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An amperometric biosensor for chlorphenvinphos (organophosphorus pesticide) based on carbon nanotube paste and acetyl-
cholinesterase enzyme (CNTs-AChE biosensor) is described herein. This CNTs-AChE biosensor was characterized by scanning
electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The SEM result shows the presence of CNTs
and small lumps, due to the enzyme AChE, which has a type of cauliflower formation. From EIS analysis is possible to observe
increased Ry for CN'Ts-AChE biosensor when compared to the carbon nanotube paste electrode for the reaction [Fe(CN)q]*/3~.
Using a chronoamperometric procedure, a linear analytical curve was observed in the 4.90 X 1077=7.46 x 10~° M range with limit
of detection of 1.15 X 1077 M. The determination of chlorphenvinphos in the insecticide sample proved to be in agreement with
the standard spectrophotometric method, with a 95% confidence level and with a relative error lower than 3%. In this way, the

CNTs-AChE biosensor presented easy preparation, fast response, sensitivity, durability, good repeatability, and reproducibility.

1. Introduction

Carbon nanotubes (CNTs) consist of cylindrical graphene
sheets with nanometer diameters and present many unique
characteristics, such as large ratio of surface area to mass,
high electrical conductivity, and remarkable mechanical
strength. CNTs include both single-walled and multiwalled
structures. Single-wall CNTs (SWCNTs) are comprised of
cylindrical graphite sheets of nanoscale diameter capped
by hemispherical ends. Multi-wall CNTs (MWCNT5) are
comprised of several to tens of incommensurate concentric
cylinders of these graphitic shells with a layer spacing of 0.3—
0.4nm. MWCNTs tend to have diameters in the 2-100 nm
range and can be considered as a mesoscale graphite system
[1].

Since their discovery in 1991 [2], extensive applications
have been found in the physical, chemical, and material
science fields. The advantages of CNTs, such as their high sur-
face area, favorable electronic properties, and electrocatalytic
effect, have recently attracted considerable attention for the
construction of electrochemical biosensors. Electrochemical

biosensors, particularly enzyme electrodes, have benefited
greatly from the ability of CNT-based transducers to
promote the electron-transfer reactions of enzymatically
generated species, such as hydrogen peroxide [3, 4] or NADH
[5], and from the resistance to surface fouling of transducers.

Electrochemistry is a powerful tool for real-time detec-
tion compared to fluorescence and spectrophotometry,
which involves expensive detection systems. A combination
of enzymatic reactions with the electrochemical method of
monitoring electroactive enzymatic products allowed the
development of enzyme-based electrochemical biosensors
for sensitive and rapid determination of important environ-
mental pollutants.

Chlorphenvinphos is an organophosphate (OP) com-
pound used as an agricultural and household pesticide
[6]. The toxic action of chlorphenvinphos is based on its
ability to irreversibly modify the catalytic serine residue in
acetylcholinesterase (AChE) and effectively prevent nerve
transmission by blocking breakdown of the transmitter
choline [7]. For these reasons, the rapid determination and
reliable quantification of trace levels of chlorphenvinphos are
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important for health and environmental reasons. Biosensors
based on the inhibition of AChE have been widely used for
the detection of OP compounds. The methodology involves
the measurement of the uninhibited activity of the enzyme,
followed by an incubation period for the reaction between
enzyme and the inhibitor, and the measurement of enzyme
activity after the inhibition.

Recently, CNTs have been used for the construction of
biosensors based on the inhibition of AChE activity for
the determination of OP compounds [8]. The biosensor
was prepared by mixing CNTs with mineral oil. Such com-
posite electrodes combine the ability of CNTs to promote
electron-transfer reactions with the attractive advantages
of paste electrode materials. These materials allow easy
immobilization, reproducible electrochemical behavior, and
useful physical characteristics [9—11]. This study describes
the preparation and application of acetylcholinesterase
biosensors based on carbon nanotube paste (CNTs-AChE
biosensor) in the amperometric detection of chlorphen-
vinphos. Compared to other analytical techniques, such
as gas and liquid chromatography, enzyme-based electro-
chemical biosensors represent good selectivity, sensitivity,
rapid responses, and reduced sizes in the determination of
pesticide.

