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Abstract 

Background: While risk stratification for atherosclerotic cardiovascular disease (ASCVD) is 

essential for primary prevention, current clinical risk algorithms demonstrate variability and 

leave room for further improvement. The plasma proteome holds promise as a future diagnostic 

and prognostic tool that can accurately reflect complex human traits and disease processes. We 

assessed the ability of plasma proteins to predict ASCVD. 

  

Method: Clinical, genetic, and high-throughput plasma proteomic data were analyzed for 

association with ASCVD in a cohort of 41,650 UK Biobank participants. Selected features for 

analysis included clinical variables such as a UK-based cardiovascular clinical risk score 

(QRISK3) and lipid levels, 36 polygenic risk scores (PRSs), and Olink protein expression data of 

2,920 proteins. We used least absolute shrinkage and selection operator (LASSO) regression to 

select features and compared area under the curve (AUC) statistics between data types. 

Randomized LASSO regression with a stability selection algorithm identified a smaller set of 

more robustly associated proteins. The benefit of plasma proteins over standard clinical 

variables, the QRISK3 score, and PRSs was evaluated through the derivation of Δ AUC values. 

We also assessed the incremental gain in model performance using proteomic datasets with 

varying numbers of proteins. To identify potential causal proteins for ASCVD, we conducted a 

two-sample Mendelian randomization (MR) analysis. 

 

Result: The mean age of our cohort was 56.0 years, 60.3% were female, and 9.8% developed 

incident ASCVD over a median follow-up of 6.9 years. A protein-only LASSO model selected 

294 proteins and returned an AUC of 0.723 (95% CI 0.708-0.737). A clinical variable and PRS-

only LASSO model selected 4 clinical variables and 20 PRSs and achieved an AUC of 0.726 

(95% CI 0.712-0.741). The addition of the full proteomic dataset to clinical variables and PRSs 

resulted in a Δ AUC of 0.010 (95% CI 0.003-0.018). Fifteen proteins selected by a stability 

selection algorithm offered improvement in ASCVD prediction over the QRISK3 risk score [Δ 

AUC: 0.013 (95% CI 0.005-0.021)]. Filtered and clustered versions of the full proteomic dataset 

(consisting of 600-1,500 proteins) performed comparably to the full dataset for ASCVD 

prediction. Using MR, we identified 11 proteins as potentially causal for ASCVD. 

  

Conclusion: A plasma proteomic signature performs well for incident ASCVD prediction but 

only modestly improves prediction over clinical and genetic factors. Further studies are 

warranted to better elucidate the clinical utility of this signature in predicting the risk of ASCVD 

over the standard practice of using the QRISK3 score. 
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Introduction 

Atherosclerotic cardiovascular disease (ASCVD) is one of the leading causes of morbidity and 

mortality worldwide. A substantial contributor to the high burden of disease includes suboptimal 

risk stratification coupled with the inefficient application of established primary prevention 

strategies1-3. While ASCVD outcomes have improved in recent decades, clinical risk algorithms 

have historically demonstrated variability and leave room for further improvement4. Among 

ASCVD clinical risk prediction models currently in use, the UK-based QRISK3 cardiovascular 

clinical risk score has notably demonstrated excellent performance in its validation cohort and in 

the UK Biobank (UKB)5,6. Unlike other models, the QRISK3 score incorporates significant past 

medical history and current medication use in addition to standard clinical variables. 

 

In the last decade, high-throughput profiling of circulating plasma proteins has emerged as a 

powerful tool for both predicting and understanding the underlying biology of complex human 

traits7. By capturing dynamic changes in protein expression, proteomic profiling is well-

advantaged to reflect interactions between individuals’ genetics, environment, lifestyle, and 

more. Further, the incorporation of proteomic profiling data to traditional cardiovascular risk 

factors has also been shown to enhance prediction of cardiometabolic disease8-10. However, the 

ability of proteins to augment existing clinical risk prediction models as robust as the QRISK3 

score has yet to be tested.  

 

We aimed to evaluate the predictive value of clinical, genetic, and proteomic factors for ASCVD 

in the UKB. We hypothesized that the incorporation of proteomic data would provide modest 

improvement in prediction accuracy beyond that offered by the QRISK3 score, other clinical 

variables, and polygenic risk scores (PRSs).  

