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ABSTRACT

The size, dimensionality and the limited range of
the data values makes visualization of single
nucleotide polymorphism (SNP) datasets chal-
lenging. The purpose of this study is to evaluate
the usefulness of 3D VizStruct, a novel multi-
dimensional data visualization technique for SNP
datasets capable of identifying informative SNPs in
genome-wide association studies. VizStruct is an
interactive visualization technique that reduces
multi-dimensional data to three dimensions using
a combination of the discrete Fourier transform and
the Kullback-Leibler divergence. The performance
of 3D VizStruct was challenged with several diverse,
biologically relevant published datasets including
the human lipoprotein lipase (LPL) gene locus, the
human Y-chromosome in several populations and a
multi-locus genotype dataset of coral samples from
four populations. In every case, the SNPs and or
polymorphic markers identified by the 3D VizStruct
mapping were predictive of the underlying biology.

INTRODUCTION

Technologies capable of simultaneously genotyping thou-
sands of single nucleotide polymorphisms (SNPs) are now
widely employed in basic biomedical research for investigat-
ing the genetic basis of complex diseases, cancer risk and
drug response (1-4). Presently the public SNP database
(dbSNP) contains 27 million entries (Build 125, available
September 2005), 10 million of which have been identified
as unique to the database (‘rs’ SNPs). Approximately 3 mil-
lion contain genotype information and >500 000 entries also
have frequency data.

Many techniques have been developed to explore these
multivariate datasets but one of the key obstacles of exploring
genome-wide SNP data is the high dimensionality both in

terms of the number of genes involved and the number of
polymorphisms within each gene. Additional challenges
include the massive size of the datasets (typically data on
>10000-500 000 SNPs can be obtained from a single sample)
and the limited range of the data values (the data are typically
sequences of ordinal numbers and number values taken by
each SNP are very limited: each SNP is typically called as
heterozygous or one of two homozygous states). Data ana-
lysis is further complicated by the presence of correlated
markers delimiting haplotypes. Visualization algorithms
can provide effective tools to summarize and interpret data-
sets, describe the contents and expose features in genome-
wide SNP datasets. Although genotyping technologies have
advanced considerably and a variety of sequence analysis
and alignment algorithms and tools have been developed,
analytical visualization of SNP datasets, the primary focus
of this research, has not been extensively investigated in
the context of SNP data analysis. Fast, efficient, effective
and easy-to-use analytical visualization tools are essential
for identifying and interpreting patterns in large SNP datasets
in order to generate hypotheses and direct subsequent
research.

METHODOLOGY AND RESULTS
The VizStruct mapping

At the core of VizStruct is a radial projection that maps the
n-dimensional vectors into 2D points while retaining correla-
tion similarity in the original input space (5,6). If the vector
x[n] = (x[0], x[1], ..., x[n — 1]) represents a data item in
n-dimensional space, R", its mapping to a point F(x[n]) in
the complex plane C is given by the following equation:

n—

Fi(x[n]) = i, 1

1
x[jle
=0

The real and imaginary components of F(x[n]) are used for
creating the 2D mapping. In Equation 1 i = +/— 1 and the
complex exponential has the effect of dividing the circle of
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display into equally spaced sectors. The equation shown
represents a substantive reformulation of the usual radial
visualization mapping and the use of the complex number
notation has significant advantages: it allows easier deriva-
tions of the theoretical underpinnings and an intuitive
geometric interpretation of the mapping (7-9).

The mapping F(x[n]) is equivalent to the first harmonic of
the discrete Fourier transform (DFT). The relationship
between the DFT and the radial visualization mapping,
which was first identified by our group (7-9), allows the
computationally efficient fast Fourier transform algorithm
[complexity of O(n logn), where n is the number of dimen-
sions] to be used. It allows a wide range of enhancements,
including higher harmonic analysis, that have been described
previously (7-9).

