
RESEARCH ARTICLE

Analysis of KRAS, NRAS and BRAF mutational

profile by combination of in-tube

hybridization and universal tag-microarray in

tumor tissue and plasma of colorectal cancer

patients

Francesco DaminID
1☯*, Silvia Galbiati2☯, Nadia Soriani2, Valentina Burgio3,

Monica Ronzoni3, Maurizio Ferrari2,4,5, Marcella Chiari1

1 Istituto di Chimica del Riconoscimento Molecolare, CNR, Milano, Italy, 2 Unit of Genomic for the Diagnosis

of Human Pathologies, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan,

Italy, 3 Dipartimento di Oncologia Medica, IRCCS Ospedale San Raffaele, Milan, Italy, 4 Laboratory of

Clinical Molecular Biology, IRCCS Ospedale San Raffaele, Milan, Italy, 5 Università Vita-Salute San

Raffaele, Milan, Italy

☯ These authors contributed equally to this work.

* francesco.damin@icrm.cnr.it

Abstract

Microarray technology fails in detecting point mutations present in a small fraction of cells

from heterogeneous tissue samples or in plasma in a background of wild-type cell-free circu-

lating tumor DNA (ctDNA). The aim of this study is to overcome the lack of sensitivity and

specificity of current microarray approaches introducing a rapid and sensitive microarray-

based assay for the multiplex detection of minority mutations of oncogenes (KRAS, NRAS

and BRAF) with relevant diagnostics implications in tissue biopsies and plasma samples in

metastatic colorectal cancer patients. In our approach, either wild-type or mutated PCR frag-

ments are hybridized in solution, in a temperature gradient, with a set of reporters with a 5’

domain, complementary to the target sequences and a 3’ domain complementary to a sur-

face immobilized probe. Upon specific hybridization in solution, which occurs specifically

thanks to the temperature gradients, wild-type and mutated samples are captured at specific

location on the surface by hybridization of the 3’ reporter domain with its complementary

immobilized probe sequence. The most common mutations in KRAS, NRAS and BRAF

genes were detected in less than 90 minutes in tissue biopsies and plasma samples of met-

astatic colorectal cancer patients. Moreover, the method was able to reveal mutant alleles

representing less than 0,3% of total DNA. We demonstrated detection limits superior to

those provided by many current technologies in the detection of RAS and BRAF gene super-

family mutations, a level of sensitivity compatible with the analysis of cell free circulating

tumor DNA in liquid biopsy.
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Introduction

The identification of DNA variants that can cause diseases is a central aim in human genetics.

In particular, the ability to detect mutations in oncogenes facilitates early diagnosis, monitor-

ing and treatment [1,2] of cancer. The discovery that tumor cells release DNA fragments (cir-

culating tumor DNA -ctDNA-) in blood, urine or other body fluid samples, paves the way to a

paradigm shift in cancer diagnostics introducing the concept of liquid biopsy: a term that

refers to a novel, non-invasive technique used for detecting cancer biomarkers [3,4]. ctDNA

belongs to the pool of the total circulating cell free-DNA in blood. The mechanisms of its

release are not completely disclosed; probably it derives from apoptotic or necrotic cells as well

as from living cells through a mechanism of active secretion. ctDNA provides real-time molec-

ular information allowing monitoring treatment response and relapsing as it contains genetic

alteration of both primary and metastatic lesions, such as point mutations, copy number varia-

tions and insertions/deletions [5,6].