2. Experimental

2.1. Reagents and Solutions. All reagents were of analytical
grade and used as received. The solutions were prepared
with reverse osmosis water Gehaka (OS20 LX FARMA).
The multiwall carbon nanotubes (MWCNT, 20-40nm
diameter, 5-15pum) came from Schenzhen Nanotech Port
Co. Ltd. (Schenzhen, China). Acetylcholinesterase (AChE)
(0.3Umg™!) came from bovine erythrocytes. Acetylthioco-
line iodide was purchased from Aldrich, and a 1.2 X 1072M
stock solution was prepared in phosphate buffer pH 7.4.
Chlorphenvinphos was purchased from Aldrich, and a 1.0 X
1072 M stock solution was prepared in methanol.

2.2. Apparatus. The electrochemical measurements were
performed using a model PGSTAT20 Autolab (Eco Chemie,
Utrecht, Netherlands) potentiostat/galvanostat coupled to a
personal computer and controlled with GPES 5.8 software.
The electrochemical impedance spectroscopy (EIS) data were
obtained using a PGSTAT30 Autolab (Eco Chemie, Utrecht,
Netherlands) potentiostat/galvanostat controlled with FRA
software. The electrochemical cell was assembled using a
conventional three-electrode system: an Ag/AgCl in KCI
(3mol L7!) reference electrode, a Pt counter electrode,
and a CNTs-AChE biosensor working electrode (1.2 mm
diameter). All experiments were carried out at room
temperature.

An NIR Cary Model 5G spectrophotometer was used for
comparative method coupled to a personal computer and
controlled with Cary Win UV software with a quartz cell
(optical path of 1.00 cm).

Scanning electron microscopy was performed in an FEG-
VP Zeiss Supra 35 microscope, operated at 5kV, at different
magnitudes.
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2.3. Preparation of the CNTs-AChE Biosensor. In previous
studies carried out by our group, the most successful carbon
nanotube paste was found using 6/4 (w/w) CNTs/Nujol.
Therefore, this carbon nanotube paste composition was used
in the present investigation for the construction of the
biosensor using acetylcholinesterase enzyme.

The carbon nanotube paste electrode modified with
AChE was prepared by mixing carbon nanotubes and Nujol
in an agate mortar with pestle. Subsequently, 0.050 g of this
mixture was modified by adding 6.75 mg of AChE 250 UN
and mixing until a uniformly wetted paste was obtained.
After this, the paste was packed into a glass tube (¢ =
1.2mm), and a copper wire was embedded in the paste for
electrical connection.

2.4. Procedures. Square wave voltammograms for 3.0 X
10~* M acetylthiocoline iodide in phosphate buffer pH 7.4
and 0.14 U of acetylcholinesterase were obtained between 0
and 1.0V at increments of 2mV and a frequency 50 Hz in
order to evaluate the oxidation process of thiocholine, the
product of the enzymatic reaction using carbon nanotube
paste electrode 60% (w/w). Amperometric analysis was
performed using acetylthiocoline iodide 3.0 x 107> M in
phosphate buffer pH 7.4 and CNTs-AChE biosensor. The
potential applied was 0.3 V.

For the determinations of chlorphenvinphos samples,
experiments of standard addition were carried out using the
amperometric method. Insecticide samples were prepared by
dissolving in methanol and diluting to volume with phos-
phate buffer pH 7.4. After this, an aliquot of this solution was
transferred into the cell and amperometric measurements
were recorded in triplicate. Next, three successive additions
of 100uL of a standard 2.5 x 10°*M chlorphenvinphos
solution in phosphate buffer pH 7.4 were performed. After
each addition, amperometric measurements were recorded
and the mean current was determined.

