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Abstract

Gamma-retroviruses are commonly used to deliver genes to cells. Previously we demonstrated that 

the synthetic anti-glucocorticoid and anti-progestin agent, mifepristone, increased gamma-

retroviral infection efficiency in different target cells, independent of viral titer. In this paper, we 

examine how this occurs. We studied the effect of mifepristone on different steps of viral infection 

(viral entry, viral survival, viral DNA synthesis and retrovirus integration into the host genome) in 

three distinct retroviral backbones using different virus recognition receptors. We also tested the 

potential role of glucocorticoid and progesterone receptors in mediating mifepristone’s ability to 

increase gamma-retroviral infectivity. We show that mifepristone increases gamma-retroviral 

infection efficiency by facilitating viral integration into the host genome and that this effect 

appears to be due to mifepristone’s anti-glucocorticoid, but not its anti-progestin, activity. These 

results suggest that inhibition of the glucocorticoid receptor enhances retroviral integration into 

the host genome and indicates that cells may have a natural protection again retroviral infection 

that may be reduced by glucocorticoid receptor antagonists.
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Introduction

Retroviral vector-mediated gene transfer is the easiest way for stable gene delivery into cells 

and can be used to permanently modify the host cell nuclear genome. Previously we showed 
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that the synthetic glucocorticoid and progesterone receptor antagonist, mifepristone, 

increased retroviral infectivity of uninfected target cells independent of viral titer in a 

moloney murine leukemia virus (MMLV) based gene delivery system1. The ability of 

mifepristone to increase retroviral infectivity was demonstrated in several different types of 

target cells including rat pulmonary artery smooth muscle and endothelial cells, human 

epithelial cells, and a glioblastoma cell line. The mechanism, through which this occurred, 

however, was not clear.

In this paper we demonstrate that mifepristone increases gamma-retroviral infection 

efficiency by facilitating the integration of the viral genome into the host genome, a process 

that is mediated by mifepristone’s antagonist activity on the glucocorticoid receptor.

Results

Mifepristone increases infection efficiency of different gamma-retroviruses

The classification of retroviruses is arranged by computer analysis of genomes, based 

primarily on comparisons of the size and morphologic characteristics of the viral genome. 

All gamma-retroviruses have similarities in genome organization, but each possesses 

individual characteristics. Moloney murine leukemia virus (MMLV) based vectors are 

produced by replacing the viral genes required for replication with the desired genes to be 

transferred and along with other vectors are currently used as gene transfer vehicles 2. The 

MSCV (Murine Stem Cell Virus) is an important derivative of MMLV that has been 

optimized for introducing and expressing target genes into pluripotent cell lines, including 

murine and human hematopoietic embryonic stem cells, and embryonal carcinoma cells 

which are usually resistant to retroviral infection 3. The friend murine embryonic-stem cell 

virus (FMEV) which is a hybrid viral backbone [friend mink cell focus-forming (FMCF)/

murine embryonic stem cell virus (MESV)] was also designed to optimize infection and 

protein expression in primary hematopoietic cells 4. These last two retroviral backbones can 

be used to infect the same types of cells as MMLV.

We investigated whether mifepristone could also increase the target cell infectivity of these 

popular gamma-retroviral systems. Gamma-retroviral backbones containing genes encoding 

fluorescent proteins as reporters were propagated in Phoenix ecotropic packaging cells. 

Viral-conditioned supernatant was collected and applied to target cells (rat pulmonary 

microvascular endothelial cells, PMVEC). Figure 1A shows that mifepristone at 1 μmol/L 

concentration almost doubled the percentage of infected cells regardless of the viral 

backbone. This suggests that the ability of mifepristone to increase infectivity of gamma-

retroviruses is not restricted to MMLV retroviral vectors, but also occurs in other popular 

gamma-retroviral gene delivery vectors. In contrast mifepristone did not increase the target 

cell infectivity of lentiviral vectors (packed into VSV-G based viral particles).