 

Methods 

Study population 

We analyzed a cohort of UKB participants with normalized protein expression (NPX) data and 

excluded individuals with prevalent ASCVD, history of statin use, or in whom the QRISK3 score 

could not be computed. The study design of the UKB has been previously described 

extensively11. At participants’ baseline visits, trained healthcare providers conducted verbal 

interviews and administered questionnaires to obtain information on past medical history, family 

history, lifestyle, and sociodemographic and psychosocial factors. Physical measures along with 

the collection of blood, urine, and saliva samples were also obtained. By integrating participants’ 

electronic health record (EHR) data, health outcomes data including outpatient and inpatient 

International Classification of Disease, Tenth Revision (ICD-10) codes are available within the 

database. The UKB received ethical approval from the Northwest Multicenter Research Ethics 

Committee and obtained informed consent from all participants at the time of recruitment.  

 

Measurement of protein biomarkers 

The UKB conducted proteomic profiling in a random sampling of UKB participants with plasma 

samples collected at baseline visits. Using the antibody-based Proximity Extension Assay (PEA) 

by Olink, the UKB measured NPX data for a total of 2,923 proteins. The sample handling, 

processing, and quality control protocols implemented by the UKB have been previously 

described in a summary document 

(biobank.ndph.ox.ac.uk/ukb/ukb/docs/PPP_Phase_1_QC_dataset_companion_doc.pdf) and in 
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two publications12,13. We identified GLIPR1, NPM1, and PCOLCE as proteins with a high 

degree of missingness (> 50%) and excluded these from analysis. The remaining missing NPX 

values were imputed with their mean values. All NPX values were provided as log-transformed 

by the UKB and standardized by us prior to analysis. 

 

Measurement of the outcome 

In accordance with the QRISK3 score, we defined ASCVD as the composite outcome of either 

transient ischemic attack (TIA), ischemic stroke, or coronary heart disease. The incidence of 

ASCVD was recorded using UKB’s first occurrences data (UKB categories 2401-2417), which 

is organized by ICD-10 codes and was generated by mapping primary care data (UKB category 

3000), hospital inpatient data (UKB category 2000), death register records (UKB fields 40001 

and 40002), and self-reported medical condition codes (UKB field 20002). The ICD-10 codes 

used to record ASCVD can be found in the Supplementary File. 

 

Measurement of clinical variables 

Our primary clinical variable was the QRISK3 score, which incorporates several established 

clinical predictors to provide an individual’s 10-year predicted risk of developing ASCVD5. We 

computed the score using the QRISK3 function in the QRISK3 R package. We further 

considered additional clinical predictors measured at baseline including hemoglobin A1c 

(HbA1c), lipoprotein (a) (Lp(a)), LDL cholesterol, triglyceride levels, prior alcohol use, and 

physical activity status. Lastly, we considered 36 standard polygenic risk scores (PRSs) 

calculated with genome wide data on DNA sequence variation, summarizing the genetic 

predisposition or liability to 36 health traits or disease conditions14,15. All clinical variables and 

PRSs were standardized prior to running analyses. A full list of variables included in our 

analyses can be found in the Supplementary File. 

 

Statistical analyses 

A flowchart of the study design and analysis plan is shown in Figure 1. We used least absolute 

shrinkage and selection operator (LASSO) regression to evaluate the relative ability of clinical 

variables, PRSs, and proteins to associate with incident ASCVD. We randomly divided the 

cohort into a training set (70%) and test set (30%) before building five LASSO models using 10-

fold cross validation. These five LASSO models included a model with clinical variables alone, a 

model with PRSs alone, a model with proteins alone, a combined model with clinical variables 

and PRSs, and a combined model in which proteins were added to clinical variables and PRSs. 

We compared area under the curve (AUC) statistics to assess the relative ability of each model to 

predict ASCVD. To ascertain the incremental value offered by proteins beyond clinical variables 

and PRSs, we calculated ∆ AUC values and generated a corresponding 95% confidence interval 

by bootstrapping 1,000 samples. 