A spectrophotometric method for the determinations
of chlorphenvinphos was used to compare the obtained
analytical results with the proposed method.

The electrochemical impedance spectroscopy (EIS) data
were obtained for frequencies from 10,000 Hz to 0.01 Hz
at an amplitude of 10mV. The impedance spectra were
obtained within the ac potential, in 5mM potassium ferri-
cyanide in 0.5 M KCl, in the format of Nyquist plots.

3. Results and Discussion

CNTs have been known to promote electron transfer reac-
tions due to their electronic structure, high electrical con-
ductivity and redox active sites [12, 13]. The electrocatalytic
action of CNTs facilitates low-potential measurements of
the product of enzymatic reaction. For this reason, the
CNTs-AChE biosensor was prepared without introduction
of redox mediators (RM), which are able to shuttle elec-
trons between the active site of redox enzymes, and an
electrode replacing the natural cosubstrate of the enzyme.
The CNTs-AChE biosensor combines the ability of carbon
nanotube paste to promote electron-transfer reactions with
the attractive advantages of paste electrode materials. These
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TaBLE 1: Summary of estimated EIS parameters obtained for the
carbon nanotube paste electrode and CNTs-AChE biosensor.

TasBLE 2: Optimization of CNTs-AChE biosensor parameters.

Biosensor parameters Range Optimal value
Electrode n Rt (Q) C(F) P studied P
CNTPE 0.6472 90.5 45x1078 Substrate concentration/1073 mol L™! 0.5-3.0 3.0
CNTs-AChE biosensor 0.5330 3050.0 1.5x 10°° Incubation time/min. 2-20 10

materials allow easy enzyme immobilization, reproducible
electrochemical behavior and useful physical characteristics.

The use of CNTs as a matrix for immobilization exhibits
advantages for chemically modified electrodes, primarily in
the diversity of preparation methods for sensors and biosen-
sors. As CNT matrices are effective in the immobilization
process as transducer material, they are used together in
the composite production as carbon paste. The coupling of
the biocatalytic material and the electrode surface can be
promoted through the interaction between the functional
groups of the materials and the enzyme through the terminal
amino acids [14]. For this reason, the CN'Ts-AChE biosensor
was prepared without introduction of solid support for
immobilization of the AChE.

Micrographies of the carbon nanotube paste electrode
(60% w/w) and CNTs-AChE biosensor surfaces after pol-
ishing with 600 grit sandpaper are presented in Figure 1
for different magnitudes. The comparison of images shows
a significant difference in the morphology of materials. In
Figure 1(d), it is possible to observe the presence of CNTs
and small lumps, due to the enzyme AChE, which has a type
of cauliflower formation.

The EIS experiments, from Nyquist plots, allow the
obtainment of charge transfer resistance values for the
electrode process being studied. As such, the experiments
were carried out in the following conditions: (A) carbon nan-
otube paste electrode (60% w/w), at 0.346 V (ac potential),
(B) CNTs-AChE biosensor, at 0.192V, all 5mM Fe(CN)¢>~
in 0.5MKCI solution. All responses (Figure 2) presented
typical semicircles at high frequencies and a straight line
at low frequencies, corresponding to kinetic and diffusional
processes, respectively.

To fit the EIS data, the corresponding spectra were
modeled using Randle’s equivalent circuits of mixed kinetic
and diffusional control (insets in Figure 2(a)), where R; is
the electrolyte resistance, C the interface capacitance, and
R the charge-transfer resistance (domain of the kinetic
control), resulting from the diffusion of Fe(CN),’~ towards
the electrode surface from the bulk of the electrolyte. As
evidenced in the Nyquist plots, the simulated symbols (cross)
based on the model agree with the experimental results. The
estimated parameters obtained by assuming Randle’s model
are listed in Table 1.

