cells represent best examples the complexity of organization 

of intracellular energy metabolism. Intermyofibrillar mitochondria are arranged in highly ordered 

crystal-like patterns in a muscle-specific manner, with relatively small deviations in the distances 

separating neighboring mitochondria [62,61]. Contrary to many other cells with less developed 

intracellular structures, dynamic changes in mitochondrial position due to their fission and fusion [63-

65] are not found in adult and healthy cardiac and skeletal muscle cells because of their rigid 

intracellular structural organization, and mitochondria in these cells are morphologically 

heterogeneous (see the paper by Kuznetsov in this Special Issue). In this structurally organized 

medium, energy transfer between different subcellular micro- and macrocompartments (shortly called 

compartmentalized energy transfer) are of central importance. Existence of these rather complicated 

networks of energy transfer and signaling is a direct consequence of the compartmentalization of 

adenine nucleotides in the cells [55-58,66-69]. This is due to significant heterogeneity and local 

restrictions in the diffusion of adenine nucleotides in cells, and the necessity of rapid removal of ADP 

from the vicinity of MgATPases to avoid their inhibition by accumulating product – MgADP [7,70-

77]. ATP is not only delivered by diffusion, but intracellular energy transfer is facilitated via networks 

consisting of phosphoryl-group transferring enzymes such as creatine kinase (CK), adenylate kinase 

(AK) and glycolytic phosphoryl-transferring enzymes [39,70-82]. Most important among them is the 

creatine kinase system. CK catalyzes the reversible reaction of adenine nucleotides 

transphosphorylation, the forward reaction of phosphocreatine (PCr) and MgADP synthesis and the 

reverse reaction of creatine (Cr) and MgATP production:  

                   MgATP 2- + Cr   MgADP - + PCr2- + H+     (3) 

Four CK isoforms, each with compartmentalized cellular location, exist in mammals. Specific 

mitochondrial CK isoenzymes (MtCK), called ubiquitous (uMtCK) and sarcomeric (sMtCK), are 

functionally coupled to oxidative phosphorylation and produce PCr from mitochondrial ATP. PCr in 

turn is used for local regeneration of ATP by the muscle cytoplasmic isoform of CK (M-CK), driving 

myosin-ATPases or ion pump-ATPases [ 39,70-82].   

In the heart as well as in oxidative skeletal muscle the intracellular energy transfer networks are 

structurally organized in the intracellular medium where macromolecules and organelles, surrounding 

a regular mitochondrial lattice, are involved in multiple structural and functional interactions [81-83]. 

Figure 4 summarizes available information about such an organized and compartmentalized energy 
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metabolism in cardiac cells. This scheme also illustrates the view that mitochondria in muscle cells are 

structurally organized into functional complexes with myofibrils and sarcoplasmic reticulum [81-83]. 

These complexes were called ‘intracellular energetic units”, ICEUs, and taken to represent the basic 

pattern of organization of muscle energy metabolism [81].  

 

Figure 4. Organization of compartmentalized energy transfer and metabolism in cardiac 

cells by intracellular energetic units (ICEU). Adapted from ref. [7]. 

 

 
 
The scheme shows the structural organization of the energy transfer networks of coupled CK and 
AK reactions within an ICEU. By interaction with cytoskeletal elements, the mitochondria and 
sarcoplasmic reticulum (SR) are precisely fixed with respect to the structure of sarcomere of 
myofibrils between two Z-lines and correspondingly between two T-tubules. Calcium is released 
from SR into the space in ICEU in the vicinity of mitochondria and sarcomeres to activate 
contraction and mitochondrial dehydrogenases. Adenine nucleotides within ICEU do not 
equilibrate rapidly with adenine nucleotides in the bulk water phase. The mitochondria, SR and 
MgATPase of myofibrils and ATP sensitive systems in sarcolemma are interconnected by 
metabolic channeling of reaction intermediates and energy transfer within ICEU by the creatine 
kinase – phosphocreatine and myokinase systems. The protein factors (still unknown and marked as 
“X”), most probably connected to cytoskeleton, fix the position of mitochondria. One of these 
proteins – tubulin-also controls the permeabilty of the VDAC channels for ADP and ATP. Adenine 
nucleotides within ICEU and bulk water phase may be connected by some more rapidly diffusing 
metabolites as Cr – PCr. Mitochondria were labelled by pre-incubation of cells with mitochondrial 
inner membrane potential sensitive probe MitoTracker Red (50 nM). Very regular arrangement of 
mitochondria and thus ICEUS is seen. Scale bar 10 μm. 