Mifepristone increases target cell infection efficiency independent of viral or target cell 
recognition receptors

A viral receptor is conventionally defined as a component(s)on the cell surface to which a 

virus specifically binds and which may result in virus entry. Virus entry occurs following 
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fusion between the retroviral envelope and the cellular plasma membrane 5. To determine if 

the type of viral receptor was critical to mifepristone’s ability to increase target cell 

infectivity, we infected cells with MMLV packaged into viral particles with different 

envelope proteins – ecotropic, amphotropic, and VSV-G based pantropic. Ecotropic 

envelope proteins recognize the ecotropic receptor (mCAT1) 6 and can efficiently infect a 

broad range of mouse and rat cells. Amphotropic viral envelope proteins recognize the 

amphotropic receptor (Ram-1) and infect a broad range of mammalian cells 7. Viral entry 

with VSV-G pantropic envelope glycoproteins from the vesicular stomatitis virus does not 

require a cell surface receptor, but mediates viral entry through lipid binding and plasma 

membrane fusion 8.

As shown in figure 1B, the infection efficiency of rat PMVEC varied with the different viral 

particles, with VSV-G envelope glycoprotein demonstrating the greatest baseline infectivity 

while amphotropic viral particles demonstrated the least. While the baseline infectivity of 

ecotropic, amphotropic, and VSV-G based viruses was different (amphotropic receptors are 

less abundant in rodent cells compared to ecotropic ones, while VSV-G base viruses do not 

use any protein receptors for cell entry), mifepristone doubled the percentage of infected 

cells in each case. These results suggest that the ability of mifepristone to increase target cell 

infectivity is not dependent on the type of envelope protein expressed by the viral particles.

Adding mifepristone after exposure to retrovirus still increases viral infection efficiency

Target cell entry is the first step of viral infection. This requires contact between the viral 

envelope and the cell membrane. Receptors on the viral envelope interact with 

complementary receptors on the cell membrane and this attachment causes the two 

membranes to remain in mutual proximity. To enter the cell through the phospholipid 

bilayer membrane, viral receptors attach to the receptors on the surface of the cell and either 

puncture the cell membrane or allow fusion of the viral envelope with the host cell. The 

virus’s envelope then releases its contents into the cell 9.

To determine whether mifepristone increased retroviral infection efficiency by facilitating 

viral entry into target cells, PMVEC were infected for one hour in the absence of 

mifepristone. Cells were then washed (to remove the virus) and incubated in fresh medium 

for an additional hour. This allowed sufficient time for the virus to enter the cell, but not 

sufficient time to complete its infection cycle. Mifepristone (at 1 μmol/L concentration) was 

then added to the medium. Seventy-two hours later, target cells were trypsinized and 

analyzed for GFP expression by fluorescence activated cell sorting (FACS). Figure 2 

demonstrates that adding mifepristone after the initial infection had occurred (i.e. after the 

virus had been removed from the medium following its one hour incubation) also increased 

viral infection efficiency approximately two-fold (from 2.1 to 3.7%). The lower infection 

rate seen in figure 3 compared with figure 1 is due to the shorter retroviral incubation time 

(one versus 18 hours). This result suggests that the increased infection efficiency seen with 

mifepristone is not due to its effect on viral entry into target cells.
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Mifepristone did not promote retroviral infection in non-dividing cells

Gamma-retroviruses and many other RNA viruses can only infect dividing cells because 

they must access the host DNA to replicate. The interior of the nucleus is separated from the 

cytoplasm by a double-layer membrane called the nuclear envelope. Embedded in the 

nuclear envelope are nuclear pores, which act like selective filters that allow diffusion of 

ions and molecules, but nothing larger 10. Gamma-retroviruses, therefore, cannot enter the 

nuclear compartment of non-dividing cells and integrate into the host genome. As cells 

undergo replication and division, the nuclear envelope becomes more permeable which 

allows greater cytoplasmic-nuclear trafficking and allows viruses to enter the nucleus. To 

determine whether mifepristone’s ability to increase retroviral infection efficiency was due 

to its ability to infect non-dividing cells, we compared the infection efficiency in dividing 

(growing) and non-dividing (confluent) PMVEC with or without mifepristone. We grew 

cells to either 100% confluency (to induce cell arrest) or 15% confluency and then infected 

them with MMLV (at the same multiple of infectivity) in the presence of either 1 μmol/L of 

mifepristone or vehicle (EthOH). Seventy-two hours later, target cells were trypsinized and 

analyzed for GFP by FACS as previously described. Figure 3, demonstrates that the 

retrovirus was only able to infect dividing cells and the presence of mifepristone had no 

effect on this.

