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Klebsiella pneumoniae is one of the most common causes of hospital- and community-
acquired pneumoniae. Resistance to the extensively used quinolone antibiotic, such
as ciprofloxacin, has increased in Klebsiella pneumoniae, which leads to the increase
in the risk of initial antibiotic selection for Klebsiella pneumoniae treatment. Rapid
and precise identification of ciprofloxacin-resistant Klebsiella pneumoniae (CIRKP) is
essential for clinical therapy. Nowadays, matrix-assisted laser desorption ionization
time-of-flight mass spectrometry (MALDI-TOF MS) is another approach to discover
antibiotic-resistant bacteria due to its shorter inspection time and lower cost than other
current methods. Machine learning methods are introduced to assist in discovering
significant biomarkers from MALDI-TOF MS data and construct prediction models for
rapid antibiotic resistance identification. This study examined 16,997 samples taken
from June 2013 to February 2018 as part of a longitudinal investigation done by Change
Gung Memorial Hospitals (CGMH) at the Linkou branch. We applied traditional statistical
approaches to identify significant biomarkers, and then a comparison was made
between high-importance features in machine learning models and statistically selected
features. Large-scale data guaranteed the statistical power of selected biomarkers.
Besides, clustering analysis analyzed suspicious sub-strains to provide potential
information about their influences on antibiotic resistance identification performance.
For modeling, to simulate the real antibiotic resistance predicting challenges, we
included basic information about patients and the types of specimen carriers into the
model construction process and separated the training and testing sets by time. Final
performance reached an area under the receiver operating characteristic curve (AUC) of
0.89 for support vector machine (SVM) and extreme gradient boosting (XGB) models.
Also, logistic regression and random forest models both achieved AUC around 0.85.
In conclusion, models provide sensitive forecasts of CIRKP, which may aid in early
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antibiotic selection against Klebsiella pneumoniae. The suspicious sub-strains could
affect the model performance. Further works could keep on searching for methods to
improve both the model accuracy and stability.

Keywords: antibiotic susceptibility test, MALDI-TOF MS, machine learning, Klebsiella pneumonia, ciprofloxacin
resistance

BACKGROUND AND INTRODUCTION

Klebsiella pneumoniae (K. pneumoniae) is one of the most
common hospital- and community-acquired bacterial infections
(Ashurst and Dawson, 2021). Extensively used quinolone
antibiotics, which include ciprofloxacin, play a significant role
in K. pneumoniae treatment. Increases in the proportion of
ciprofloxacin-resistant K. pneumoniae (CIRKP) and the long
inspection time of traditional antimicrobial susceptibility testing
(AST) could lead to incorrect initial antibiotic treatment that will
squander the essential treatment time of patients (Burckhardt
and Zimmermann, 2018). Methods for rapid and precise
identification of CIRKP are critical for clinical K. pneumoniae
infection treatment. With the assistance of matrix-assisted laser
desorption ionization time-of-flight mass spectrometry (MALDI-
TOF MS) technology, inspection time of AST, and strain typing
of infectious bacteria could decrease to less than 2 h after cell
culture (van Belkum et al., 2017; Florio et al., 2018). Introducing
machine learning methods to antibiotic resistance identification
could assist in further improving the inspection speed and
lowering the cost (Weis et al., 2020) and discovering potential
antibiotic markers from MALDI-TOF MS data. In this study,
prediction models for CIRKP in the Taiwan area are constructed
based on large-scale mass spectrum data and non-spectrometric
information of patients.

Although K. pneumoniae is normally harmless and can be
found in the human intestine, it can cause serious infections
in other parts of the body, such as pneumoniae, urinary
tract infection, sepsis, etc. Especially, multi-drug resistant and
carbapenem-resistant K. pneumoniae (CRKP) has become a
great threat to public health, whose overall 30-days mortality
rate has been reported to be greater than 40% due to the
limited antibiotic options after infection (Tumbarello et al.,
2012). Thus, most recent studies related to K. pneumoniae focus
on creating new identification methods and finding potential
resistant biomarkers. However, as a broad-spectrum quinolone
antibiotic, ciprofloxacin is one of the widely used antibiotics
for the treatments of infection caused by K. pneumoniae
in clinical therapy. The increasing reported CIRKP (Sanchez
et al., 2013; Zhou et al., 2016) could also be a severe
problem under clinical circumstances. Identification models
for different bacterial species and antibiotics are important
to validate the feasibility of the generalization of machine
learning-based antibiotic resistance detection using MALDI-
TOF MS data.

Clinical prescriptions usually heavily depend on the AST
result to guide the initial antibiotic selection and avoid inefficient
treatment. Traditional AST procedure usually requires 24 h
for plate culture and an additional 24 h for the antimicrobial