 

 

There are no physical barriers between ICEUs, each mitochondria (or several adjacent 

mitochondria) can be taken to be in the centre of its own ICEU. This concept is consistent with very 

regular, crystal like arrangement of mitochondria in cardiac cells [60-62] and describes the organized 

functional connections of mitochondria with their neighbours. ICEUs are analogous to calcium release 
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units, (CRUs), structurally organized sites of Ca2+ microdomains (Ca2+ sparks) which form a discrete, 

stochastic system of intracellular calcium signaling in cardiac cells [84,85].  

This concept is supported by Weiss et al. [48], who presented a holistic view of cardiovascular 

metabolism, considering it from the perspective of a physical network, in which various metabolic 

modules are spatially distributed throughout the interior of the cell to optimize ATP delivery to 

specific ATPases [48]. In addition to a mitochondrial module (which is represented by ICEUs) the 

authors considered also a module consisting of glycolytic enzyme complexes serving for energy 

channeling to molecular complexes in sarcolemma and sarcoplasmic reticulum, and modules of 

calcium cycling (which Wang et al. called calcium release units, CRU [84]). These modules were 

further analyzed from the abstract perspective of fundamental concepts in network theory and dynamic 

perspective of interactions between modules [48]. Understanding the nature of these interactions 

within hiercharchical modular structures is a main challenge of research of cardiac metabolism to gain 

deeper understanding of possible mechanisms of cardioprotection [48]. 

Metabolic compartmentation described above and unitary organization of energy metabolism is 

clear and important examples of system-level properties. Identification of cell components responsible 

for specific organization of energy transfer systems and intracellular diffusion merits further 

investigation. One of these components may be tubulin which is able to bind to the VDAC channels in 

mitochondrial outer membrane and in this way to decrease the apparent affinity of mitochondria for 

ADP [86, 87]. For further elucidation of the nature of cytoskeletal components responsible for specific 

organization of both mitochondrial arrangement and complex metabolic signalling and intracellular 

energy transfer pathways, further investigations on the proteome are needed.  

The energy transfer network similar to that described above for cardiac cells is also functioning in 

brain cells, particularly in synaptosomes (Figure 5) [88]. 

 

4.3. Unitary organization of energy metabolism versus mitochondrial reticulum 

 

Another important question is related to the role and cell specificity of mitochondrial fusion and 

fission. Recent works in this area showed that the mitochondrial fusion and fission are potentially 

important for cell differentiation and pathophysiology [63, 89-92] . Many proteins responsible for 

fission and fusion such as Dynamin-related protein-1 (DRP1), Mitofusin-1 and Mitofusin-2 (Mnf1, 

Mnf2), OPA1 ─ have been identified [90-93], as being involved in cancer or apoptosis, during 

mitochondrial mobility changes by disrupting cytoskeletal architecture and in some other human 

pathologies. 
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Figure 5. Energetics of brain synaptosomes. Sites of ATP production (mitochondrial 

matrix) and sites of ATP consumption (ion transport across the plasma membrane and 

vesicle trafficking for neurotransmitter uptake and release, e.g. glutamate) are linked by an 

energy transfer pathway represented by the phosphocreatine/creatine kinase system. 

uMtCK bound to mitochondrial inner membrane (MIM) via cardiolipin (black squares). 

ATP consumed by the energy consuming reactions is reproduced locally by BBCK from 

PCr. GA3P, glyceraldehyde-3-phosphate; 1,3-BPG, 1,3 biphosphoglycerate; 3-PG, 3-

phosphoglycerate; GAPDH, glycerate-3-phosphate-deshydrogenase; 3-PGK, 3-

phosphoglycerate kinase; VDAC, voltage dependant anion channel; MOM, mitochondrial 

outer membrane; uMtCK, ubiquitous mitochondrial creatine kinase; Tub – αβ heterodimer 

of tubulin interacting with the VDAC channels and limiting its permeability for adenine 

nucleotides. Right panel shows the confocal image of isolated rat synaptosomes 

Mitochondria were labelled by pre-incubation with mitochondrial inner membrane probe 

MitoTracker Green (50 nM). Scale bar 1 µm. Adapted from reference [88]. 