For 3D analysis (3D VizStruct), we included the Kullback—
Leibler divergence (KLD) as the third dimension or z-
coordinate; the complex number corresponding to the first
Fourier harmonic is used for the x- and y-axes. The KLD
between two probability mass functions p(x) and g¢(x) is
denoted by D(p||¢) and is also known as the relative entropy.
The KLD is defined by (10):

KLD = Z p(x

yiog (265). 2

The base of the logarithm was taken to be 2. The KLD is a
measure of the distance between two distributions or equiva-
lently, it is the inefficiency of assuming that the distribution is
q when the true distribution is p. The KLD always takes non-
negative values, KLD = 0, and is zero only if p = ¢ (11).

As the first step, a contingency table containing the freq-
uencies of the SNP (or polymorphic locus) genotypes in
each class was obtained. The frequencies in each cell of
the contingency table were normalized using the sample
size in the table and these normalized frequencies comprised
the probability distribution p. The reference probability distri-
bution, ¢, for each cell was computed as the product of the
corresponding row and column sums of the normalized
frequencies table; this is equivalent to using the assumption
of independence. The performance of the 3D VizStruct
method was measured by calculating the percentage of sam-
ples that were misclassified.

Coding of SNP datasets

An ordinal scale was used to code the SNP genotype
sequences: the numbers 1, 2 and 3 were used for genotypes
that were homozygous in the major allele, heterozygous or
homozygous in the minor allele, respectively.

A systematic, sequential approach was used for missing
data. Individuals in whom >75% of the SNP genotypes
were missing were excluded. SNP locations comprise entirely
of a combination of missing data and a single genotype were
excluded from the analysis because of the absence of
information. In computation of the Fourier dimensions of
3D VizStruct, the remaining missing data points were
replaced by the sample mean for that SNP location.

The coding and computations were conducted in Microsoft
Excel (Microsoft, Bellevue, WA). The 2D and 3D plots were
obtained with Kaleidagraph (Synergy Software, Malvern,
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PA) and MATLAB (The MathWorks,
respectively.

Natick, MA),

Evaluation of the VizStruct approach

Analysis of the human lipoprotein lipase genotypes. The
human lipoprotein lipase (LPL) gene is involved in lipid
metabolism and has been characterized in detail for its
associations with cardiovascular disease. The LPL dataset
from http://droog.gs.washington.edu/mdecode/data/lpl/lpl.
prettybase.txt.wo_n wherein LPL was genotyped at 88 poly-
morphic sites in 48 individuals (12,13) was analyzed to assess
the suitability of the 3D VizStruct approach for supervised
visualization of densely characterized candidate gene. The
dataset contains genotypes of 24 Americans of African ances-
try from Jackson, Mississippi (JMS), who participated in the
Family Blood Pressure Program, a hypertension study, and 24
Americans of European ancestry from Rochester, Minnesota
(RMN), who participated in the Rochester Family Heart
Study. The haplotype phase is available in this dataset, but
we intentionally coded each SNP location as being either
homozygous in the major allele, heterozygous or homozy-
gous in the minor allele for visualization because haplotype
phase information is generally not available in the majority
of experimental situations.

Figure 1A shows the VizStruct mapping of the SNPs from
LPL dataset; each point in Figure 1A corresponds to a single
SNP. The SNPs with the highest values of KLD were identi-
fied and their ability to individually classify the JMS and
the RMN samples was investigated. The results for the
three SNPs with highest KLD values are summarized in
Figure 1B-D. Each of the SNPs shown was strongly associ-
ated with and informative of the JMS versus RMN class
distinction: e.g. at SNP-24 (Figure 1B), 22 of 24 JMS subjects
were homozygous for the major allele and all the RMN
subjects had the minor allele (i.e. they were heterozygous
or homozygous for the minor allele); the percent error was
4.2%. At SNP-40 (Figure 1C), all 19 JMS subjects (genotypes
for 5 subjects were missing at this locus) were homozygous
for the major allele and 23 of 24 RMN subjects had the
minor allele; only 1 RMN subject had the major allele and
could be considered as ‘misclassified’ (1 of 43 or 2.3%
error) by the KLD approach. At SNP-79 (Figure 1C), all
24 RMN subjects were homozygous for the major allele
and 21 of 24 JMS subjects had the minor allele; 3 JMS
subjects had the major allele and could be considered as
‘misclassifications’ (3 of 48 or 6.3% error).