 

We next utilized the R package stabs to run the randomized LASSO stability selection (RLSS) 

algorithm, which was initially presented by Meinhausen and Bühlmann and later refined by Shah 

and Samsworth16,17. This algorithm was applied in the training set to develop a more robust 

proteomic signature (PS) for ASCVD prediction. We used default parameters when applying this 

algorithm, which included a weakness value of 0.8, a cutoff value of 0.8, and a per-family error 

rate of two. To assess the predictive value of this PS, we calculated the AUC of a LASSO model 

incorporating this smaller set of proteins in the test set. We subsequently calculated a ∆ AUC 
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value with a 95% confidence interval to determine the added predictive benefit of this PS in 

ASCVD prediction beyond that offered by QRISK3. 

 

To further explore correlation structure and the incremental improvement in model performance 

with varying sizes of proteomic datasets, we used two methods to reduce the number of 

proteomic predictors. First, we implemented a filtering-based approach and computed a 

correlation matrix of all 2,920 proteins to identify pairs of proteins with a correlation value > 0.3 

and > 0.5. We randomly removed one protein from each pair to form two smaller datasets of 

about 600 and 1,500 proteins, respectively. Second, we used a clustering-based approach and 

applied principal component analysis (PCA) and K-means clustering to form 600 and 1,500 

clusters of proteins. From each cluster, we randomly selected a protein to form two additional 

smaller datasets of 600 and 1,500 proteins, respectively. Through standard LASSO regression, 

we evaluated ASCVD prediction performance of all four proteomic datasets by generating 

AUCs. 

 

Finally, we used two-sample Mendelian randomization (MR) analysis to identify potential causal 

proteins for ASCVD. In a cohort of 15,016 UKB participants, we performed genome-wide 

association studies (GWASs) for all 2,920 proteins. Effect estimates for ASCVD were obtained 

by performing a GWAS analysis of ASCVD (defined as either a TIA, ischemic stroke, or 

coronary heart disease) in a cohort of UKB participants of European ancestry who did not have 

proteomics data available (ncases = 64,386 & ncontrols = 299,887). A full description of the methods 

used for both GWAS analyses can be found in the Supplementary File.  

 

The inverse variance weighted method (IVW) served as our primary approach for the MR 

analysis. In any MR analysis, there are three assumptions which should be satisfied: 1) the 

genetic variants used as instrumental variables should be associated with the outcome of interest, 

2) the genetic instruments should not be associated with other confounder variables, and 3) the 

genetic instruments should affect the outcome only via the exposure of interest rather than 

through alternative pathways. While MR analyses utilizing cis-genetic instruments have typically 

been found to satisfy these assumptions, we conducted additional analyses to address these 

assumptions18. To address the first assumption, we used established methods to calculate the 

proportion of variance explained and F statistic (with equations provided in the Supplementary 

File). Various sensitivity analyses were also conducted, including the MR-Egger method, which 

we used to calculate the MR-Egger intercept and assess for pleiotropy. All analyses were 

conducted using the TwoSampleMR package in R. 

 

Results 

Cohort characteristics 

We analyzed NPX data of 2,920 proteins in a total of 41,650 participants. Baseline 

characteristics for the cohort are shown in Table 1. The mean age at recruitment was 56.0 years 

(SD, 8.2 years), 60.3% were female, and 93.1% were of self-reported white ethnicity. Over a 

median follow-up of 6.9 years, 9.8% developed incident ASCVD. 

 

Standard LASSO regression 
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Consistent with prior reports, the QRISK3 score performed very well in predicting ASCVD with 

an AUC of 0.720 (95% CI 0.706-0.734) (Fig. 2). When additional clinical variables were added 

to QRISK3, the AUC marginally increased at 0.724 (95% CI 0.710-0.738). A LASSO model 

built on PRSs alone did not perform well with an AUC of 0.575 (95% CI 0.558-0.591) while a 

LASSO model incorporating the full proteomic dataset on its own performed comparably to the 

clinical variable-only model with an AUC of 0.723 (95% CI 0.717-0.745). In our combined 

models, we observed that the addition of PRSs to clinical variables resulted in a slightly higher 

AUC point estimate of 0.731 (95% CI 0.717-0.745). Incorporating the full proteomic dataset in 

addition to clinical variables and PRSs modestly improved the AUC to 0.741 (95% CI 0.727-

0.755) and resulted in a Δ AUC of 0.010 (95% CI 0.003-0.018). A full list of the clinical 

variables, PRSs, and proteins selected by these LASSO models can be found in Supp. Table 1. 