 
 

All these numerous studies on mitochondrial dynamics, fusion and fission have been carried out 

mostly in yeast or various cultured cells (easy to grow and use in confocal microscopic studies), when 

the cells are usually at the stage of continuous division. Probably for this reason, the general 

conclusion has been made that fusion and fission phenomena are characteristic and necessary for 

normal functioning of mitochondria [90-92]. This general and rather enthusiastic conclusion is, 

however, not totally justified. Many works [61,94-99] have shown that fusion and fission of 

mitochondria are not observed in non-dividing adult cardiomyocytes. Thus, the fusion and fission are 

not necessary for normal functioning of mitochondria and for cardiac cell energetics in particular. 

Instead, mitochondrial localization and regular arrangement in muscle cells are controlled by 

cytoskeleton [86,87,100-102].By its nature, the contraction process needs very precise structural 

organization of sarcomeres and muscle cells [7]. Changes in the lattice spacing between actin and 

myosin filaments in sarcomeres due to alteration of titin orientation are the basis of length-dependent 
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activation of sarcomere contraction and Frank-Straling law [49]. Mitochondria in muscle cells are in 

fixed positions determined by their interactions with cytoskeleton and also with sarcoplasmic 

reticulum. Cytoskeleton plays an important role for mitochondrial and cell morphology and motility, 

intracellular traffic, mitosis [103,104]. Complex cytoskeletal network (microfilaments, microtubules, 

intermediate filaments) with specific cytoskeleton associated proteins interacts with mitochondria 

[86,87,97,100,105,106]. Very recently, Rostovtseva et al. have shown the ability of tubulin to bind 

directly to the VDAC channel on mitochondrial outer membrane and to control the permeability of this 

channel [86-88]. These interactions are thought to be responsible for mitochondrial regular 

arrangement into unitary structures (energetic modules, ICEUs) [48,81]. It is not yet completely clear; 

however, which components of the cytoskeleton and to which extent are responsible for the 

arrangement of mitochondria in cardiomyocytes into regular networks with modular organization. 

Organized and regularly arranged energetic units (modules) in adult cardiomyocytes represent a good 

example of regular networks, while NB HL-1 and many other cells [107] are examples of irregular 

networks.  

It has to be mentioned that the rather popular hypothesis according to which the mitochondrial 

fusion is a necessary requirement for their normal function [90-92] evidently contradicts all the 50 

years of experimental evidence in bioenergetics. During these five decades all laboratories all over the 

world have isolated mitochondria from heart, liver, skeletal muscle, brain etc. in perfectly granular 

shape and intact smooth outer and dynamic inner membranes [108-111] in functionally intact state, 

with all soluble Krebs cycle substrates including NADH in the matrix. If the mitochondria were in the 

cells in fused state as proposed by Twig et al. [92], rapid homogenisation of tissue should disrupt all 

mitochondrial membranes and release Krebs cycle substrates from matrix, and isolated mitochondria 

should represent only membrane fragments not capable to use Krebs-cycle linked substrates as pyruvte 

or glutamate malate – but this is never the case if isolation is performed carefully. Thus, systemic 

approach requires taking into account all available data before any general conclusion can be made; 

taking out only some fragmented data is nothing more than a relic of classical reductionism.    

The very regular arrangement of distinct mitochondria into modular structures (ICEUs) evidently 

serves an important purpose of survival of heart cells under stress conditions. Under these conditions 

depolarization and functional damage of separate mitochondria does not result in complete breakdown 

of cell energetics, since contractile function of the heart is still maintained by other energetic units 

which continue to function in a well synchronized manner. The mechanism of this synchronization is 

still not precisely known and is under active studies in several laboratories [33,94,95,112]. On the 

contrary, fusion of mitochondria in heart cells is a clear sign of pathogenesis and cell death. Using 

electron microscopy Sun et al. showed already in 1969 that in perfused heart hypoxia resulted in 

formation of gigantic mitochondria due to the fusion process [113]. Thus, in cardiomyocytes 

mitochondrial fusion is most probably the beginning of their degradation and energetic breakdown of 

the cells.  