susceptibility testing (Kumar et al., 2009). The delay of efficient
antibiotic treatment will increase the mortality rate, and
especially if the patient is seriously infected. In recent years,
the polymerase chain reaction (PCR) method has been applied
to rapidly detect genes of K. pneumoniae related to quinolone
resistance, such as mutations on type II and type IV DNA
topoisomerase genes (Ruiz, 2003; Nordmann and Poirel, 2005).
Besides, abnormal expression of outer cytomembrane efflux
pump and plasmid-mediated resistance genes are also proved
to be quinolone resistance mechanisms and can be detected
by genomic and proteomic methods (Martínez-Martínez et al.,
1998). However, restriction to the current gene library, high
labor intensity, and excessive cost of the tests are still practical
problems for generalizing genome tests. Nowadays, utilizing the
MALDI-TOF MS could significantly shorten the testing time
and lower the inspection cost. Achievements have been made
in both identifying antibiotic-resistant bacteria from laboratory
plate cultures and directly from the specimens of patients
(Clark et al., 2013; Patel, 2015; Singhal et al., 2015; Angeletti,
2016; Arca-Suárez et al., 2017; Sandalakis et al., 2017; Tré-
Hardy et al., 2017). In 2016, spectrum peak at 11.109 m/z was
confirmed related to plasmid-mediated CRKP with gene (Gaibani
et al., 2016). Besides, polypeptide at 3,043 m/z is proved to
be a fragment of PBP2a, which participants in the methicillin
resistance process of Staphylococcus aureus (MRSA) (Sogawa
et al., 2017). Those study results demonstrate that MALDI-
TOF MS can find specific mass peaks with potential biological
meanings. It may also detect antibiotic resistance profiles of
large protein-involved mechanisms in a low mass-to-charge
ratio range. Thus, antibiotic-resistant biomarkers obtained from
MALDI-TOF MS data may not only serve as evidence for
bacterial type identification, but we may also even be able to find
resistant bacterial strains with unrevealed mechanisms.

Predicting models constructed by machine learning methods
has achieved high accuracy in identifying antibiotic bacterial
strains. Taking the identification of MRSA as an example,
the support vector machine (SVM) models show identification
accuracy of around 90% (Sogawa et al., 2017; Tang et al., 2019),
and the model in the study of Liu et al. (2021) shows the
area under the receiver operating characteristic (ROC) curve
(AUC) of 0.89 for SVM model and 0.87 for random forest
model (RF). Especially, according to Wang et al. (2021), a logistic
regression (LR) model is trained based on over 20,000 samples
and independently validated by another data set with more than
5,000 samples, and finally achieves a predicting AUC of 0.85.
Large samples used in their study and external validation highly
improve the reliability of the machine learning model. However,
most previous studies apply statistical analysis and construct
models only based on a small number of samples (usually the total

Frontiers in Microbiology | www.frontiersin.org 2 March 2022 | Volume 13 | Article 827451

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-827451 March 8, 2022 Time: 15:14 # 3

Wang et al. CIRKP Identification by Machine Learning

samples are no more than 1,000), which could significantly limit
the statistical power of the analysis and the reliability of models.

This study performed an antibiotic resistance analysis and
modeling based on 16,697 samples collected from a longitudinal
study from June 2013 to February 2018 and AST results were
taken as references. Raw spectra data were first preprocessed
by peak smoothing and baseline correction. After that, peaks
with signal-to-noise ratio of 2 were selected for further analysis.
Since K. pneumoniae may cause serious infections in various
body parts, this study analyzed six common K. pneumoniae
specimen carriers, which include blood samples (B), body fluid
samples (F), wound samples (W), respiratory samples (R),
urinary samples (U), and other types (O). Besides, to simulate the
real clinical antibiotic resistance predicting problems, patients’
basic information, including gender and age, were also included
in model construction, coupling with separating training and
testing sets by time. Statistical tests were applied to select
significant features for modeling. Final performances achieved
predicting AUC of around 0.89 for SVM and extreme gradient
descent boosting (XGB) models and AUC 0.85 for LR and RF
models. Moreover, this study also included a clustering analysis
based on an unsupervised learning method to provide potential
information of different K. pneumoniae sub-strains in the data
set and quantified the influence of suspicious sub-strains on the
model performances.

MATERIALS AND METHODS

The modeling procedure of this research is shown in the
flow chart in Figure 1, which primarily contains five distinct
components. The process began with specimen collection and
mass spectral data processing, followed by data cleaning for
quality control. After that, data processing aimed to unify
the spectra’s dimensions and generated dummy variables for
categorical variables. Finally, the relevant variables selected in
the feature selection step were used to create binary classification
models with balancing methods.

Data Cleaning
The samples used in this study were collected from a longitudinal
study on ciprofloxacin that ran from June 2013 to February 2018
done by the Change Gung Memorial Hospitals (CGMH) at the
Linkou branch. The longitudinal research included specimens
of 16,697 participants in total. To guarantee the data quality,
915 samples labeled as intermediate and 4 incomplete samples
were eliminated. In total, 15,782 samples were selected for
further analysis, of which 11,354 were ciprofloxacin-susceptible
Klebsiella pneumoniae (CISKP) and 4,428 were CIRKP.

Specimen Preparation and Spectrum
Preparation Methods
All the specimen samples were collected as daily routine
examinations. Specimens with different carrier types were
cultured with the most appropriate methods. Blood specimens
were cultured in the trypticase soy broth (Becton Dickinson, MD)
and an automated detection system (BD BACTECTM FX; Becton

Dickinson) was utilized for detecting positive blood culture
results. After that, blood from positive blood culture bottles
was inoculated on blood plate (BP) agar for subculture. Fluid
specimens and respiratory specimens were inoculated on BP
agar, eosin methylene blue (EMB) agar, CNA agar, and chocolate
agar. Additionally, some of the fluid specimens were cultured on
thioglycolate broth. Specimens obtained from wounds were first
rinsed with 1.2 mL of 0.9% saline solution and then inoculated
on BP, EMB, CNA, and chocolate agars. For urine specimens,
only BP and EMB agars were utilized for the plate culture.
All the agars and broths used for specimen cultures were from
Becton Dickinson and they were incubated into a 37◦C CO2
incubator for 18–24 h. MALDI-TOF MS was performed using
selected single colonies. CIRKP specimens were identified from
CISKP specimens through the disk diffusion method under
the instruction of Clinical and Laboratory Standards Institute
guideline M100 (CLSI M100). CISKP samples and CIRKP
samples were determined by ATS breakpoints listed in CLSI
M100 (Clinical and Laboratory Standards Institute [CLSI], 2018).