Mifepristone does not prolong survival of non-integrated gamma-retroviral intermediates 
in infected cells

Since transduction of target cells by gamma-retroviruses is dependent on cell replication, it 

is important to know how long a virus that has successfully entered the target cell retains its 

ability to integrate. Some authors have demonstrated that if cells have not divided within 6 

hours of infection, gene transfer does not occur 11. This suggests that retroviruses do not 

remain viable within the cell cytoplasm for a prolonged period of time. Other studies have 

shown that growth-arrested cells infected with retroviruses can undergo infection later; 

however, suggesting that some stable viral intermediates can persist in growth-arrested cells. 

This intermediate may be viral RNA, viral DNA (after reverse transcriptase) or a mixture of 

partially reverse-transcribed forms. The intracellular half-life of MMLV has been 

determined to be in the range of 5.5 to 7.5 hours 11,12.

A potential mechanism by which mifepristone could increase the number of infected cells 

would be to prolong survival of the virus in infected but temporarily arrested cells. To 

evaluate this hypothesis we tested the ability of mifepristone to increase retroviral infectivity 

of growth-arrested cultured rat PMVEC as they reentered the cell cycle over 48 hours. Rat 

PMVEC stop proliferating once they attain confluence and therefore are resistant to 

retroviral infection. We have previously demonstrated that once these growth-arrested 

confluent cells are reseeded at lower confluency, they start to enter the S-phase 

approximately 24 hours and G2-M phase about 30 hours later. Figures 4A and 4B show the 

percentage of PMVEC entering G2-M phase at various time points after their reseeding from 

a confluent monolayer. Within this first 30 hours after reseeding, cells are not dividing and 

therefore while they may be able to take up virus, they are unable to complete an infection 

cycle by integrating it into the host genome.
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PMVEC that were growth-arrested and then re-seeded at lower confluence as described 

above, were infected at various time points after reseeding in the presence of 1 μmol/L 

mifepristone or vehicle. Cells were incubated with virus for only 12 hours, but at different 

time points after re-seeding. Seventy-two hours later, the cells were analyzed for GFP using 

FACS.

Figure 4D shows that cells infected immediately after re-seeding (i.e. 0 to 12 hours) 

demonstrated less infection efficiency compared to cells infected later (24 to 36 and 36 to 48 

hours). Since arrested cells can take up the virus, but are unable to integrate it into the host 

genome, the decreased infection efficiency in cells infected immediately after re-seeding 

was likely due to the fact that by the time these cells began to divide (approximately 30 

hours), most of the virus that had been taken up by the cells was already degraded. By the 

time the early-infected cells begin to divide (at about 30 hours), the virus has been degraded 

and is no longer capable of integration. As expected, mifepristone increased the infectivity 

rate at all time points (about 2.9 fold), but did not demonstrate an enhanced effect at the 

earlier time points (figure 4E). This suggests that mifepristone did not prolong the survival 

of non-integrated viral intermediates in these infected but temporarily non-dividing target 

cells. Had mifepristone prolonged viral survival, the earlier infected cells should have 

demonstrated a greater infectivity rate when compared to those cells infected later. Figure 

4E demonstrates that the increase in infectivity rate following incubation with mifepristone 

was similar at all time points, however. This correlates with our previously published results 
1 demonstrating that mifepristone does not prolong viral viability in cell culture. Figure 4C 

shows representative flow cytometry data of retroviral infectivity for all experimental 

conditions.

Mifepristone does not enhance viral DNA synthesis in target cells

Since mifepristone did not affect viral entry or survival in target cells but did increase the 

number of stably infected cells, we examined whether mifepristone stimulated other post-

infection events in target cells including viral DNA synthesis (reverse transcriptase) or 

integration into the host genome. Reverse transcription—the transcribing of genetic 

information from RNA to DNA—is a hallmark of the retroviral replication cycle. The 

enzyme reverse transcriptase catalyzes this process and plays a critical role in viral cycling 
13. To determine if viral DNA synthesis was stimulated by mifepristone, we performed 

quantitative PCR (qPCR) on total DNA isolated from target cells at various time points after 

infection (figure 5A). To better synchronize infection events, we exposed target cells to 

MMLV for only 1 hr in the presence of mifepristone or vehicle. After that, virus was 

removed from the medium. The viral DNA content in infected cells was measured by qPCR 

using primers to the GFP region of viral DNA. Mifepristone or vehicle was present in the 

medium from the beginning of infection until analysis (up to 7 days). Viral DNA content 

peaked six hours after infection and then began to decrease. There was no difference in viral 

DNA levels between mifepristone-and vehicle- treated cells in the first 6 hours suggesting 

that mifepristone did not affect viral DNA synthesis catalyzed by reverse transcriptase. 