 

4.4. Excitation-contraction coupling and cardiac energetics: membrane energy sensing 

 

For modeling of the heart function within the projects of Systems Biology (as Physiome project), it 

is important to quantitatively describe relationships between energy metabolism and electrical activity 
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of the cells. There is a clear need to account for the system level properties, such as metabolic 

compartmentation and channeling phenomena, in modeling the energy sensing of ion currents across 

sarcolemma [49, 80]. In the control of the excitation – contraction coupling in the heart a principal step 

is the sarcolemmal membrane metabolic sensor complex [56,57,114-116]. Its main component is the 

sarcolemmal ATP sensitive K+ (KATP) channel acting as an alarm system to adjust cell electrical 

activity to the metabolic state of the cell [56,57,114-116]. The sarcolemmal MM CK creatine kinase 

rephosphorylates the local ADP maintaining a high ATP/ADP level in these microcompartments for 

coordination of membrane electrical activity with cellular metabolic status, notably with PCr levels 

(see Figure 6).  

 

Figure 6. A paradigm of phosphotransfer-mediated energetic signaling: coupling cellular 

metabolic and electrical activities. Dynamic interaction between creatine kinase (CK), 

adenylate kinase (AK) and glycolytic (represented by pyruvate kinase, PK) 

phosphotransfer relays determines a prototypic metabolic sensor - KATP channel behavior 

and subsequent cellular responses, such as excitability, hormone secretion, intracellular 

calcium homeostasis and vascular tone. The shadowed area represents a metabolic sensor 

“sensing zone”, where intimate local changes in nucleotide ratios are sensed and 

transduced into an appropriate cellular response. Phosphotransfer circuits connect the 

“sensing zone” with cellular processes. Dashed lines indicate pathways signaling the high-

energy state, while solid lines represent low-energy state signal transmission. Kir6.2 –

potassium channel subunit; SUR – sulfonylurea receptor; GluK/Hex –glucokinase and 

hexokinase. Reproduced from ref. [7] with permission. 
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The KATP channel was discovered by Noma, and it was found that this channel has high affinity for 

ATP, about 100 µM [117,118]. Nevertheless, the channel is opened in the presence of millimolar ATP, 

as seen from rapid membrane repolarisation and shortening of action potential in ischemic and hypoxic 

hearts or as shown directly in experiments with internally perfused cardiomyocytes [56,57]. This is 

explained by strong diffusional restriction and thus ATP compartmentation in the subsarcolemmal area 

[119] and linked to the cellular pool of PCr via CK reactions. Pool exhaustion in the first minutes of 

ischemia certainly contributes to the cessation of contraction due to opening of KATP channel and 

decreased calcium entry. This energy transfer and control functions are shared by the whole system, 

including the creatine kinase, the adenylate kinase and glycolytic systems, as it was seen in 

experiments involving genetic manipulation [79,120,121]. Similar cell-membrane metabolic sensors 

may be also important in brain cells. The phosphotransfer relays communicate metabolic signals 

originating in mitochondria or at cellular ATPases to metabolic sensors conveying information about 

“high” or “low” cellular energy, oxygen supply or hormonal states [56,122].  

Metabolic feedback signaling by phosphotransfer networks described above explains quantitatively 

the metabolic aspect of the classical Frank-Starling law regarding regulation of cardiac function and 

respiration under conditions of metabolic stability and unchanged calcium transients and changes of 

cardiac function in ischemia [49]. These systems are based on the compartmentalized energy transfer, 

whose deficit explains the rapid fall of contractile force in the first minutes of total ischemia. By 

regulating the sarcolemmal metabolic sensor - KATP channels, the CK-AK-glycolytic network affects 

the excitation-contraction process and the calcium cycle of the cell [80,39]. The latter system explains 