The selected colonies were analyzed by MALDI-TOF MS
(Microflex LT MALDI-TOF System, Bruker Daltonik GmbH)
following the operating instructions created by the manufacturer.
First, cultivated colonies were smeared onto the MALDI steel
target plate with the addition of formic acid (1 µL, 70%) and
then dried at 25◦C degrees. Then, a matrix solution (α-cyano-4-
hydroxycinnamic acid, 100 mg/mL, 50% acetonitrile with 2.5%
trifluoroacetic acid) was added to the spots, and the samples
were dried at room temperature. Spectrum data with mass-to-
charge ratio (m/z) between 2,000 and 20,000 were then collected
using Microflex LT MALDI-TOF analyzer in a linear mode
(accelerating voltage, 20 kV; nitrogen laser frequency: 60 Hz; 240
laser shott). The raw spectrum data were first calibrated with
an external standard calibrator (Bruker Daltonics Bacterial Test
Standard), and then peak smoothing (Savitzky-Golay filter) and
baseline correction (Tof-hat filter) were applied. Finally, peaks
with signal-to-noise ratio 2 were selected for further analysis.

Spectrometric Data and
Non-spectrometric Data Processing
To unify the dimensions of spectrum data along with alleviating
the influence of peak shift, spectral data was grouped into
pseudo-ion vectors each with 900 pseudo-ions. Pseudo-ions were
calculated by first grouping the mass-to-charge ratio into bins
of width 20 m/z, and then selecting the peak with maximum
intensity ratio. Using the pseudo-ion peak k of the sample i as
an example:

Pik = Maxj

(
Rij · 1{(2000+20(k−1)) ≤ Mij < (2000+20k)

}) ,

k ∈ [1, 900] ∩ Z

where Mij and Rij represent the mass-to-charge ratio and the
intensity ratio of the jth peak of the sample i, respectively, 1{.} is
the indicator function. After that, pseudo-ion vectors were row-
bind together to form the spectral data matrix.

−→
Pk indicates the

pseudo-ion k (the kth column of the spectral matrix) and the
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FIGURE 1 | Flow chart of the whole study, including sample collection, data cleaning and processing, feature selection, unbalance problem treatment, and model
construction and comparison.

matrix was scaled as

−→

P
′

k =

−→
Pk−
−→
Pk

σ
(
−→
Pk

)
where

−→
Pk and σ

(
−→
Pk

)
denote the mean and standard deviation of

pseudo-ion k in order.
For non-spectrometric features, we grouped the specimen

carriers (SPC) into six major types, which included blood
sample (B), body fluid sample (F), wound sample (W),
respiratory sample (R), urinary sample (U), and other types
(O) (Supplementary Table 1). Continuous non-spectrometric
feature age was transformed into an ordinal feature with six age
groups for the convenience of statistical analysis (Supplementary
Table 2). Labels of SPC after grouping and gender were directly
used in statistical analysis. Besides, the modeling procedure
included dummy variables generated from SPC, gender, and the
scaled continuous feature age.

After data processing, the final feature matrix for modeling
was formed by dummy variables of SPC, gender, and scaled age,
and the pseudo-ion matrix.

Methods for Statistical Tests and Feature
Selection
The Chi-square test was used to determine the impact of non-
spectrometric characteristics on the CISKP and CIRKP groups.
Non-spectrometric features with p-values less than 0.05 were
considered as significant and would be included in the modeling.

The significance of pseudo-ions was mainly measured from
three perspectives, and all pseudo-ions were tested with their
intensity ratio before scaling: (1) the difference in mean values,
(2) the difference in standard deviation, and (3) association to
CIRKP. In the previous study, the t-test could be an option
for determining the significance of the mean difference of
log-transformed pseudo-ions (Wang et al., 2021). However,
t-test pre-request normally distributed samples which was
not the case in this study (Supplementary Figures 1, 2).
Therefore, the non-parametric Wilcoxon rank-sum test was used
instead, coupling with the fold change selection on average
intensity ratios to capture the information of mean shift of
pseudo-ions with few observations. In this study, features
with

∣∣log2
(
fc
)∣∣ ≥ 1 were considered as significant, where

fc is the fold change value of the average intensity ratio
between CIRKP and CISKP groups. As for the test of standard
deviation difference, the traditional F-test for the equivalence
of standard deviation was applied. Finally, the homogenous
sample distributions between CIRKP and CISKP were tested
by the Kolmogorov-Smirnov test (KS test) to directly measure
the association between pseudo-ions and CIRKP. The significant
level α = 0.05 was used for a decision. Moreover, features
were ranked by p-values (if the observation time of a feature
was insufficient for testing, a p-value equal to 1 was set for
that feature) of statistical tests, and features were also ranked
by the fold change of average intensity ratio in the fold
change selection.

The final ranks of pseudo-ions will overall consider all the
test results above and take the average ranks of pseudo-ions as
the final decision.
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Clustering Method
The clustering method was based on the single-cell clustering
approach, which was performed by R 4.1.1 with the assistance of
the package “Seurat.” We treat the intensity ratios over mass-to-
charge ratio values as the expression level of genes.