Twenty four hours after infection the viral DNA content was decreased in all cells likely due 

to a combination of viral degradation and target cell proliferation resulting in the dilution of 

non-integrated viral DNA. The content of viral DNA in mifepristone-treated target cells was 
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higher than that in vehicle-treated cells at 24 hours, a difference that persisted throughout the 

seven days of the experiment. This twofold increase in viral DNA level observed in 

mifepristone-treated target cells at 3 days post infection closely correlated with the two-fold 

increase in the number of infected cells shown in figure 1 and to our earlier published 

results. Since the viral DNA content during log phase replication (0 to 6 hours) was not 

affected by mifepristone, it is unlikely that mifepristone increased target cell infectivity by 

stimulating viral reverse transcription.

Mifepristone enhances viral integration into host DNA

While newly synthesized viral DNA can persist either as linear forms, one LTR circles, or 

two LTR circles for a period of time, ultimately this viral DNA must be either integrated (to 

complete an infection cycle) or degraded. If it is integrated into the host genome, viral DNA 

should be detectable within the genomic DNA immediately after incorporation. To examine 

whether mifepristone increased the amount of viral DNA integrated into the host genome, 

we infected cells with MMLV for 1 hour in the presence or absence of mifepristone, isolated 

total DNA from target cells at the time points described above and resolved the DNA on an 

agarose gel. 4Kb DNA fragments (the size of non-integrated viral DNA) and genomic DNA 

(>50Kb) were cut out and the DNA from each fraction was extracted and analyzed for the 

presence of viral sequences by qPCR. The level of free viral DNA (i.e. the viral 4 Kb DNA 

fragment) was markedly increased 6 hours after infection in both vehicle and mifepristone-

treated cells and then declined towards baseline by 3 days (figure 5B). At no time did the 

mifepristone-treated cells demonstrate greater free viral DNA levels than vehicle-treated 

cells. This is consistent with our previous observation that mifepristone did not increase 

viral DNA synthesis. In contrast, the amount of viral DNA that was integrated into the 

genomic fraction was greater in mifepristone-treated cells at all time points (figure 5C). This 

increase in the level of integrated viral DNA was the only event in the viral infection cycle 

that was altered by the presence of mifepristone.

Mifepristone increases gamma-retroviral infectivity through its effect on the glucocorticoid 
receptor

Mifepristone is a synthetic steroid that can act as an antagonist to both glucocorticoid and 

progesterone receptors 14. At the molecular level, mifepristone binds to the glucocorticoid or 

progesterone receptors with high affinity interacting with the receptor at the 

phenylaminodimethyl group in the 11β-position within a specific region of the receptor 

binding pocket 15. Mifepristone induces a conformational change within the ligand-binding 

domain and reduces the receptors affinity for its natural hormone ligands. Mifepristone’s 

ability to increase viral infectivity of target cells could be due to its effects on either the 

glucocorticoid receptor or the progesterone receptor.

To determine whether the increase in retroviral infectivity was some specific effect of 

mifepristone or whether it occurred with other glucocorticoid or progesterone receptor 

antagonists, rat PMVEC were infected with retrovirus in the presence of mifepristone or 

another glucocorticoid antagonist, Org 34517, kindly gifted by Schering-Plough. The ic50 of 

Org 34517 for the glucocorticoid receptor is 17.9 nmol/L (mifepristone’s ic50 is 12.2 

nmol/L) 16. Org 34517 was used in a range of 0.1–30 μmol/L and the results were compared 
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to rates of infectivity in non-treated or mifepristone-treated cells. Org 34517 significantly 

increased retroviral infectivity above control but was less potent than mifepristone. A 

progesterone receptor antagonist {11b-[4-(acetylphenyl)-4′,5′-dihydro-2′-ethyl-5′-

methylenespiro[estra-4,9-dien-17b,4′ oxazole]-3-one} which has an ic50 of 0.34 nmol/L for 

the progesterone receptor (graciously provided by RTI International, RTP, NC) 

(mifepristone’s ic50 for the progesterone receptor is 0.054 nmol/L), had no effect on 

retroviral infection efficiency (figure 6A) 17. Adding both the specific glucocorticoid (Org 

34517) and the progesterone (7453-102) receptor antagonists at the same time did not 

change the rate of target cell infectivity (data not shown). This suggests that the improved 

infection efficiency seen with mifepristone compared to ORG is not due to a synergistic 

effect of progesterone blockade.