adrenergic modulation of cardiac cell function and energetics under stress [123-130]. Both systems 

may be activated simultaneously, as it is observed in the case of positive inotropy induced by β-

adrenergic agents, when Frank-Starling curves are shifted upward [49].The physiological mechanism 

of respiration regulation described above has the important advantage of ensuring effective control of 

free energy conversion across the whole physiological range of workloads, without requiring a severe 

increase in cytoplasmic calcium and ADP concentrations. It thus avoids any danger of mitochondrial 

calcium overload that would open the mitochondrial permeability transition pore and thus lead to cell 

death [49]. Functioning of the coupled MtCK – ANT system in mitochondria prevents from the 

reactive oxygen species (ROS, oxygen free radicals) formation in mitochondrial respiratory chain and 

helps to avoid many problems related to ROS production, such as PTP opening, necrosis, apoptosis 

and rapid ageing [131]. In this way, the CK – PCr network may significantly contribute in the positive 

effects of physical exercise on the human health: exercise – induced increased fluxes via this pathway 

increase the ADP-ATP turnover in the coupled MtCK-ANT reactions in mitochondria and keeps the 

ROS production low.  

Thus, effective cardiac work and fine metabolic regulation of respiration and energy fluxes need the 

organized and interconnected energy transfer and metabolic signaling systems. Direct transfer of ATP 

and ADP between mitochondria and different cellular compartments is not able to fulfill this important 

task efficiently. 
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4.5. Molecular system analysis of integrated mechanisms of regulation of fatty acid and glucose 

oxidation 

 

Molecular system analysis as a method is also useful for elucidation of the mechanisms of 

regulation of substrate supply for the heart [132]. In muscle cells, contractile function and cellular 

energetics are fuelled by oxidation of carbohydrate substrates and fatty acids [133-135]. The choice of 

substrates depends upon their availability, and the rates of their utilisation are very precisely regulated 

by multiple interactions between the intracellular compartmentalized and integrated bioenergetic 

systems of glycolysis, fatty acid oxidation and the Krebs cycle in the mitochondrial matrix, linked 

directly to the activity of the respiratory chain and the phosphorylation process catalysed by the ATP 

synthase complex [132,134]. The rates of all these processes are geared to the workload, mostly by the 

mechanism of the feedback metabolic regulation described above [132,134]. 

The network of reactions of main substrate supply for mitochondrial respiration in muscle cells and 

their multiple interactions and feedback mechanisms of regulation are illustrated in Figure 7. The 

choice of the substrates for oxidation depends on their availability, and if glucose and FFA are both 

present, FFA strongly inhibits the transport of glucose across the plasma membrane both in heart and 

in skeletal muscle [132,134,135]. At relatively low workloads, mitochondrial acetyl-CoA and NADH 

produced by beta-oxidation tend to inhibit the pyruvate dehydrogenase complex in the mitochondrial 

inner membrane, and citrate, the production of which is increased in the Krebs cycle, after transport 

across the inner mitochondrial membrane into the cytoplasm, inhibits PFK [134]. A glucose-fatty acid 

cycle (Randle hypothesis): if glucose and FFA are both present, FFA inhibit the transport of glucose 

across the plasma membrane, acyl-CoA oxidation increases the mitochondrial ratios of acetyl-

CoA/CoA and of NADH/NAD+, which inhibit the pyruvate dehydrogenase (PDH) complex, and 

increased citrate (produced in the TCA cycle) can inhibit phosphofructokinase (PFK). These changes 

would slow down oxidation of glucose and pyruvate (PYR) and increase glucose-6-phosphate (G6P), 

which would inhibit hexokinase (HK), and decrease glucose transport. The mitochondrial creatine 

kinase (miCK) catalyzes the direct transphosphorylation of intramitochondrially produced ATP and 

cytosolic creatine (Cr) into ADP and phosphocreatine, (PCr). ADP enters the matrix space to stimulate 

oxidative phosphorylation, while PCr is transferred via cytosolic Cr/PCr shuttle to functional coupling 

of CK to ATPases (acto-myosin ATPase and ion pumps), resulting in release of high free energy of 

ATP hydrolysis. If the workload increases, ATP production and respiration are increased due to 

feedback signalling via creatine kinase (CK) system, leading to decrease of mitochondrial acetyl-CoA 

content, which is transferred into cytoplasm with participation of carnitine acetyl carrier (CAC). 