The value of Ry for the CNTs-AChE biosensor increased
threefold compared to the carbon nanotube paste electrode
for the reaction [Fe(CN)6]4_/3_. This is probably due to the
presence of the AChE enzyme at the electrode surface, as seen
in micrographs, which is not conductive.

3.1. Optimization of the CNTs-AChE Biosensor Response.
In the current study, the voltammetric characteristics

of acetylthiocholine iodide (substrate) and thiocholine
(enzymatically-generated product) on the carbon nanotube
paste electrode were investigated by square wave voltamme-
try in phosphate buffer. Typical square wave voltammograms
are shown in Figure 3. Two oxidation processes (peaks I
and II) of thiocholine are observed at 0.045 and 0.250V
(versus Ag/AgCl) as observed by Liu et al. [13] for a
glassy carbon electrode modified with carbon nanotube film.
The anodic oxidation peak of acetylthiocholine iodide was
observed at 0.620V and its oxidation process begins at
0.500 V. As the potential of oxidation of thiocholine and the
initial oxidation of acetylthiocholine iodide are close to one
another, a study on the working potential was achieved using
chronoamperometry.

The optimum potential for biosensor operation and
current-time responses were obtained in thiocholine on a
carbon nanotube paste electrode. The potential range eval-
uated was from 0 to 350 mV and the chronoamperometric
responses obtained are presented in Figure 4. The maximum
current responses were observed at 300 and 350 mV and the
potential at 300 mV was selected for amperometric measure-
ments of thiocholine with the CNTs-AChE biosensor. This
potential was selected due to its greater substrate oxidation
potential.

In order to optimize the CNTs-AChE biosensor’s per-
formance, the following experimental variables were inves-
tigated: substrate concentration and incubation time. The
influence of substrate concentration on the biosensor
response was studied, with the purpose of increasing the
signal obtained for enzymatic reaction. Thus, the effect of
the substrate concentration on the CNTs-AChE biosensor’s
response was investigated between 0.5 and 3.0 X 10°M
acetylthiocholine iodide solution in phosphate buffer pH 7.4.
The highest analytical signal was obtained at 3.0 X 10> M.

Following this, the incubation time was studied ranging
from 2 to 20 min. Incubation time is the time the biosensor
remains immersed in the solution containing the pesticide
and must be sufficiently extensive. The incubation time
selected was 10 min. However, the maximum value of the
inhibition was not 100%, which can likely be attributed
to the binding equilibrium between pesticide and binding
sites in the enzyme. Thus, these experimental conditions
were selected for further experiments. Table 2 summarizes
the range over which each variable was investigated and the
optimum value found in the optimization of the proposed
method.

The repeatability of the CNTs-AChE biosensor was
determined from five different measurements in the same
solution containing 3.0 X 107> M acetylthiocholine iodide
in phosphate buffer pH 7.4. The electrode surface was
renewed after each determination resulting in a mean peak
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FIGURE 1: Scanning electron micrographs for carbon nanotube paste electrode (60% w/w) (a and b) and CNTs-AChE biosensor (c and d).
Scales: (a) 200 nm, (b) 200 nm, (c¢) 2 ym, and (d) 200 nm.
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FIGURE 2: Typical Nyquist plots: (a) carbon nanotube paste electrode (60% w/w), (b) CNTs-AChE biosensor in 5.0 mM Kj[Fe(CN),] in
0.5 M KCl solution. Insert: the proposed Randle’s model.
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FIGURE 3: Square wave voltammograms obtained at the 60% (w/w) carbon nanotube paste electrode using 3.0 X 10~* M acetylthiocholine
iodide solution in phosphate buffer pH 7.4 (a) and thiocholine (b). AE, = 50mV, AE; = 2mV, and f = 50 Hz.
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FIGURE 4: Effect of the applied potential on the oxidation of
thiocholine in phosphate buffer pH 7.4 using 60% (w/w) carbon
nanotube paste electrode.

current of 1.199 + 0.0131077A (n = 5). This result
indicates good repeatability. Reproducibility was investigated
considering three biosensors prepared independently. An
acceptable reproducibility was obtained with a relative
standard deviation of 10% for measurements carried out in
3.0 X 10® M of acetylthiocholine iodide in phosphate buffer
pH7.4.