Balancing Methods
For the modeling process in this study, data were first separated
into training and testing sets by time, where the training set
contained samples from June 1, 2013 to June 31, 2017 (85%
of the total samples) and the remaining samples were used
for performance testing. The training set only contained 3,613
CIRKP samples, which could cause an unbalancing problem.

Two balancing methods applied in this study were Tomek
links (TKL) and Relocating Safe-Level SMOTE (RSLS). The TKL
pair is defined as two samples from separate groups that are
the closest neighbors (Tomek, 1976), which means there does
not exist the third sample that the distances between the third
sample and anyone of the TKL pairs are smaller than the distance
between the TKL pairs. TKL can balance the training set by
removing most class samples from TKL pairs. Besides, removing
the whole TKL pairs can also alleviate the invasion problem.

RSLS is a modification of the Safe-Level SMOTE algorithm,
which relocates the synthetic sample if the distance between the
synthetic sample and a sample from the major class is less than
the distance between that synthetic sample and its closest parent
sample (Siriseriwan and Sinapiromsaran, 2016). This method
considers the surroundings of synthetic samples and can provide
a safer oversampling outcome for model training.

This study first removed both samples from all TKL pairs
with Euclidean distance on the original feature space to
relieve the invasion problem. After that, RSLS was applied to
balance the CISKP and CIRKP classes. TKL was implemented
with R function “TomeKClassif ” in package “UBL,” and RSLS
balancing was implemented by calling function “RSLS” in
package “smotefamily.”

Machine Learning Models
Four popular machine learning models were tested in this study
including logistic regression (LR), SVM, random forest (RF),
and extreme gradient boosting (XGB). The general modeling
processing in this study included (1) selecting significant features
by multiple statistical methods and (2) constructing models with
balancing methods and fivefold cross-validation (except the RF
model). The final model included 480 features (472 pseudo-ions,
6 factors for SPC, 1 vector for age, and 1 factor for gender)
selected by statistical methods. L1-regularization was applied to
the LR model with log (λ) = −4.77 and finally 102 features
were selected in the LR model. The testing performance of the
SVM model was achieved by using radial kernel (“rbfdot” kernel
in “kernlab” package) with penalty parameter C = 1.5. There
were 1,000 trees each with the random sampling size equal to 500
built for the RF model, but the RF model still suffered a serious
overfitting problem. The XGB model was set to use “softmax”
mode with the max depth equal to 3 and 527 iterations. All
the models were implemented with R packages: “glmnet” for

LR, “kernlab” for SVM, “randomForest” for RF, and “xgboost”
for XGB. Predicting performances were measured by mean area
under the receiver operating characteristic curve (AUC) and the
accuracy rate of predicting CIRKP, and they are calculated with
the assistance of the package “ROCR.” Probability models allow
flexible selection of probability cutoff. The optimal probability
cutoffs (selected by balancing the specificity and sensitivity of
models) of training and testing sets were both shown in this
study. In addition, the predicting performance would be analyzed
with the optimal cutoff of the training set since the optimal
cutoff of the testing set was unobtainable in real antibiotic
resistance prediction.

RESULTS

Insights for Specimen Information
An increase in the proportion of CIRKP was observed from
25.52% in 2014 to 29.07% in 2017 (Figures 2A1,A4). In total
7,556 (47.87%) and 8,226 (52.12%) samples were obtained
from female and male patients. A total of 1,838 (41.51%)
female samples and 2,590 (58.49%) male samples comprised
the CIRKP group, whereas both female and male samples
accounted for around 50% of the CISKP group, suggesting
that men were probably more likely to be infected with
CIRKP than women (Figure 2A6). Additionally, CIRKP was
more likely to be diagnosed in people over the age of
60. The CIRKP group’s average age was 11.15 years older
than that of the CISKP group (Figures 2A2,A3). In the
case of SPC, more than 60% of samples were collected
from respiratory (R) or urinary (U) carriers. Additionally,
respiratory (R) and other (O) samples accounted for a greater
percentage of samples in the CIRKP group than in the CISKP
group (Figure 2A5).

Spectrum data analyzed in this study were collected over
the mass-to-charge ratio range from 2,000 to 20,000 m/z. To
avoid the problems of magnitudes, the intensity ratio was used
for analysis instead of the original intensity in this study. By
comparing the average spectrum intensity ratio plot of the CISKP
and CIRKP, CRSKP samples were found to have a lower intensity
ratio over the lower region of the mass-to-charge ratio (2,000–
3,000 m/z) and have a generally higher intensity ratio over the
3,000–7,000 m/z (Figure 2B1). However, no unique spectrum
profile or spectrum peak could be observed directly from the
average spectrum intensity plot. Moreover, the profiles of the
average spectrum intensity ratio of both CISKP and CIRKP were
shifting along with the time (Figure 2C). The intensity ratio of
peaks at 2,069 m/z decreased from more than 4% to less than
2%. In contrast, peaks at 4,367, 5,382, and 6,291 m/z increased
to more than 5% in the first 2 months of 2018. In addition,
the numbers of spectrum peaks varied a lot among samples
(Figure 2B2). Only 49 peaks were detected from the sample
which is the minimum peak number. However, samples with over
900 peaks were also detected. Over 70% of samples contained
peaks from 100 to 250. Both the spectrum profile shift and the
wide range of peak numbers could indicate that specimens of
different sub-strains of K. pneumoniae are collected, and their
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FIGURE 2 | Demographic of statistical information of the data. (A1,A4) Proportion of CIRKP samples in each year; (A2,A3) age information of samples; (A5,A6)
number of samples of each SPC and gender in CIRKP and CISKP; (B1) overall average spectrum plot of CIRKP and CISKP; (B2) distribution of peak numbers.
(C1–C6) average spectrum plots of CIRKP and CISKP by years.
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FIGURE 3 | Data visualization of clustering results. (A1) Distribution of 8 clusters; (A2,A3) distribution of CIRKP and CISKP samples in each cluster; (B) proportion of
cluster in each year; (C) average spectrum plot of each cluster.

proportions were changing along with time. That was the main
reason for the clustering analysis done in the following study.