These results demonstrate that the supervised 3D VizStruct
approach is effective for identifying informative SNPs from
datasets of densely genotyped candidate genes obtained in
2-class study designs.

The Y-chromosome dataset. Polymorphisms of the Y-
chromosome are of practical interest in forensic identifica-
tion, paternity testing and in the study of human migration
since the chromosome is present only in males and transmit-
ted from father to son (14-16). Figure 2A shows the Viz-
Struct mapping of the SNPs from Y-chromosome dataset
from the Perlegen Sciences database (http://genome.
perlegen.com/browser/download.html) wherein the SNPs in
the Y-chromosome was genotyped at 334 polymorphic sites
in 33 males differing in race: 11 African-Americans,
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Figure 1. (A) (Upper left panel) shows the 3D VizStruct mapping of the LPL genotypes. The x- and y-axes are the real and imaginary components of the first
harmonic of the DFT and the z-axis is the KLD; each point corresponds to a SNP and the SNPs with the highest KLD values are highlighted with the open
triangles. (B—D) show the distribution of the genotypes for three SNPs with the highest values of the KLD in the African-American patients from Jackson, MS
(closed circles) and Caucasian-American patients from Rochester, MN (open circles). The x-axis in (B-D) is the sample number and the y-axis are the genotypes
with the homozygous genotypes coded as 1 and 3 for the major and minor allele, respectively, and the heterozygous genotype is coded 2.
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Figure 2. (A) (Upper left panel) shows the 3D VizStruct mapping of the Y-chromosome SNPs. The x- and y-axes are the real and imaginary components of the
first harmonic of the DFT and the z-axis is the KLD; each point corresponds to a SNP and the SNPs with the highest KLD values are highlighted with the open
triangles. (B-D) show the distribution of the genotypes for three SNPs with the highest values of the KLD in the African-American (closed circles) and
Caucasian-American (open circles) and Han Chinese (open triangles) subjects. The x-axis in (B-D) is the sample number and the y-axes are the genotypes with
the homozygous genotypes coded as 1 and 2 for the major and minor allele, respectively.

13 European-Americans and 9 Han Chinese (17). Figure 2B- shown in Figure 2A differentiate between the Han Chinese
D summarizes the descriptive capabilities of the three SNPs group versus the European-American and African-American
with the highest KLD values. The alleles for SNP7271524 groups. For SNP15795329 (Figure 2B), all the African-American
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subjects have the major alleles whereas all the Han Chinese
subjects have the minor allele; the European-Americans
have both alleles. The pattern for SNP1733733 is also clearly
distinctive: all the European-American and Han Chinese
subjects have the major allele whereas the majority of
African-Americans have the minor allele. This provides a
demonstration of the scalability of supervised 3D VizStruct
capabilities to a chromosome-wide SNP dataset containing
more than two classes.

Analysis of the coral dataset. In the next analysis, we
analyzed a dataset obtained by genotyping individual corals
from four coral reefs populations (18). These authors used
the amplification fragment length polymorphism (AFLP)
assay, a multi-locus technique employed for obtaining a
genetic fingerprint of organisms with limited available
sequence information (19,20). In the AFLP method, a restric-
tion enzyme digest of genomic DNA is annealed with oligo-
nucleotides primers containing short flanking sequences in
addition to the adaptor sequences of the restriction enzyme
used. The flanking sequences ensure selective PCR amplifica-
tion of only those restriction fragments that contain the reverse
complement of the flanking sequence present. After PCR, the
amplified fragments (typically, 50-100 in number) are separ-
ated according to size by denaturing gel electrophoresis
(19,20). It should be noted that the AFLP method is suscep-
tible to confounding by size homoplasy because the presence
of AFLP bands of the same size in different samples is not suf-
ficient to always assure high sequence similarity (21).