The stability and life span of the biosensor are very
important parameters in analytical determinations. For this
reason, these parameters were investigated for the proposed
biosensor in consecutive measurements without surfacing
for over 20 days. When the CNTs-AChE biosensor was stored

at —4°C with measurements taken every day for 20 days, no
noticeable change was observed in the response obtained in
3.0 X 107 M of acetylthiocholine iodide in phosphate buffer
pH 7.4.

3.2. Electroanalytical Method. The electrochemical determi-
nation of chlorphenvinphos was performed through the
inhibition of the reaction of AChE with the substrate,
acetylthiocholine, in order to allow the maximum inhibition
to be achieved. The percentage of inhibition caused by
chlorphenvinphos on the enzymatic activity of the biosensor
was calculated using the following equation:

Aly — AL
Al

where Aly and Al are the biosensor responses before and
after the incubation procedure, respectively.

Under optimized conditions, a linear response between
the percentages of inhibition as a function of chlorphenvin-
phos concentration was obtained in the range investigated:
4.90 X 1077-4.76 x 10~% M, with the limit of detection being
1.15 x 1077 M. The curve was linear in the entire interval of
chlorphenvinphos concentration, according to the following
equation:

%I = 21.81(%I) + 4.91 [ chlorphenvinphos] (1076 M),
r=0.99 (n=56).

%I = x 100, (1)

(2)

The result is presented in Figure 5, which shows the
curve obtained with surface renewal between successive
determinations.

The favorable characteristics presented by the proposed
biosensor allowed its application for the direct determination
of chlorphenvinphos in real samples. Consequently, the
performance of the CNTs-AChE biosensor was tested by
applying it for the determination of chlorphenvinphos in the
insecticide sample using the standard addition method.
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FIGURE 5: Analytical curve obtained with the CNTs-AChE biosensor
for different concentrations of chlorphenvinphos in phosphate
buffer pH 7.4 and 3.0 x 107> M AcSCh. Cell temperature is 30°C.

TaBLE 3: Determination of chlorphenvinphos in insecticide sample
using CNTs-AChE biosensor and spectrophotometric method.

Chlorphenvinphos/mg L™}
CNTs-AChE biosensor  Spectrophotometric method E*/%
225 220 2.27

E?: CNTs-AChE biosensor versus spectrophotometric method (CNTs-AChE
biosensor—spectrophotometric method/spectrophotometric method) x
100%.

The results obtained by the CNTs-AChE biosensor were
compared with those obtained by the spectrophotometric
method. The results are summarized in Table 3. Applying a
paired t-test to the results obtained by this procedure and
spectrophotometric method, it was found that all results are
in agreement at a 95% confidence level and with a relative
error lower than 3%. These results therefore suggest that the
CNTs-AChE biosensor is suitable for the determination of
chlorphenvinphos in an insecticide sample.

4. Conclusions

In this paper, we have described the use of a CNTs-
AChE biosensor for determination of chlorphenvinphos.
The proposed system does not require any complicated
immobilization procedure for the construction. The CNTs-
AChE biosensor was prepared without the introduction of
redox mediators. It is therefore concluded that the CNTs-
AChE biosensor presents easy preparation, fast response,
sensitivity, durability, good repeatability and reproducibility.
Furthermore, this biosensor can be used in chronoamper-
ometry for the determination of chlorphenvinphos in an
insecticide sample, producing a relative error lower than 3%.
The proposed method is, therefore, simple, fast and sensitive.
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