We next examined the effect of mifepristone on retroviral infectivity in cells that lacked 

either progesterone or glucocorticoid receptors. U87MG cells (a human glioblastoma cell 

line) lack functional progesterone receptors, but express functional glucocorticoid receptors 
18 whereas T47D cells (a human breast cell line) express progesterone receptors, but do not 

have functional glucocorticoid receptors 19,20. Both cell lines were infected with retrovirus 

in the presence or absence of mifepristone. Seventy-two hours later, cells were analyzed for 

GFP expression (figure 6B). Mifepristone increased retroviral infectivity in U87MG cells, 

but not in T47D cells. These results, combined with those using selective progesterone and 

glucocorticoid receptor inhibitors, suggest that mifepristone’s ability to increase retroviral 

infectivity of target cells is likely due to its glucocorticoid receptor antagonist properties.

Mifepristone did not enhance gamma-retroviral integration in T47D cells

Since mifepristone appeared to enhance target cell infectivity by increasing the rate of 

retroviral integration into the host genome, (through a glucocorticoid receptor mediated 

action) we examined whether this effect would be lost in T47D cells. T47D cells were 

infected with amphotropic MMLV for 1 hr in the presence of 1 μmol/L of mifepristone or 

vehicle. Virus was then removed and cells were either analyzed immediately or incubated 

with mifepristone or vehicle for 6 hours, or 1, 3 or 7 days. Similar to previous experiments, 

the total cellular DNA was isolated and resolved on a 0.8% agarose gel. 4Kb DNA 

fragments (the size of non-integrated viral DNA) and genomic DNA (>50Kb) were cut out 

and the DNA from each fraction was extracted and analyzed for the presence of viral 

sequences by qPCR. Similar to our results in endothelial cells (figure 5) the level of free (i.e. 

non-integrated) viral DNA was elevated 6 hours after infection and then gradually declined 

towards baseline (figure 7A). The amount of integrated viral DNA was elevated above 

baseline 24 hours after infection in both mifepristone and vehicle-treated cells (figure 7B), 

but unlike our results in endothelial cells (figure 5) there was no difference in the amount of 

either free or incorporated viral DNA at any time after infection between mifepristone and 

vehicle-treated cells. Therefore, it appears that T47D cells, which lack functioning 

glucocorticoid receptors, are insensitive to mifepristone’s ability to increase gamma-

retroviral enhanced integration into the host genome. This likely explains the failure of 

mifepristone to increase viral infection in these cells.
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Discussion

Retroviral vectors are popular and widely used gene delivery vehicles because of their 

efficiency and precision of integration. Retroviruses can be used to correct genetic diseases 

through the permanent integration of therapeutic genes into chromosomes of affected cells, 

for generating transgenic animals and plants, and for basic biomedical research. Determining 

how retroviruses infect target cells is important not only as a guide towards building better 

vectors, but to further our understanding of the basic biology of retroviral infection in 

disease.

MMLV-derived vectors are simple and effective gene delivery vehicles in part because they 

tend to integrate near transcription initiation sites dramatically increasing expression levels 

of delivered proteins. The biggest disadvantage of using MMLV-derived vectors is low 

infection efficiency. While infected cells show a high expression level of delivered 

protein(s), many cells remain resistant to infection even after several infection cycles. One 

strategy to increase retroviral infection efficiency is to generate higher viral titers in virus-

producing (packaging) cells by maximal activation of enhancers within the retroviral 

promoter. Since MMLV-derived vectors have one or more response elements within its 

promoter, glucocorticoids stimulate viral propagation in virus-producing cells that leads to 

an increase in retroviral infectivity due to an increase in viral titer. We have shown that the 

glucocorticoid receptor antagonist, mifepristone, blocks this increase in viral titer 1. Our 

previous work demonstrated, however, that while mifepristone blocked the dexamethasone-

induced increase in viral titer, it actually increased target cell infectivity. The mechanism 

underlying that unexpected finding was unclear. In this paper we demonstrate that 

mifepristone increased the number of infected target cells by facilitating integration of the 

viral genome into the host genome. It did not appear to affect any other steps involved with 

viral infection such as recognition of target cells, virus entry, virus stability, or viral DNA 

synthesis.