Acetyl-CoA carboxylase (ACC) is responsible for converting acetyl-CoA to Malonyl-CoA, a potent 

inhibitor of CPT-I, with the aim to avoid overloading the mitochondria with fatty acid oxidation 

intermediates, when the workload is decreased. Inactivation of ACC occurs via phosphorylation 

catalyzed by AMP-activated protein kinase (AMPK). Phosphorylation and inactivation of ACC leads 

to a decrease in the concentration of malonyl-CoA. A fall in malonyl-CoA levels disinhibits CPT1, 

resulting in increased fatty acid oxidation. Malonyl-CoA is also converted back into acetyl-CoA in the 

malonyl–CoA decarboxylase (MCD) reaction. Increase in the workload increases the rate of acetyl- 

CoA consumption and that automatically decreases the malonyl-CoA content. The ACC and MCD 

regulation occur under stress conditions when the AMP/ATP ratios are increased, but are unlikely to 
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occur under normal work-load conditons of the heart. Thus, AMPK may be envisaged as a modulator, 

under situations of cellular stress, rather than as a master on-off switch of fatty acid oxidation.  

It is the Krebs cycle, which is on the crossroads between the metabolic pathways of glucose and 

fatty acid oxidation, and its intermediates that play a very important role of feedback metabolic 

regulation of upstream pathways of substrate oxidation [132,134]. 

 

Figure 7. The scheme of substrate supply for mitochondrial respiration and the 

mechanisms of feedback regulation of the fatty acid and glucose oxidation during workload 

elevation in oxidative muscle cells: central role of TCA cycle intermediates. Reproduced 

from reference [132] with permission. 
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FFAs are taken up by a family of plasma membrane proteins (fatty acid transporter protein 

(FATP1), fatty acid translocase (CD36) and in cytoplasm associated with fatty acid binding protein 

(FABP). FFAs are esterified to acyl-CoA via fatty acyl-CoA synthetase. The resulting acyl-CoA is the 

transported through the inner membrane of the mitochondrion, via the exchange of CoA for carnitine 

by carnitine-palmitolyltransferase I (CPT I). Acylcarnitine is then transported by carnitine- 

acylcarnitine translocase into the mitochondrial matrix where a reversal exchange takes place through 

the action of carnitine-palmitoyltransferae II (CPT II). Once inside, the mitochondrion acyl-CoA is a 

substrate for the beta-oxidative pathway, resulting in acetyl-CoA production. Each round of beta-

oxidation produces one mole of NADH, one mole of FADH2 and one mole of acetyl-CoA. Acetyl-CoA 

enters the TCA cycle, where it is further oxidized to CO2 with the concomitant generation of three 
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moles of NADH, one mole of FADH2 and one mole of ATP. Acetyl-CoA which is formed in the 

mitochondrial matrix, can be transferred into the cytoplasm with participation of carnitine, carnitine 

acetyltransferases and carnitine acetyltranslocase (carnitine acetylcarnitine carrier complex, CAC). 

Glucose (GLU) is taken up by glucose transporter-4 (GLUT-4) and enters the Embden-Meyerhof 

pathway, which converts glucose via a series of reactions into two molecules of pyruvate (PYR). As a 

result of these reactions, a small amount of ATP and NADH are produced. G6P – glucose 6-phosphate, 

HK – hexokinase, PFK – phosphofructokinase; GLY – glycogen; F1,6diP – fructose-1,6-bisphosphate, 

GAPDH – glyceralhehydephosphate dehydrogenase, 1,3DPG – 1,3-diphosphoglycerate. The redox 

potential of NADH is transferred into the mitochondrial matrix via the malate/aspartate shuttle; OAA –

oxaloacetate, Glut – glutamate, αKG – alpha – ketoglutarate, ASP - aspartate. Malate generated in the 

cytosol enters the matrix in exchange for alpha-ketoglutarate (αKG) and can be used to produce matrix 

NADH. Matrix oxaloacetate (OAA) is returned to the cytosol by conversion to ASP and exchange with 

glutamate (Glut). Most of the metabolic energy derived from glucose can come from the entry of 

pyruvate into the citric acid cycle and oxidative phosphorylation via the acetyl-CoA production. 