Clustering Analysis
Due to the absence of standard MALDI-TOF MS spectrum plots
for K. pneumoniae sub-strains, it was difficult to determine the
true data composition. The clustering approach used in this

study aimed at offering information about the composition of
the samples under the assumption that bacteria from the same
sub-strain have similar spectrum profile.

By setting the resolution parameter equal to 0.3, eight
suspicious sub-strains were detected in this study. The cluster
distributions and the distributions of CISKP and CIRKP
samples under two-dimensional UMAP reduction are shown
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TABLE 1 | Significance of non-spectrometry covariates.

Sample population

CISKP CIRKP Total number P-value

Total numbers 9,201 3,424 12,625

Gender (ratio %) < 2.2 × 10−16

Male 4,581 (49.7) 2,030 (59.3) 6,611

Female 4,620 (50.3) 1,394 (40.7) 6,014

Age (ratio %) < 2.2 × 10−16

Infant 856 (9.3) 41 (1.2) 897

Children 50 (0.5) 12 (0.4) 62

Teenager 62 (0.7) 14 (0.4) 76

Youth 1,201 (13.1) 272 (7.9) 1,473

Middle-aged 3,715 (40.4) 1,167 (34.1) 4,882

Senium 3,317 (36.0) 1,918 (56.0) 5,235

Specimen type (ratio %) < 2.2 × 10−16

B 1,330 (14.5) 400 (11.7) 1,730

F 351 (3.8) 133 (3.9) 484

W 1,490 (16.2) 373 (10.9) 1,863

R 2,081 (22.6) 1,148 (33.5) 3,229

U 3,610 (39.2) 1,276 (37.3) 4,886

O 339 (3.7) 94 (2.7) 433

TABLE 2 | Top 15 significant pseudo-ions selected by statistical methods.

Rank Pseudo-ion m/z Mean difference of
peak intensity ratio

(10−4)

log2(fc) Wilcoxon rank sum test F-test KS test Observation times

1 Pseudo-ion 136 (4,700, 4,720) 10.22 0.88 1.24 × 10−38
≤ 0.01 ≤ 0.01 3,200

2 Pseudo-ion 5 (2,080, 2,100) −50.75 −0.43 1.02 × 10−51
≤ 0.01 ≤ 0.01 12,528

3 Pseudo-ion 27 (2,520, 2,540) −13.63 −0.41 1.73 × 10−64
≤ 0.01 ≤ 0.01 10,704

4 Pseudo-ion 95 (3,880, 3,900) −3.51 −0.61 2.40 × 10−10
≤ 0.01 ≤ 0.01 3,358

5 Pseudo-ion 353 (9,040, 9,060) −1.03 −0.77 5.60 × 10−05
≤ 0.01 ≤ 0.01 478

6 Pseudo-ion 1 (2,000, 2,020) −13.52 −0.40 1.72 × 10−41
≤ 0.01 ≤ 0.01 10,727

7 Pseudo-ion 32 (2,620, 2,640) −13.09 −0.40 1.01 × 10−34
≤ 0.01 ≤ 0.01 10,453

8 Pseudo-ion 293 (7,840, 7,860) −0.26 −0.67 3.20 × 10−07
≤ 0.01 ≤ 0.01 406

9 Pseudo-ion 284 (7,660, 7,680) −4.76 −0.72 1.87 × 10−03
≤ 0.01 ≤ 0.01 2,873

10 Pseudo-ion 11 (2,200, 2,220) −13.45 −0.37 6.23 × 10−42
≤ 0.01 ≤ 0.01 10,405

11 Pseudo-ion 2 (2,020, 2,040) −20.51 −0.38 9.96 × 10−34
≤ 0.01 ≤ 0.01 11,433

12 Pseudo-ion 4 (2,060, 2,080) −97.53 −0.39 2.46 × 10−23
≤ 0.01 ≤ 0.01 12,318

13 Pseudo-ion 367 (9,320, 9,340) 0.01 1.11 3.86 × 10−04
≤ 0.01 0.01 285

14 Pseudo-ion 50 (2,980, 3,000) −12.41 −0.35 6.23 × 10−33
≤ 0.01 0.01 10,574

15 Pseudo-ion 163 (3,240, 3,260) −3.71 −0.84 2.46 × 10−09
≤ 0.01 0.01 768

Mean difference is calculated by CIRKP-CISKP;fc represents the fold change value; fold change is calculated by CIRKP/CSIKP; total number of training samples: 13,414.
Bold type values means the statistical quality of these pseudo-ions are relatively lower than other pseudo-ions since less samples are observed.

in Figures 3A1,A2. Intuitively speaking, clusters 2 and 6
are CISKP-dominant clusters with relatively lower CIRKP
proportions compared to other clusters (Figure 3A3). Besides,
CIRKP in clusters 2, 5, and 7 seems to be more separable
from the CISKP sample than other clusters. But CIRKP and
CISKP samples are highly mixed in the other clusters under
two-dimensional UMAP reduction. However, no cluster shows
a strong relation to the CIRKP or the CISKP group.