Integration of a retroviral genome into a host chromosome completes the viral replication 

cycle and makes the infection permanent. The integrated viral DNA can be transcribed, 

resulting in RNA for translation of viral proteins and formation of viral particles, which can 

be released to infect other cells. Without viral integration, however, cells eventually degrade 

the virus and remain uninfected. Mifepristone’s ability to increase retroviral infection 

efficiency appears to be due to its ability to facilitate retroviral integration into the host 

genome and thus complete the infection. Mifepristone enhanced the efficiency of viral 

infection in three different gamma-retroviral backbones demonstrating that its effect is not 

limited to a specific vector. Mifepristone had no effect on the target cell infectivity of the 

two lentiviral vectors we studied, however. The reason for this is not clear, but may be due 

to the lack of functional glucocorticoid receptors or other differences in how these 

lentiviruses infect cells.

The exact mechanism through which mifepristone enhances viral integration in gamma-

retroviruses is not clear, but it appears to involve its antagonistic effect on the glucocorticoid 

receptor. Another anti-glucocorticoid, Org 34517, also increased gamma-retroviral 

infectivity, whereas an anti-progesterone agent had no effect. Consistent with this 
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observation, mifepristone did not increase gamma-retroviral infection efficiency in cells 

which lack functional glucocorticoid receptors (T47D cells), but did in those lacking 

functional progesterone receptors (U87MG cells).

These results suggest that inhibition of the glucocorticoid receptor enhances gamma-

retroviral integration into the host genome and indicates that cells have a natural protection 

again viral infection that may be reduced by glucocorticoid receptor antagonists. As a 

research tool, mifepristone can be used to enhance gene delivery and provide a way to study 

different aspects involved in retroviral integration.

Materials and methods

Materials

Dexamethasone (D4902), Mifepristone (M8046), hexadimethrine bromide (H9268), 

propidium iodide (PI), RNase, and 5′-bromo-2′-deoxyuridine (BrdU) were all purchased 

from Sigma (St. Louis, MO). Dulbecco’s Modified Eagle Medium (DMEM), trypsin-

ethylenediaminetetraacetic acid (EDTA) and L-glutamine were all purchased from Gibco 

(Grand Island, NY). Fetal bovine serum (FBS) was purchased from Atlanta Biologicals 

(Lawrenceville, GA). HyBond-P membrane was purchased from Amersham 

(Buckinghamshire, England). FuGENE 6 Transfection Reagent (11 814 443 001) was 

purchased from Roche Diagnostics (Indianapolis, IN). Org 34517 was kindly gifted by 

Schering-Plough. Progesterone receptor antagonist 11b-[4-(acetyl)phenyl)-4′,5′-dihydro-2′-

ethyl-5′-methylenespiro[estra-4,9-dien-17b,4′-oxazole]-3-one (RTI # 7453-102) was 

synthesized by Dr. Chunyang Jin at RTI International following the previously published 

procedure 17.

Cell cultures

Phoenix Retroviral Expression System ecotropic and amphotropic packaging cells were 

purchased from Orbigen, Inc. (San Diego, CA). The Pantropic Retroviral Expression System 

(VSV-G based, with pantropic packaging cells) was purchased from Clontech (Palo Alto, 

CA). Rat pulmonary microvascular endothelial cells (PMVEC), were obtained from our cell 

culture core. Human glioblastoma cells (U87MG), and human mammary carcinoma cells 

(T47D) were obtained from ATCC. All cells were cultured in DMEM, 10% FBS, 2mmol L-

Glutamine and used for experiments at passages 4–9. All cells were grown in humidified 

incubators at 37°C in 5% CO2. Cells were harvested by 0.05% trypsin/0.53 mM EDTA 

digestion, washed, re-suspended in cultured medium and analyzed directly by FACScan in 

the University of South Alabama Flow Cytometry Core. For cell cycle analysis cellular 

DNA was stained with 10 mmol/l of propridium iodide for 20 minutes as described 

elsewhere 21 and then analyzed by FACScan.