NADH and FADH2 are oxidized in the respiratory chain (complexes I, II, III and IV). These pathways 

occur under aerobic conditions. Under anaerobic conditions, pyruvate can be converted to lactate. 

 

5. Mathematical Models of Energy Metabolism, Useful and Not Very Useful 

 

Because of the high complexity of the processes involved, mathematical modeling is an 

increasingly important part of Systems Biology, including Molecular System Bioenergetics. Different 

models of cardiac energy metabolism have already been used to analyze the mechanisms of regulation 

of respiration and cellular energy fluxes [136-145], with rather contradictory results. There is no 

complete model available as yet, no “general equation” (as Claude Bernard could call it) of energy 

metabolism, and this will need further intensive work. However, the number of models developed is 

already significant, whch allows us to try to classify them by their impact and constructive 

contribution into our understanding of regulation of integrated metabolism, and to critically analyze 

some errors which have become evident. In general, the models can be easily classified as good, bad 

and very bad. Bad and very bad models are those which authors have ignored the wise advice of 

Claude Bernard to take into account the maximally possible amount of reliable experimental data (see 

above), and thus have only some virtual value. An extreme case of these models is that by Barros and 

Martinez [146] who consider the cell as a sphere where a metabolite is produced by a single source 

and diffuses freely in a homogenous, isotropic medium, the cytosol. The authors take the diffusion 

coefficients for metabolites determined for bulk water phase as the only realistic values, which for 

ATP would be equal to about 500 μm2/s [146]. The fact that these values for diffusion coefficients may 

be significantly different inside cells with a protein concentration of approximately 100 - 200 mg/mL 

were not considered, thus the possibility that physical barriers resulting from a dense cytoskeletal or 

mitochondrial network or from macromolecular crowding [35] were not taken into account at all. 

Taking this for granted, the authors conclude that “even under most favorable conditions that are 

compatible with the known physical constraints, it would be impossible that ATP pools could appear 

in the cytosol of a compact cell”, and then conclude that “unrealistic conditions were needed to form 

ATP domains” [146]. No experimental data were analyzed to verify the correctness of this model and 
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the conclusions derived. Critical analysis of this model can be found in our previous article in IJMS 

[35]. The problem is that Barros and Martinez are not alone – there is whole group of authors who 

have produced models of cardiac energy metabolism based on the theory of homogenous cytoplasm as 

diluted solution of metabolites. Some of them (critically analysed in [147]) arrive at non-realistic 

conclusion that the cells must be much bigger than they are (these are very bad, non-realistic models). 

Some other authors [148,149] by applying otherwise correct theories of chemical thermodynamics of 

dilute solutions have recently discovered that the cardiac function is governed by a general, average 

value of phosphorylation potential (see equation 2). These authors ignore the pioneering experimental 

works of Kammermeyer’s and Radda’s groups [52,150]. In the beginning of metabolic research, 

including studies by use of 31P-NMR method, the first problem to study was to investigate the question 

how changes of cardiac function might be dependent on average phosphorylation potential, and the 

result was very clear: there is no dependence, cardiac function can be changed manifold at almost 

constant value of phosphorylation potential [52,150]. Thus, the modeling result [149] contradicts 

experimental data – there is no way to call this model a good one. The reason is evidently that the 

model does not account for the compartmentation phenomenon described above. 

The models which describe the mitochondrial metabolism, including respiratory chain and Krebs 

cycle, are in much better situation and have given some of the important results, consistent with 

experimental data – evaluation of the role of calcium in regulation of mitochondrial activities, role of 

Pi in respiration regulation [138-140]. Most important is to apply these models correctly for in vivo 

conditions taking into account the compartmentation phenomenon. 