The trend of spectrum profile shifts is found from June
2013 to February 2018. It is worth mentioning that cluster

1 has grown from the fifth cluster in 2013 to the biggest
cluster in 2018. Combined with the average spectrum plot of
cluster 1, we can preliminarily conclude that the increase in
the proportion of cluster 1 is the primary cause for the rise
in the average intensity ratio of peaks at 4,367, 5,382, and
6,291 m/z (Figures 3B,C). At the same time, the proportion
of cluster 0 first significantly increases from 2013 to 2015 and
then gradually decreases to the same proportion level of 2013
in 2018. The proportion of cluster 2 keeps decreasing from
about 25% of the whole year sample to 15%. As the result
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FIGURE 4 | Performance of models. (A1,A2) Training and testing ROC plots of four models; (B–E) optimal probability cutoff of training and testing set for four
models.

TABLE 3 | Top 15 significant features selected by models.

Features (observed sample number)

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank 10 Rank
11

Rank
12

Rank
13

Rank 14 Rank 15

LR AGE
(13,414)

GEN
(13,414)

U (5,218) PI138
(9,756)

R (3,408) PI172
(6,666)

PI307
(4,831)

PI228
(1,694)

PI158
(13,137)

PI495
(1,358)

PI103
(3,940)

PI203
(551)

PI290
(2,367)

PI287
(4,403)

PI92
(8,767)

SVM PI154
(3,324)

AGE
(13,414)

PI36
(3,200)

PI226
(5,434)

PI494
(2,858)

PI171
(9,543)

PI127
(1,739)

PI306
(5,431)

PI273 (606) PI103
(3,940)

PI1495
(1,358)

PI230
(7,252)

PI367
(285)

PI198
(4,580)

PI52
(10,181)

RF AGE
(13,414)

PI171
(9,543)

R (3,408) PI154
(3,324)

GEN
(13,414)

PI136
(3,200)

PI208
(5,405)

PI91
(8,789)

PI288
(12,122)

PI165
(9,641)

PI316
(9,601)

PI226
(5,434)

PI108
(9,883)

PI286
(12,699)

PI306
(5,431)

XGB R (3,945) AGE
(13,414)

GEN
(13,414)

PI171
(9,543)

PI136
(3,200)

PI54
(3,324)

PI208
(5,405)

PI91
(8,789)

PI226
(5,434)

PI306
(5,431)

PI31
(9,619)

PI165
(9,641)

PI266
(5,375)

PI316
(9,601)

PI288
(12,112)

PI, pseudo-ion; GEN, gender; R, SPC-R; U, SPC-U.

of proportion changes of clusters 0, 1, and 2, spectrum peak
at 2,069 m/z significantly decreases from 2013 to 2015, then
increases a little bit in 2016, and sharply drops to less than
2% in 2018. Moreover, the proportion cluster 5 is found to be
abnormally high only in 2017. The majority of cluster 5 are
those with abnormally high number of spectrum peaks (peak
number 250). Besides, most of the samples with abnormally
low peak numbers (peak number 100) are found in cluster
1 (Supplementary Figure 3). For the other clusters, their
proportions do not change significantly during the time of
specimen collection.

After clustering analysis, it is normal to create classification
models for each cluster. However, models trained by samples
from all clusters were finally selected rather than models for each
cluster. The reasons for this decision include:

1. The clusters in this study only represent suspicious sub-strains
of K. pneumoniae without any additional support materials,
implying that they are unreliable for modeling.

2. Not all cluster-based models outperform the overall model.
3. Most importantly, cluster-based models are unable to handle

new samples from unknown clusters.

Feature Selection
For feature selection, statistical methods were applied on the
training set to select associated non-spectrometric features and
rank the significance of pseudo-ions.

The Chi-square test was used to determine the statistical
significance of non-spectrometric variables using the original
gender data as well as the age and SPC data after grouping
(Table 1). The results of the tests indicated that CIRKP is
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TABLE 4 | In cluster performance of the general model.

Training (AUC %) Testing (AUC %)

Clusters LR SVM RF XGB LR SVM RF XGB

Overall 89.69 97.61 100.00 98.50 85.58 88.86 85.44 89.08

0 90.61 98.00 100.00 98.84 82.89 85.70 84.27 85.95

1 90.56 97.58 100.00 98.82 84.82 87.70 86.34 89.80

2 89.25 97.55 100.00 98.24 92.16 93.72 90.74 91.03

3 89.14 97.47 100.00 98.41 80.05 84.12 79.41 83.15

4 89.01 97.45 100.00 98.28 80.84 87.31 81.43 86.70

5 88.26 96.73 100.00 98.55 88.95 91.44 87.94 91.31

6 87.10 96.70 100.00 97.22 50.00 92.59 74.07 57.41

7 91.15 97.63 100.00 98.73 85.30 88.67 87.98 93.81

Bold type AUC value of cluster 0–7 shows poor performances of machine learning
models on those clusters.

associated with all non-spectrometric features. As a result, all
dummy variables created from gender and SPC, and the actual
age data, would be included in modeling.