The names and locations of the reefs are summarized in
Figure 3A: DNA samples from individual coral specimens
from geographical locations in the Bahamas (23°28'N,
75°42'W), the Crocker and Conch reefs (two sites separated
by 12 km at 24°55'N, 80°31’W near the Key Largo, FL,
area) and the Flower Gardens Banks (27°55'N, 93°36'W,
110 km south-southeast of Galveston, TX in the Gulf of Mex-
ico) were analyzed using two separate sets of primers. The
number of samples, n, from the Bahamas, Flower Gardens
Banks, Crocker and Conch reefs were 22, 28, 17 and 14,
respectively. Coral larvae can derive from either local adult
populations or immigrate from distant locations. A total of
11 samples from coral larvae (referred to as recruits) from
the Flower Gardens Banks reef were also analyzed. The
object of the study was to determine the likely source from
which the recruits migrated; the authors used discriminant
analysis to assign all but one of the recruits to the Flower
Gardens banks. The data were nominal variables indicating
the presence/absence of PCR products of given lengths gene-
rated from two different sets of primers. There were 45 poly-
morphic markers used in this study. For this dataset, the
dimensions were ordered so that the mean across all the
samples approximated a cosine-like function; this was
achieved by sorting the results for one primer in increasing
order and the other primer in decreasing order.

In the VizStruct results shown in Figure 3B, each
point corresponds to a single marker. The three markers
with the highest values of KLD were examined in detail
(Figure 3C-E). Figure 3C demonstrates that the all but one
of the samples from the Bahamas (21 of 22) are negative
for Marker-8; in contrast, 26 of 28 samples from the Flower
Gardens Banks reef, 13 of 17 samples from Crocker reef,
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11 of 14 samples from Conch reef and all 11 samples from
the recruits were positive for this marker. Figure 3D shows
the results for Marker-19, which is associated with a class
distinction different from that of Marker-8: the Marker-
19 is present in all the Flower Gardens Banks reef and
recruits samples, but it is absent in the majority of samples
from the Bahamas (absent in 17 of 22 samples), Crocker
(absent in 9 of 17 samples) and Conch (absent in 6 of 11 sam-
ples) reefs. Figure 3E shows the results for Marker-35, which
is associated with yet another class distinction: it is absent in
all the Crocker reef and 9 of 11 Conch reef samples; however,
Marker-35 is present in the majority of Bahamas (present
in 15 of 22 samples), Flower Gardens Banks (present in 22
of 28 samples) and recruits samples (present in 10 of 11 sam-
ples). These representative results demonstrate that the KLD
is capable of identifying informative genetic polymorphisms
when multiple classes are present. The 3D VizStruct analysis
also indicates that the recruits are most similar to the samples
from the Flower Gardens Banks, which is consistent with the
findings of Brazeau et al. (18). Discriminant analysis, which
was used by Brazeau et al. (18), is the conventional ‘gold
standard’ methodology for identifying predictive markers
from multi-dimensional datasets. We therefore challenged
3D VizStruct by comparing the three markers with the high-
est KD in the 3D VizStruct visualization to the markers pre-
sent with highest weights in the discriminant function: there
was an exact concordance between the top three markers
identified by both methods.

These results extend the useful range of 3D VizStruct
visualization capabilities to include multi-class data genera-
ted by multi-locus genotyping techniques that are used for
poorly characterized genomes.

Kullback-Leibler divergence and linkage
disequilibrium

The relationship between the KLD and linkage disequilib-
rium (LD) was analyzed to provide further justification for
the use of the KLD in VizStruct for SNP visualization.

A variety of normalized metrics (e.g. R* and Lewontin’s
D’), all of which are based on linkage disequilibrium, D,
are widely used in genetic mapping. We therefore first inves-
tigated the relationship between the KLLD and LD.