Detecting mutation in ctDNA is challenging since the lower number of mutant copies of

cancer origin are masked by the large amount of wild-type DNA mostly from contaminant

leukocytes [7]. Liquid biopsy is still in its infancy and efforts will be required before the field

can mature and achieve widespread routine use in oncology clinical practice. The analysis of

low-abundance mutations requires cfDNA isolation and amplification followed by mutations

detection either in disease specific genes (PCR based sequencing) [8–12] or in multiple genes

simultaneously (next generation sequencing -NGS- multiplex testing) [13]. Droplet digital

PCR (ddPCR) is one of newly developed methods that allow for enumeration of rare mutant

variants. Based on water-emulsion droplet technology, ddPCR fractionates a DNA sample in

20.000 droplets [14]. Mutation-specific amplification of the template subsequently occurs in

each individual droplet, and counting the positive droplets gives precise, absolute target quan-

tification as copies per milliliter of plasma. It was reported that ddPCR can detect mutant

alleles with high sensitivity (0.01–0.001%) [15]. However, with ddPCR only the genes that are

the most susceptible to mutations are analyzed, at first, giving the patient the choice of whether

to pursue additional tests based on the results. The downside of this approach to testing is it is

time and cost consuming.

Another sophisticated ctDNA based cancer test is the targeted amplicon sequencing

[16,17]. NGS in particular conditions, can reach the high sensitivity required for the analysis of

ctDNA. This technique has the potential to uncover additional actionable findings that could

have otherwise gone undetected by the traditional single gene serial testing but it is expensive

and time-consuming. Moreover, it allows to process in parallel only a limited number of sam-

ples and demands bioinformatics skills or already developed bioinformatics tools specific for

plasma samples.

In this study, in an effort to overcome the limitations of both existing approaches, we introduce

an innovative assay for the simultaneous detection of single mutations in different oncogenes,

based on microarray technology combined with solution hybridization. DNA microarrays have

been used for years in genotyping applications, including SNP typing. Affymetrix and Illumina

commercialize SNP array platforms for the genotyping of millions of SNPs [18]. However, to the

best of our knowledge, there are no examples of mutation detection in liquid biopsy by microarray

as none of the methods reported in the literature meets the sensitivity and specificity requirements

of liquid biopsy. In this work, we hybridize single stranded tagged-PCR products with dual-

domain oligonucleotide reporters. The domain sequences complementary to regions encompass-

ing the mutation form hybrids in solution that are direct by the second domain to specific loca-

tions on the microarray surface. The tagged-PCRs captured on the microarray are revealed by a

fluorescent universal oligonucleotide.
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The method was validated in mutation detection of the RAS proto-oncogene superfamily

(in particular KRAS and NRAS) and BRAF [19–21].

In colorectal cancer (CRC) approximately 30% to 50% of tumors have KRAS mutations that

occur early in the tumorigenesis pathway, so the detection of KRAS mutations is useful for

early diagnosis, prognosis and evaluation of the therapeutic outcome in cancer treatment [22].

KRAS is an effector molecule of epidermal growth factor receptor (EGFR), a key target of ther-

apeutic strategies designed to treat metastatic CRC. Constitutively, activating mutations at

codon 12, 13, 61 or 146 can determine resistance to EGFR-target therapies and patients har-

boring such mutations do not receive benefit from anti-EGFR treatment. Also NRAS mutation

that is found in less than 5% of CRC patients [23,24], may affect the efficacy of anti-EGFR anti-

bodies [25]. There is also increasing evidence that B-Raf proto-oncogene (BRAF) mutations,

which confer a worse prognosis, also determine a higher degree of resistance [26]. The

National Comprehensive Cancer Network (NCCN) and the American Society for Clinical

Oncology (ASCO) have recently published guidance recommending testing of exon 2 (codons

12 and 13), 3 (codon 61), and 4 (codon 146) in both KRAS and NRAS genes [27] prior to anti-

EGFR therapy. In spite of the importance to genotype with high accuracy the hot-spot regions

of RAS family gene, only very few commercially available tests cover all these codons at the

same time.

With this multiplex system, we were able to correctly genotype simultaneously the most fre-

quent KRAS mutations in exon 2 (codon 12 and 13), 3 (codon 61) and 4 (codon 146), NRAS
mutations in exon 2 (codon 12 and 13) and BRAF mutation in exon 15 (V600E) with high sen-

sitivity (less than 0,3% of mutant DNA) on both, tissue and liquid biopsy samples. Our results

demonstrate the applicability of the method for routine diagnosis of cancer in in clinical

practice.