After the construction of pseudo-ions, significance testing
was performed using pseudo-ion vectors. Generally speaking, 18
pseudo-ions and 66 pseudo-ions are found uniquely in CIRKP
and CISKP samples. However, only pseudo-ion 434 has been
observed 12 times uniquely in CIRKP groups; the other unique
pseudo-ions are all observed less than 5 times. Thus, the statistical
power of those unique observed pseudo-ions is not guaranteed,
and they will not be considered as highly significant features.
Wilcoxon rank-sum test and average fold change selection were
served for the significance check of mean values. The majority
of the 209 pseudo-ions selected by the Wilcoxon rank-sum
test concentrate at relatively low-intensity regions with high
observation times, but the fold changes of those pseudo-ions are
usually insignificant. In contrast, fold change selection selected
pseudo-ions of highly different average intensity ratios, usually
with lower observation times compared to pseudo-ions selected
by the Wilcoxon rank-sum test. F-test and KS-test selected
303 and 208 pseudo-ions, respectively, and these pseudo-ions
are highly overlapping with the pseudo-ions selected by the
Wilcoxon rank-sum test. In conclusion, only pseudo-ions 367
and 407 passed all the selection criteria, and 154 pseudo-ions pass
all tests except fold change selection.

The ranks of pseudo-ions were calculated by their average
ranks of each selection criterion. The top 15 significant pseudo-
ions selected by multiple statistical methods are shown in Table 2.
Pseudo-ions that pass one of the four selection criteria were
considered significant for modeling and would be used for
model construction.

Classification Result
All four models showed high accuracy in detecting antibiotic
resistance of patients. Both SVM and XGB have high AUC values
of 0.89 on the testing set with specificities and sensitivities of 0.80
under the optimal probability cutoff of the testing set (Figure 4).
Under the optimal cutoff of the training set, XGB and SVM
could achieve accuracies of 0.82 [95% CI: (0.80, 0.83)] and 0.83

TABLE 5 | Confusion matrix of each model with optimal probability cutoff
of training set.

Real predicted Cluster 0 Cluster 1 Cluster 2 Cluster 3

CIRKP CISKP CIRKP CISKP CIRKP CISKP CIRKP CISKP

LR CIRKP 127 62 166 97 15 6 38 35

CISKP 41 206 29 167 5 91 24 140

SVM CIRKP 117 36 156 49 16 2 36 18

CISKP 51 232 39 215 4 95 26 157

RF CIRKP 160 160 192 209 17 19 49 69

CISKP 8 108 3 55 3 78 13 106

XGB CIRKP 105 37 161 57 14 5 35 22

CISKP 63 231 34 207 6 92 27 153

Cluster 4 Cluster 5 Cluster 6 Cluster 7

CIRKP CISKP CIRKP CISKP CIRKP CISKP CIRKP CISKP

LR CIRKP 91 46 159 57 0 3 28 20

CISKP 22 103 61 413 1 51 8 55

SVM CIRKP 85 27 156 37 0 2 30 21

CISKP 28 122 64 433 1 52 6 54

RF CIRKP 111 129 202 187 0 11 36 49

CISKP 2 20 18 283 1 43 0 26

XGB CIRKP 93 36 169 50 0 2 34 20

CISKP 20 113 51 420 1 52 2 55

LR SVM RF XGB

REF CIRKP CISKP CIRKP CISKP CIRKP CISKP CIRKP CISKP

CIRKP 624 326 596 192 767 825 611 229

CISKP 191 1,226 219 1,360 48 727 204 1,323

RF model is severely overfitted to CIRKP group. The in-cluster performance of
cluster 6 is acceptable but low AUC value is caused by insufficient positive test
samples.

[95% CI: (0.81, 0.84)] of predicting CIRKP and CISKP samples
in the testing set. The testing AUC of LR and RF is around 0.86
and 0.85, respectively. However, due to the severe overfitting
problem of RF, the predicting performance under the optimal
probability cutoff of the training set is highly unbalanced, which
achieves an extremely high sensitivity of over 0.94 but low overall
accuracy of 0.63 and unacceptable specificity of 0.47. Compared
to RF, LR performs more stably. The gap between optimal cutoff
of training and testing sets for LR is 0.02, which means LR is
the only one of four models that could achieve both predicting
sensitivity and specificity around 0.76 under the optimal cutoff of
the training set time. However, since SVM and XGB could also
achieve sensitivities of 0.73 and 0.75 and specificity of 0.88 and
0.85 simultaneously, they are considered slightly better model
choices than LR.

Four models perform well on identifying CIRKP. We were
interested in the differences between significant features selected
by models and statistical methods (Table 3). The absolute value
of coefficients directly ranked the feature significance of LR. The
mean of decreasing in the Gini index was used to rank features
that construct RF. The feature ranks for SVM and XGB models
were created by constructing new models without target features
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FIGURE 5 | Time influence on the performance of four models.

and calculating the decrease in testing AUC. For the results, only
pseudo-ions 136 and 367 are considered the top 15 significant
pseudo-ions by both models and statistical methods. Pseudo-
ion 171 is also considered as one of the top 15 features by
three models except for LR. Meanwhile, both LR and statistical
method ranked pseudo-ion 171 at about 70th. Considering the 49
amino acids protein AcrZ subunit of AcrAB efflux pump whose
expression change is proved to be one of the mechanisms of
ciprofloxacin resistance, pseudo-ion 171 may be a representation
of the expression level of AcrZ (Pakzad et al., 2013; UniProt
Consortium et al., 2021). The statistical rank for features is
very different from their real contribution in models. Statistical
methods and each model select less than 10 identical top 100
features, respectively. However, feature contributions in RF and
XGB models are highly consistent. Sixty-two identical features
are found among their top 100 features. This observation could
indicate that a better selection method or feature ranking system
may help improve the classification outcome.