 

Stability selection with randomized LASSO regression 

A randomized LASSO stability selection (RLSS) analysis selected 15 proteins, which spanned a 

wide range of known functions (Fig. 3). These stability selection proteins offered most of the 

improvement in ASCVD prediction explained by the full proteomic dataset with an AUC of 

0.711 (95% CI 0.696-0.726). This robust proteomic signature also offered modest improvement 

in ASCVD prediction over that provided by the QRISK3 score [Δ AUC: 0.013 (95% CI 0.005-

0.021)]. 

 

Clustering and filtering analyses 

We assessed and compared the prediction performance of smaller proteomic datasets formed 

through filtering-based or clustering-based approaches to that of the full proteomic dataset 

provided by the UKB [AUC of 0.723 (95% CI 0.708-0.737)] (Supp. Fig. 1). A smaller dataset 

(consisting of 600 proteins) formed through a filtering-based approach with a correlation 

threshold of > 0.3 performed the worst with an AUC of 0.691 (95% CI 0.675-0.706). Despite 

consisting of approximately the same number of proteins (645 vs. 600), a smaller dataset formed 

through a clustering-based approach with the creation of 600 clusters performed better with an 

AUC of 0.705 (95% CI 0.690-0.720). Finally, datasets formed through a filtering-based approach 

with a correlation threshold of > 0.5 and through a clustering-based approach with the creation of 

1,500 clusters performed comparably to the full proteomic dataset with AUCs of 0.719 (95% CI 

0.704-0.734) and 0.717 (95% CI 0.702-0.732), respectively.  

 

Two-sample Mendelian randomization analysis 

To identify potentially causal proteins for ASCVD, we conducted a two-sample Mendelian 

randomization (MR) analysis. Of 2,920 proteins, we identified genome-wide significant cis-

protein quantitative loci (cis-pQTLs) for 1,745 based on a significance threshold of 5 x 10-8. The 

minimum F statistic of our genetic instruments was 27.7 (Supp. Table 2). Effect estimates for 

ASCVD were obtained by running a GWAS in 364,273 UKB participants of European ancestry 

using REGENIE (Supp. Fig. 2a-b). We identified 11 proteins as having a potentially causal 

effect on ASCVD based on a Bonferroni-corrected threshold (p-value = 4.31 x 10-5) (Fig. 4). For 

several proteins in which the initial number of associated SNPs was low (nSNPs < 3), we were 

not able to obtain results for sensitivity analyses. For proteins with a higher number of initial 

associated SNPs, however, we found that results from the IVW method generally aligned with 

results from other sensitivity analyses (Supp. Fig. 4). Full results for the two-sample MR 
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analysis including annotations of whether each protein tested was selected by a standard LASSO 

model or the RLSS algorithm can be found in Supp. Table 2. 

 

Discussion 

We evaluated the relative ability of clinical variables, PRSs, and proteins to predict ASCVD by 

utilizing high-throughput proteomic profiling data provided by the UKB. In this study, we 

investigated whether the incorporation of proteomic data enhanced prediction offered by an 

existing clinical risk prediction model, as well as other clinical and genetic factors. We highlight 

three primary sets of findings from our results. 

 

First, we found that a protein-only model derived by standard LASSO regression performed 

comparably to the QRISK3 score, which performed exceptionally well on its own. When 

additional clinical variables and PRSs were combined with QRISK3, ASCVD prediction was 

comparable to performance offered by QRISK3 alone. The further addition of proteins to clinical 

variables and PRSs resulted in a modest improvement in prediction. Unlike most ASCVD risk 

prediction models, the UK-based QRISK3 cardiovascular clinical risk score captures a 

significant portion of an individual’s past medical history and current medication use, which 

explains its strong performance in UK-based populations such as its validation cohort and in the 

UKB5,6. In the setting of our baseline model already exhibiting strong performance, our 

observation of only modest improvements in ASCVD prediction with the addition of other 

clinical variables and multi-omic datasets is not surprising19. However, when practitioners may 

not have access to all the clinical information needed to compute a score generated by QRISK3, 

the comparable performance of our protein-only model suggests that proteins could potentially 

serve as an alternative tool for risk stratification purposes in the future. 