The starting point for the definition of the measures of
linkage disequilibrium is the standard 2 x 2 haplotype freq-
uency table shown on in Table 1. Consider two loci, each
of which has two alleles. Let A and a denote the major and
minor alleles at the first locus and B and b denote the
major and minor alleles at the second locus. The proportions
of the A, a, B and b alleles are denoted by pa4, p,, ps and p,,
respectively. Similarly, denote the proportion of the AB, Ab,
aB and ab haplotypes by pag, Pap» Pas> Paps Tespectively.
Linkage disequilbrium D is defined by the following
equivalent equations (22):

D = pagPup — PavPap = Pag — PaPs = Pab — PaPb
= —Pap +PaPy = — Pup T PuPB- 3

Because the reference distribution ¢ in the definition of KLD
(Equation 2) is based on the assumption of independence,
the KLD of the haplotype frequency table is given by the
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Figure 3. (A) (Upper panel) is a map of the southeastern United States (made using M. Weinelt, Online Map Creation: http://www.aquarius.geomar.de/omc/
make_map.html) showing the locations of the Bahamas (BAH), Crocker and Conch (CC) and Flower Gardens Banks (FGB) coral reefs from which the samples
were derived. The grid on the map indicates latitude north and longitude west. (B) Shows the 3D VizStruct mapping of the genotyping results from AFLP
analysis of the coral samples. The x- and y-axes are the real and imaginary components of the first harmonic of the DFT and the z-axis is the KLD; each point
corresponds to a marker and the markers with the highest KLD values are highlighted with the open triangles. (C—E) Show the distribution of the genotypes for
three amplification fragments with the highest values of the KLD in the samples from the Bahamas (open circles, n = 22), the Flower Garden Banks (filled
circles, n = 28), Crocker (open triangles, n = 17), Conch (filled triangles, n = 14) and the recruits from the Flower Garden Banks (open diamonds, n = 11). The
x-axis is the sample number and the y-axis are the genotypes; the genotype was coded as 1 if the fragment was absent and 2 if the fragment was present.

following equation:

PaB Pab Pap
KLD = pyplog—— + p4, log——=— + p 5 log
s Y T papy T T pubs
+ p log Par. . 4
PaPh

Using the Equation 3, Equation 4 can be re-written in terms
of the linkage disequilibrium and the allele frequency

terms alone:

(D+papp) (papp—D)
KLD=(D+p,pp)log~—2E2 1 (p,p,—D)log
ATE PaPs AT PaPb
(pupg—D) (D+p.py)
+(ppp—D)log———=+(D+p,p,)log———=.
(Paps =D) PuPs ( ) PuPb
5
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Equation 5 formally defines the relationship between linkage
disequilibrium and KLD: the KLD depends only on the link-
age disequilibrium and on the allele frequencies.

Figure 4 shows the results from numerical experiments
designed to investigate the dependence of KLD on allele freq-
uency. The experiment employed 87 simulated datasets
wherein the allele frequencies at one locus (locus B) were
kept constant at (pp = 0.9, p, = 0.1) whereas the allele freq-
uency at the other locus was varied from (py, = 0.99, p, =
0.01) to (p4 = 0.6, p, = 0.4). The numerical values of the
KLD were calculated for various values of linkage disequilib-
rium (D). Figure 4 summarizes the relationship between the
linkage disequilibrium and KLD with allele frequency as a
parameter on linear (Figure 4A) and logarithmic axes
(Figure 4B); the curves in Figure 4A appear to ‘end’ because
there are maximum limits to D for a given set of allele
frequencies. Figure 4A and B demonstrates that there is direct
relationship between the KLD and D despite their disparate
underlying formulations—the KLD is based on an
information-theoretical framework, whereas D is the determ-
inant of the haplotype probability table. However, over the
range examined, for a given allele frequency at one locus,
the dependence between KLD and D is approximated by a
power-law relationship of the form KLD o« D" (Figure 4B);
the exponent of the power-law relationship varied
between 1.78 for (p4 = 0.99, p, = 0.01) to 2.00 for (p, =
0.6, p, = 0.4).

DISCUSSION

The objective of this report was to evaluate 3D VizStruct, a
multi-dimensional visualization approach that combines

Table 1. Haplotype table

B b Sum
A PaB Pab Pa
A PaB Pab Pa
Sum Ps Db 1
A
034
a 0.24
=
¥
01
0 0.02 0.04 0.06 0.08

Linkage Disequilibrium D
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radial visualization with the KLD for visualizing SNP data
and for identifying predictive SNPs from large association
studies. We analyzed several datasets to demonstrate the use-
fulness of the 3D VizStruct approach for mining SNP data
obtained from studies of large datasets including a densely
genotyped candidate gene, LPL, the Y-chromosome and sam-
ples of reef coral individuals obtained from the wild. We
highlighted the effectiveness of identifying predictive SNPs
from 3D VizStruct visualization in two-class and multi-
class study designs.