Vectors and delivery systems

pBMN-GFP (Orbigen, Inc., San Diego, CA), a retroviral vector that expresses GFP driven 

by the MMLV’s promoter in Phoenix and other cells was used. In some experiments Murine 

Stem Cell Virus (MSCV) expressing mCherry and the hybrid retroviral vector Friend 

Murine Embryonic-stem cell Virus (FMEV) [for Friend Mink Cell Focus-forming (FMCF)/
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Murine Embryonic Stem cell Virus (MESV)] 4 expressing DsRed2 were used in addition to 

MMLV. Two lentiviral vectors pLemiR (Open Biosystems, Huntsville, AL) and pLVX-

DsRed-Monomer-C1 (Clontech Laboratories, Inc., Mountain View, CA) harboring 

turboRFP and DsRed as reporters were also used for comparison to gamma-retroviruses. 

Packaging cells were transfected with retroviral vectors using FuGENE 6 reagent following 

the manufacturer’s instructions. For virus propagation, packaging cells were cultured in 

growth medium for 12–18 hours. Virus was collected with cultured medium, filtered, 

supplemented with hexadimethrine bromide (polybrene) to a final concentration of 4μg/ml 

and applied directly to target cells.

Viral DNA measurement

The total DNA from infected cells was extracted by DNeasy Blood & tissue kit (Qiagen). 

The level of viral DNA in total DNA extract isolated from infected cells was determined by 

quantitative PCR using iScript One-Step RT-PCR kit (with SYBR Green, Bio-Rad, 170–

8893) with primers for the GFP or the internal ribosome entry site regions of the viral DNA 

following the manufacturer’s instructions. No reverse transcriptase was used in order to 

exclude contamination from a viral RNA signal. In integration studies, the total DNA 

isolated from infected cells was first resolved in a 0.8% agarose gel. 4Kb DNA (the size of 

non-integrated viral DNA) and genomic DNA pools (>50Kb) were excised. DNA from each 

fraction was extracted and analyzed for the presence of viral sequences by qPCR as 

previously described.

Statistical analysis

Data are expressed as means ± SE. Changes in cell cycle profile, infectivity and changes in 

fluorescent protein expression were compared using ANOVA combined with Fisher post 

hoc analysis, with a P value < 0.05 considered significant.
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Figure 1. 
Mifepristone increased the percentage of infected target cells (PMVEC) regardless of the 

type of gamma-retroviral backbone or viral envelope. 1A: Ecotropic gamma-retroviruses 

MMLV, MSCV, and FMEV; and VSV-G pantropic lentiviruses pLemiR and pLVX-DsRed-

Monomer-C1 were used to infect PMVEC in the presence of 1 μmol/L mifepristone or 

vehicle control. 1B: MMLV packaged in viral particles with different envelope proteins 

were used to infect PMVEC in the presence of 1 μmol/L mifepristone or vehicle control. 

The percentage of infected (fluorescent) cells was determined 72 hours after infection. (n = 4 

experiments, * indicates p <.05).
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Figure 2. 
Adding mifepristone after the initial retroviral infection also increased target cell infection 

efficiency. PMVEC were infected with ecotropic MMLV for 1 hour. After virus removal, 

cells were incubated in fresh medium for an additional 1 hour and then 1 μmol/L 

mifepristone or vehicle control was added. The percentage of GFP positive (infected) cells 

was measured 72 hours after infection. (n = 4 experiments, * indicates p <.05).
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Figure 3. 
Mifepristone does not increase infection efficiency by promoting infection of non-dividing 

cells. Growing (15% confluent) or growth-arrested (100% confluent) PMVEC were infected 

with ecotropic MMLV at the same MOI for 18 hours in the presence of 1 μmol/L 

mifepristone or vehicle control. The percentage of GFP positive (infected) cells was 

determined 72 hours after infection. (n = 4 experiments, * indicates p <.05).
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Figure 4. 
Mifepristone had no effect on the survival or stability of the non-integrated gamma-

retrovirus in infected cells. Growth-arrested PMVEC from a confluent monolayer were 

trypsinized and re-seeded at 15% confluency. Cell cycle progression was monitored by PI 

staining using FACS. 4A: Representative data of cell cycle progression 24, 30 and 36 hours 

after cell re-seeding. 4B: Statistical data for the percentage of G2-M phase endothelial cells 

at different time points after re-seeding. PMVEC enter G2-M phase 30 hours after release 

from confluency-induced growth arrest. Only cells that enter G2-M phase can be infected by 

gamma-retroviruses. After re-seeding from confluent monolayer, cells were also incubated 

with an ecotropic MMLV retrovirus encoding GFP for 12 hours in the presence or absence 

of 1 μmol/L mifepristone immediately, 12, 24 or 36 hours after re-seeding to lower 

confluency. The percentage of GFP-positive (infected) cells was measured 72 hours after 

infection. 4C: Representative data showing the infection efficiency of PMVEC infected with 

MMLV at different time periods after re-seeding in the presence or absence of mifepristone. 