 

Second, we show that a substantially smaller set of proteins selected by a stability selection 

algorithm accounted for most of the prediction performance offered by the full dataset. In 

addition to aiding in feature reduction, this algorithm also identifies more “stable” features that 

may be more transportable to other populations. Recently, others created a custom quantitative 

PEA panel measuring up to 21 proteins called the CVD-21 tool20. With this tool in mind, a future 

where a robust proteomic signature such as the one we describe is generated for risk prediction 

through absolute quantification is now foreseeable. Third, smaller proteomic datasets, created by 

filtering and clustering methods to reduce high degrees of correlation in the full dataset, do not 

meaningfully change the performance of ASCVD prediction. When looking to future 

implementations of plasma proteomic profiling, our findings suggest that the additional costs 

associated with measuring more than ~1,500 proteins may be avoided without drastically 

affecting prediction performance. 

 

Several proteins were repeatedly selected by standard LASSO models incorporating proteins 

alone, as well as proteins in addition to clinical variables and PRSs. In particular, GDF15, or 

growth/differentiation factor 15, has previously been associated with a host of diseases within the 

cardiometabolic spectrum21,22. With known functions in the suppression of food intake and 

inflammation, GDF15 is now an appealing drug target in the management of obesity, T2DM, and 

CVD23,24. LTBP2 also carried a large beta coefficient in our protein-only LASSO model. While 

this protein has not previously been associated with ASCVD, others have demonstrated its 
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potential as a novel biomarker of heart failure and other diseases25,26. Interestingly, we also 

identified dementia-related proteins such as BCAN and NEFL as predictive of ASCVD as 

well7,27. 

 

In addition to risk prediction, high-throughput proteomic profiling can further our understanding 

of the underlying biology of disease and aid in identifying novel drug targets. From our two-

sample MR analysis, we corroborated several previously known causal targets of ASCVD 

including PCSK9, LPA, and IL6R28-31. Additionally, we identified FN1 as potentially causal, 

which has been demonstrated to enhance endothelial inflammation in atherosclerotic plaques32. 

Lastly, we identified CELSR2 as potentially causal for ASCVD. With known functions in serum 

lipid and cholesterol metabolism, variants in the CELSR2 gene and its neighboring genes, PSCR1 

and SORT1 were first identified in GWASs of cardiovascular disease over fifteen years ago33. 

 

The well-documented reproducibility and stability of the Olink platform is a key strength of our 

study34. By selecting QRISK3, a robust cardiovascular clinical risk score, as our baseline model, 

we also contribute valuable insights on whether proteins can augment existing prediction models 

for ASCVD. Our study has some notable limitations including the lack of genetic diversity 

within the UKB. Our two-sample MR analysis was restricted to participants of European 

ancestry only. To avoid the further perpetuation of health disparities in biomedical research, 

future studies in more diverse populations are needed. Additionally, while previous studies have 

also highlighted the potential of plasma proteins to enhance cardiometabolic health prediction, 

we acknowledge potential limitations in relying on protein measurements in plasma rather than 

using protein measurements from human tissue9 . 

 

In summary, our findings suggest that plasma proteomic profiling modestly enhances prediction 

of ASCVD beyond an already well-performing cardiovascular clinical risk score, QRISK3, as 

well as other routinely available clinical variables and PRSs. Further investigations in more 

diverse study populations are needed to better understand the potential benefits multi-omics data 

could provide for ASCVD prediction. We also show that utilizing more robust proteomic 

datasets does not appreciably affect prediction performance when compared to the full proteomic 

dataset provided by the UKB. Finally, we contribute a list of potentially causal proteins for 

ASCVD using expanded plasma proteomic from the UKB.  
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Protein and Gene Abbreviations 

- GDF15: Growth/differentiation factor 15 

- LTBP2: Latent-transforming growth factor beta-binding protein 2 

- BCAN: Brevican core protein 

- NEFL: Neurofilament light polypeptide 

- PCSK9: Proprotein convertase subtilisin/kexin type 9 

- LPA: Apolipoprotein(a) 