Materials and methods

Samples

To prove the assay specificity of all the 22 mutations analyzed that is KRAS codon 12 (G12A,

G12C, G12D, G12R, G12S, G12V), 13 (G13D), 61 (Q61H - A>C and A>T-, Q61K, Q61L,

Q61R) and 146 (A146T), NRAS codon 12 (G12A, G12C, G12D, G12S, G12V) and 13 (G13D,

G13R, G13V) and BRAF codon 15 (V600E), we used the heterozygous reference standards by

Diatech Pharmacogenetics with the exception of the mutations KRAS Q61R, Q61H (A>T),

Q61K, A146T and NRAS G12A, G12C, G12S, G12V, G13R and G13V where the references

were not available. Thus, mutagenized DNA containing alternatively all the considered vari-

ants was obtained as previous described [28].

To assess the sensitivity of the method dilution curves were generated starting from hetero-

zygous reference standards by Diatech Pharmacogenetics (50% mutated allele) mixed with

wild-type DNA in a proportion mimicking the concentration of tumor DNA in plasma of can-

cer patients.

Finally, a blind analysis on 18 formalin-fixed paraffin-embedded (FFPE) samples previously

genotyped [28] and 4 plasma samples were performed with this procedure.

All the plasma samples were previously analyzed by biopsy on tumor tissue by the Depart-

mentof of Pathology at the San Raffaele Hospital by MassARRAY (Sequenom, San Diego, CA,

USA), that is reported to have a sensitivity of 5% in the detection of KRAS mutations. The

study was approved by the Institutional Review Board of the San Raffaele Hospital in Milan

and all clinical investigation has been conducted according to the principles expressed in the

Declaration of Helsinki. Informed written consent has been obtained from the participants.
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PCR conditions

The DNA sequences containing the mutations were amplified using 5’-biotin forward and 5’-

tagged reverse primers.

Primer sequences, amplification length and annealing temperature (Ta) for the KRAS
(codon 12–13, 61 and 146), NRAS (codon 12–13) and BRAF (codon 600) were detailed in S1

Table.

PCR was performed in 25 μL reaction containing 15 ng of tissue DNA, 200 μM of each

deoxynucleotide, 10 mM Tris–HCl (pH 8,3), 50 mM KCl, 1.5 mM MgCl2, 1 U of DNA poly-

merase (FastStart Taq, Roche) and 10 pmoles of each primer. Cycling conditions entailed an

initial denaturation at 95˚C for 4 min followed by 35 cycles at 95˚C for 30 s, 58˚C for 30 s and

72˚C for 30 s, and a final elongation at 72˚C for 10 min.

Concerning the plasma samples, the PCR was performed in 50 μL of reactions containing

15 μl of DNA extracted from plasma, 200 μM deoxynucleotide triphosphates, 10 mM Tris–

HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 1.3 U of DNA polymerase (FastStart Taq, Roche)

and 20 pmoles of each primer.

Cycling conditions were as follows: 95˚C for 4 min; 47 cycles at 95˚C for 30 s, 58˚C for 30 s,

72˚C for 30 s and 72˚C for 10 min. Each sample was amplified in triplicate.

Silicon slide coating and microarray preparation

Untreated silicon 1000Å Thermal Oxide chips (14 X 14 mm) and slides (75 X 25 mm) were

supplied by SVM, Silicon Valley Microelectronics Inc. (Santa Clara, CA USA). After an activa-

tion treatment (15 min) with oxygen plasma, the silicon chips or slides were immersed for 30

min in solution (1% w/v in 0.9 M (NH4)2SO4 water solution) of a modified form of copoly