4D: Statistical data indicating the percentage of infected endothelial cells at different periods 

after re-seeding. 4E: The relative enhancing effect of mifepristone on retroviral infection at 

different periods after re-seeding. (n = 4 experiments, * indicates p <.05).
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Figure 5. 
Mifepristone enhances viral integration into host DNA. PMVEC were infected with 

ecotropic MMLV for 1 hour in the presence of 1 μmol/L mifepristone or vehicle control. 

The virus was removed by washing and cells were then cultured in fresh medium 

supplemented with 1 μmol/L mifepristone or vehicle until analysis. (5A) Total DNA (host 

and viral) was extracted from target cells and the presence of viral DNA (using primers to 

the GFP coding sequence that is present only in the viral DNA) was determined.

Total target cell DNA was extracted and then separated in a 0.8% agarose gel. Non-

integrated viral DNA migrates to about 4Kb whereas genomic DNA migrates > 50Kb. Each 

fraction was extracted from the gel and analyzed for the presence of viral DNA separately. 

For each time point, equal amounts of DNA were examined. (5B) qPCR from the 4Kb 

fragment representing the relative amounts of non-integrated viral DNA in mifepristone or 
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vehicle treated cells. (5C) qPCR from the > 50Kb genomic DNA representing the relative 

amounts of integrated viral DNA in mifepristone or vehicle treated cells. qPCR results in 

each experimental design were normalized to the signal obtained from vehicle-treated cells 1 

hour after infection. DNA was extracted and analyzed 1, 6 and 24 hours and also 3 and 7 

days after initial infection. These qPCR results were confirmed using another set of primers 

encoding for the internal ribosome entry site of viral DNA (present in the pBMN-GFP 

vector). (n = 4 experiments, * indicates p <.05).
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Figure 6. 
Mifepristone increases gamma-retroviral infection efficiency through its effect on the 

glucocorticoid receptor. 6A: PMVEC were infected with ecotropic MMLV in the presence 

of increasing concentrations of the glucocorticoid receptor antagonists - mifepristone or Org 

34517, or the progesterone receptor antagonist, 7453-102. The percentage of GFP positive 

(infected) cells was determined 72 hours after infection. 6B: Two different human cell lines 

(U87MG which contain no functional progesterone receptors, and T47D which contain no 

functional glucocorticoid receptors) were infected with amphotropic MMLV in the presence 

of 1 μmol/L mifepristone or vehicle control. The percentage of GFP-positive (infected) cells 

was determined 72 hours after initial infection. Mifepristone did not increase infection 

efficiency in the T47D cells. (n = 4 experiments, * indicates p <.05).
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Figure 7. 
Mifepristone does not increase viral integration into host DNA of T47D cells. T47D cells 

were infected with amphotropic MMLV for 1 hour in the presence of 1 μmol/L mifepristone 

or vehicle control (using a similar protocol as described in figure 5). The virus was removed 

by washing and cells were then cultured in fresh medium supplemented with 1 μmol/L 

mifepristone or vehicle until analysis. Non-integrated viral and genomic DNA were 

separated in and extracted from a 0.8% agarose gel at same way as was described for 

PMVEC and analyzed for the presence of viral DNA separately. For each time point, equal 

amounts of DNA were examined. 7A: qPCR from the 4Kb fragment representing the 

relative amounts of non-integrated viral DNA in mifepristone or vehicle treated T47D cells. 

7B: qPCR from the > 50Kb genomic DNA representing the relative amounts of integrated 

viral DNA in mifepristone or vehicle treated cells. qPCR results in each experimental design 

were normalized to the signal obtained from vehicle-treated cells 1 hour after infection. 

DNA was extracted and analyzed 1, 6 and 24 hours and also 3 and 7 days after initial 

infection. These qPCR results were confirmed using another set of primers encoding for the 

internal ribosome entry site of viral DNA (present in the pBMN-GFP vector). (n = 4 

experiments, * indicates p <.05).
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