- IL6R: Interleukin-6 receptor subunit alpha 

- FN1: Fibronectin 

- CELSR2: Cadherin EGF LAG seven-pass G-type receptor 2 

- PSCR1: Proline/serine-rich coiled-coil 1 

- SORT1: Sortilin 
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Tables and Figures 

Table 1. Demographics and clinical characteristics of the study population 

 n (%) 

Female (%) 25,106 (60.3) 

Age at baseline visit 56.0 (8.2) 

Self-reported ethnicity group (%)   

   White 38,758 (93.1) 

   African 599 (1.4) 

   South Asian 592 (1.4) 

   Chinese 123 (0.2) 

   Mixed 304 (0.7) 

   Other 1,221 (2.9) 

BMI (kg/m2) 27.1 (4.7) 

SBP (mmHg) 137.1 (18.7) 

DBP (mmHg) 82.1 (10.1) 

LDL (mmol/mol) 3.7 (0.8) 

HDL (mmol/mol) 1.5 (0.4) 

TG (mmol/mol, median [IQR]) 1.4 [0.4, 2.5] 

Cholesterol (mmol/mol) 5.8 (1.1) 

HbA1c (mmol/mol) 35.6 (5.9) 

Blood pressure lowering medication (%) 2,100 (5.0) 

Past medical history of HTN (%) 9,056 (21.7) 

Family history of heart disease (%) 19,442 (46.7) 

Ever smoked status (%) 24,207 (58.1) 

Self-reported alcohol intake (%)   

   Never or missing 3,583 (8.6) 

   One to three times a month or special occasions  9,553 (22.9) 

   Once or twice a week 10,857 (26.1) 

   Three or four times a week 9,414 (22.6) 

   Daily or almost daily 8,243 (19.8) 

Physical activity category (%)   

   Missing 9,564 (23.0) 

   Low 5,861 (14.1) 
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All continuous measurements were documented in mean (SD) unless otherwise specified. 

Abbreviations: IQR: interquartile range, BMI: body mass index, SBP: systolic blood pressure, 

DBP: diastolic blood pressure, LDL: low-density lipoprotein, HDL: high-density lipoprotein, 

TG: triglyceride, HbA1c: hemoglobin A1c, HTN: hypertension, ASCVD: atherosclerotic 

cardiovascular disease, TIA: transient ischemic attack 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Moderate 16,200 (38.9) 

   High 10,012 (24.0) 

Incident ASCVD (%)  

   Any ASCVD 4,086 (9.8) 

   TIA 456 (1.1) 

   Ischemic stroke 666 (1.6) 

   Coronary heart disease 3,234 (7.8) 

Follow-up time in years 6.9 (5.2) 
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Figure 1. Study design and analysis workflow 

 
Abbreviations: ASCVD: atherosclerotic cardiovascular disease, PRSs: polygenic risk scores 
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Figure 2. Area under the curves (AUCs) of clinical variables, polygenic risk scores, and 

plasma proteins

 
Footnote: Models performed using training and test sets in the study cohort. “All proteins” in 

blue represent the full proteomic dataset. “SS proteins” in red refer to proteins selected by a 

randomized LASSO regression model with stability selection algorithm. Abbreviations: 

LASSO: least absolute shrinkage and selection operator, AUC: area under the curve, PRSs: 

polygenic risk scores, SS: stability selection 
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Figure 3. Plasma proteins identified by a stability selection algorithm with randomized 

LASSO regression 

 

Footnote: Proteins listed in blue were positively associated with atherosclerotic cardiovascular 

disease and those listed in orange were negatively associated. Abbreviations: LASSO: least 

absolute shrinkage and selection operator 
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Figure 4. Potentially causal proteins for atherosclerotic cardiovascular disease identified in 

a two-sample Mendelian randomization analysis 

Footnote: Forest plot of potentially causal proteins for atherosclerotic cardiovascular disease 

based on a Bonferroni-corrected threshold (p-value = 4.31 x 10-5). Abbreviations: SNP: single 

nucleotide polymorphism, 95% CI: 95% confidence interval 
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