Finally, there are the compartmentalized energy transfer models aimed at describing quantitatively 

the results of in vivo studies of respiration regulation in the ICEUs under physiological conditions of 

the Frank-Starling law. These models are based on the concepts of ICEUs and include: kinetics of ATP 

hydrolysis by actomyosin ATPase during contraction cycle, diffusional exchange of metabolites 

between myofibril and mitochondrial compartments, VDAC-restricted diffusion of ATP and ADP 

across mitochondrial outer membrane, the mitochondrial synthesis of ATP by ATP synthase, pH and 

 controlled Pi and ADP transport into mitochondrial matrix, PCr production in the coupled 

mitochondrial CK reaction and its utilization in cytoplasmic CK reaction [136,137]. These events are 

considered in a system consisted of a myofibril with a radius of 1 m, a mitochondria, and a thin layer 

of cytoplasm interposed between them [136,137]. The modeling results show cyclic changes in the 

concentration of ADP in the core of myofibrils in ICEUs in a microcompartment containing 

myofibrillar-bound MM-CK, where ADP is first produced by actomyosin MgATPase during the 

contraction cycle of crossbridges, and then rephosphorylated by the CK due to a non-equilibrium state 

of the CK reaction [136,137]. Interestingly, these calculated cyclic changes in PCr, ATP and Cr which 

are in the range of 5–10 % of their cellular contents, are in good agreement with the multiple 

observations of the cyclic changes of these compounds in the contraction cycle published in the 

literature [151,152]. These changes in Cr, PCr and total ATP are however close to the experimental 

errors of their detection, thus giving an overall impression of metabolic stability. Changes in ADP and 

Pi concentrations are relatively much more significant because of very low initial values. Without CK, 

the changes of local ADP concentrations in these microcompartments will be much more dramatic 

[136,137]. Within the whole contraction cycle the rates of ADP and ATP cycling and thus the 

respiration in mitochondria coupled to the PCr production are increased with elevation of the 
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workload. Increasing cyclic changes in the local ADP production in myofibrils are immediately 

displacing the myofibrillar MM-CK reaction in the direction of local ATP regeneration. The amplitude 

of displacement of CK from equilibrium is proportionally increased with workload [136,137]. In this 

regard, CK, adenylate kinase and other phosphotransfer isoenzymes in different intracellular 

compartments are “pushed” or “pulled” from the equilibrium in opposite directions, depending on the 

activity of an associated process which drives steady-state high-energy phosphoryl flux [49]. The 

model quantitatively describes the experimental observations on the dependence of the respiration rate 

upon the workload [7,49]. Evidently, to find the “general equation”, the complete model of integrated 

energy metabolism of muscle and brain cells we need to develop these constructive models which have 

already given us significant explanation of experimental data. The more complete model(s) should 

include all data and phenomena shown in Figures 4 – 7. Only these models can be included into more 

general project of Systems Biology and Molecular System Bioenergetics.  

 

6. Conclusions 

 

Systems Biology as a new paradigm of biological sciences which favours the study of integrated 

systems at all levels: cellular, organ, organism, and population with the aim of explaining biological 

function by interaction of system components provides new conceptual tools for studies of integrated 

metabolic processes. The aim of Systems Biology is the higher-level analysis of complex biological 

systems by using the wealth of information obtained in studies of isolated components, applying the 

methodological approaches of cybernetics, applied mathematics, network analysis, nonequilibrium 

thermodynamics of open systems. From a historical perspective the first systems biology approach was 

already applied by Claude Bernard about 150 years ago, and further important contributions were 

made by Norbert Wiener and Erwin Schrödinger. The developments of biological research during last 

150 years follow very precisely the dialectical principles of development from thesis to antithesis to 

synthesis discovered by Hegel. The Systems Biology opens new perspectives for studies of the 

integrated processes of energy metabolism in different cells. These integrated systems acquire new, 

system-level properties due to interaction of cellular components, such as metabolic 

compartmentation, channeling and functional coupling mechanisms, which are central for regulation of 

the energy fluxes. All these mechanisms are functioning within phosphotransfer networks of the 

compartmentalized energy transport. These mechanisms explain such important physiological 

phenomena as metabolic aspects of Frank-Starling law of the heart and membrane sensing of cellular 

energy levels. Mathematical modeling of these important systems is a promising approach in 

Molecular System Bioenergetics. 
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