Our results demonstrate the 3D VizStruct approach with
the KLD in particular is effective for the supervised detection
of informative SNPs. The KLD is valuable for identifying
class distinctions because it is order-insensitive; however,
the availability of the complex Fourier harmonic dimensions
for visualization is also important because it spreads the large
number of SNPs efficiently in the visualization field, which
allows different categories of class distinctions of comparable
quality to clearly emerge in multi-class datasets. The KLD is
also easy to interpret by users because it represents a ‘dis-
tance’ between two distributions, i.e. two SNP distributions
that are similar are placed near each other and those dissim-
ilar are placed distantly from each other. In this context, we
are currently conducting theoretical studies to examine the
relationships between our supervised KLD formulation and
the commonly used measures of linkage disequilibrium, e.g.
the correlation coefficient A, Lewontin D’ (23,24), Yule’s O
(25), Kaplan and Weir’ proportional difference d (26), the
population attributable risk & (27), because linkage disequi-
librium measures remain the fundamental approach used by
population geneticists and genetic epidemiologists to identify
disease loci (22) and are frequently used for fine mapping by
molecular geneticists; identifying these analytical relation-
ships will facilitate acceptance of the 3D VizStruct visualiza-
tion method. A common feature of linkage disequilibrium
measures is that they assess the difference between the
observed and expected frequencies of haplotypes between a
‘disease’ locus and a marker locus of interest (22). Our work-
ing hypothesis is that differences between two loci in the
KLD dimension are directly related to measures of linkage

B 0.9
01t
0.95 0.6
0.99
0.014
a
- |
v
0.001+
0.0001+
Ledededed 1 T i L . J
T T T
0.001 0.01 0.1

Linkage Disequilibrium D

Figure 4. Relationship between the KLD versus the linkage disequilibrium D for a range of allele frequencies. The allele frequencies at one locus were kept
constant at 0.9 for the major allele (A) and 0.1 for the minor allele (B). The major allele frequencies at the other locus were varied as indicated and were 0.99
(filled circles), 0.95 (open circles), 0.9 (filled triangles) or 0.6 (open triangles). The solid lines are a power-law fit to the results. Figure 1A uses linear axes and

Figure 1B shows the same data on logarithmic axes.
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disequilibrium between the loci. Additional relationships will
be systematically derived in the further research but prelimin-
ary analyses are promising; e.g. the KLD of two loci is zero
in the case the two loci are completely independent of the
class distinction and larger for larger values of linkage dis-
equilibrium. One important and useful difference is that the
3D VizStruct approach does not require computation of pair-
wise linkage disequilibrium values across loci: each SNP vec-
tor is individually projected on the visualization field and this
reduces the computation needed. An additional advantage
with the Fourier and KLD components of 3D VizStruct is
that both are generalizable to multiple SNPs and across a
wide range of data types. For example, the same approaches
could potentially be extended to visualize the associations
between SNPs and quantitative traits (e.g. gene expression,
clinical and laboratory parameters).

The KLD approach can also be used to identify statistically
predictive SNPs because the log-likelihood ratio is equal to
the product of the KLD and sample size. For a 2 X
2 haplotype table with a given sample size, the KLD is
distributed according to the x* statistic with one degree of
freedom. With these simple relationships and the desired
level of significance at hand, predictive genes can be
identified easily along the KLD axis.

The 3D VizStruct approach represents a computationally
efficient means to visually examine large complex datasets
form diverse areas of research. With the ever-expanding num-
bers of massive datasets there is a real need for visualization
tools that can quickly encapsulate the information allowing
researchers to more easily interpret data, identify and sum-
marize the most important features in genome-wide SNP
datasets.
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