As for the non-spectrometric features, age is the most
significant feature selected by models, constantly ranked as the
top 2 significant features. Besides, gender is another highly
significant feature ranked in the top 3 by LR, RF, and XGB
models. These results show that patients’ basic information may
also contribute a lot to the real antibiotic resistance identification
problems. Among all SPC types, only respiratory SPC (SPC-R)
is considered one of the top 5 features of all models except SVM.
Urinary SPC (SPC-U) is the third critical feature in LR, and it also
ranked in the top 100 in the other models. Excluding SPC-U and
SPC-R, other SPC types are not incredibly important for models.

Besides, categorical variables are less popular for SVM compared
to the other three models.

DISCUSSION

Analysis of In-Cluster Performance
Instead of constructing cluster-based models, four overall models
constructed in this study utilized data from all clusters as
training and testing samples. The overall performance of models
showed high accuracy, and we wondered whether these models
were competent for predicting antibiotic resistance for multiple
suspicious sub-strains of K. pneumoniae (Table 4).

Four models can manage the in-cluster predicting task with
acceptable performance most of the time. All four models exhibit
high testing performance on predicting CIRKP in clusters 2,
5, and 7. This observation is consistent with the clustering
analysis that these three clusters are more separable than other
clusters. Furthermore, the outstanding performance on cluster 5
indicates that samples with abnormally high peak numbers are
separable, and it is unnecessary to remove those samples from
analysis. Compared to the other three models, SVM shows high
stability in handling classification tasks on different clusters with
the lowest AUC value of 0.84. Nevertheless, poor performances
could also be found in predicting CIRKP on clusters 3 and 6.
The predicting AUC value of LR and XGB are only 0.50 and
0.57 on cluster 6, but the training AUC achieves 0.87 and 0.97,
respectively, which seems that both LR and XGB cannot perform
the classification task better than a model performs random
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selection. The predicting AUC of RF on cluster 6 also significantly
drops 0.74. However, the low AUC values on cluster 6 are not due
to the failure of models. By looking into the confusion matrixes
under the optimal probability cutoff of the training set for each
cluster (Table 5), only 1 CRIKP sample is found in the testing set
of cluster 6. That means the AUC value of cluster 6 is unreliable.
All models could achieve overall accuracy of over 0.92 except
RF. As for model performances on cluster 3, LR, SVM, and XGB
all show high specificity but low sensitivity. Even for RF, which
achieves an overall sensitivity of 0.94, it cannot excellently classify
CIRKP samples in cluster 3. The relatively inferior performance
on cluster 3 provides evidence for the potential influence of
sub-strains on the model.

In conclusion, four overall models constructed in this study
can manage the classification task of CIRKP for most suspicious
sub-strains, but the potential risk of sub-strain effect still exists.
Determining the antibiotic resistance results by the optimal cutoff
of each suspicious sub-strain instead of using the overall optimal
cutoff of the training set may alleviate effect. However, a rigorous
sub-strains identification process and solution to managing newly
observed sub-strains should be set up.

Time Influence
Time influence on the predicting performance was considered by
analyzing the fluctuation of the AUC value as the testing time
period got far away from the last training samples. The first
2,300 samples in the testing sets were grouped into 23 groups by
time, with 100 samples in each group. After that, the predicting
AUC of each testing group is calculated and plotted in Figure 5.
The expected decreasing trend in model performance along with
time is not observed. Moreover, the same trend of the AUC
changes is found among four models, which means the predicting
performance of models is highly related to the separability of
current samples. That emphasizes that even machine learning
models with high classification accuracy in the past may fail in
the current antibiotic resistance identification task. Reasons for
the time effect could also include that the overall model cannot
perform well on all the potential sub-strains, but the sample
composition varies along with time.

Four models constructed in this study show high accuracy
in identifying CIRKP. Especially SVM and XGB, which perform
stably on all clusters and exhibit AUC greater than 0.8 for all the
testing time periods. However, the stability against time effect
could also be an essential criterion for clinically used antibiotic
resistance predicting models.

IMPORTANCE AND CONCLUSION

The rising prevalence of CIRKP has increased the risk of
incorrect selection of initial antibiotic treatment. The purpose
of this study is to develop machine learning-based models for
identifying antibiotic resistance of CIRKP using data from a
longitudinal study done from June 2013 to February 2018.
The use of large-scale data ensured the statistical quality of
the selected biomarkers. Significant differences between the
CISKP and CIRKP of a few pseudo-ions in the high mass-
to-charge range were also detected, but their observation

times were insufficient to draw a firm conclusion. Both
statistical approaches and modeling algorithms recommended
expanding the training set to conduct reliable statistical
results for all the pseudo-ions. That indicated the need
for a systematic and comprehensive MALTOF-MS database.
Additionally, models were trained and evaluated in this work
utilizing spectrum data from June 2013 to June 2017 and
extra non-spectrometric information. Future samples were
used to replicate the real-world antibiotic resistance prediction
issue. Clustering analysis and the effect of time on model
performance were implemented to provide potential information
of suspicious sub-strains and demonstrate overall models’
problems. While the model’s performance does not meet the
clinical standard, the findings of this investigation confirm the
potential usefulness of the machine learning-based approach for
antibiotic identification.

Limitations of this study include two main points, which
are (1) the models may not be able to generalize to other
bacterial species and antibiotics, and (2) the absence of biological
validations. Protein analysis may be used to confirm the
biological importance of selected features, and thorough real
strain analysis, rather than the suspect sub-strain analysis used
in this work, would give more helpful information. However,
it is challenging to verify accurate sub-strains information in
this study due to the data limitations. Additionally, other
advanced machine learning techniques, such as deep learning
and integrated prediction of multiple models, may enhance
prediction accuracy.
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