(DMA-NAS-MAPS) with 10% NAS moiety. The copoly (DMA-NAS-MAPS) was synthesized

and characterized as previously described [29] but to enhance the binding capacity of the

copoly (DMA-NAS-MAPS) the N-acryloyloxysucinimide (NAS) molar fraction was increased

from 2% to 10%. The slides were finally rinsed with water and dried under vacuum at 80˚C for

20 minutes. We selected twenty-seven different oligonucleotide sequences from the GeneFlex

Tag Array collection (Affymetrix, Santa Clara, CA) that contains sequence information for

2000 oligonucleotides with minimal tendency for cross-hybridization, as capture probes spot-

ted on silicon chips corresponding to thirteen KRAS mutations, eight NRAS mutations and

one BRAF mutation and to the wild-type sequences (See S2 Table). The capture probes and a

control oligonucleotide (COCU8), used as reference spots, amino modified at the 5’ end, from

Metabion International AG (Steinkirchen, Germany), were dissolved in the printing buffer

(150 mM sodium phosphate pH 8.5, 0.01% Sucrose monolaurate) at a concentration of 10 μM

and printed by a piezoelectric spotter, SciFLEX ARRAYER S5 (Scienion, Berlin, Germany).

Spotting was performed at 20˚ C in an atmosphere of 60% humidity. After the spotting step

the chips were incubated overnight and all residual reactive groups of the coating polymer

were blocked as described in [30].

Preparation of single-strand DNA from PCR products with streptavidin

magnetic beads and liquid allele-specific hybridization

Prior to use, the streptavidin-coated magnetic beads (Dynabeads M-270 Streptavidin, Invitro-

gen) were washed three times with Binding and Washing buffer (B&W) (5 mM Tris-HCl, pH

7,5; 0,5 mM EDTA; 1 M NaCl) according to the manufacturer’s protocol. Afterwards the strep-

tavidin-coated beads (250 μg) were added to a PCR tube containing 25 μL of biotinylated PCR

product and 75 μL of B&W buffer and incubated at room temperature for 10 minutes with

Tissue and ctDNA genotyping by combination of in-tube hybridization and universal tag-microarray
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gentle rotation. The beads with the bound PCR products were then washed 2–3 times in the

B&W buffer and resuspend in 40 μL of the same buffer and heated to 95˚C for 5 minutes. At

the end of the denaturation step, the PCR tube was placed on a magnet and the supernatant

with the single-strand PCR (~ 36 μL) was transferred to a fresh tube containing 1 μL of a10 μM

stabilizer, an oligonucleotide necessary to open the secondary structures present in the ampli-

con (final concentration 0,3 μM) and incubated with this oligonucleotide for 10 minutes at

room temperature, while the beads with the bound biotinilated PCR strand were discharged.

Then, for the detection of wild-type and KRAS, NRAS and BRAF mutations, the reporters for

the wild-type and the mutated sequences were added together in equimolar amounts (final

concentration 0,1 μM) to the tube containing the ssPCR-stabilizer solution (final volume

40 μL). The incubation lasted for 35 minutes with gentle rotation in a stepwise gradient of tem-

perature ranging from 42˚C to 29˚C. The sequences of the spotting probes, the reporters, the

stabilizers and Universal-Cy3 are reported in S2 Table.

Microarray hybridization, image scanning and data analysis

After the liquid allele-specific hybridization to detect the mutations, the universal oligonucleo-

tide labelled with Cy3 (Universal-Cy3) and a Cy3-labeled oligonucleotide (COCU10) comple-

mentary to COCU8, were added to the ssPCR-reporters solution to a concentration of 0,3 μM

and 0,01 μM respectively. The solution was then spread onto the spotted silicon chips and

cover slips were placed on the spotted area. The chips were incubated at room temperature for

15 min in a humid hybridization chamber.

Finally, the silicon chips were removed from the hybridization chamber, washed and

scanned as reported in [28]. Data intensities were extracted with the scanner (Scanarray

Express) and the data analysis was performed for each experiment.

Results and discussion

Overview of the method

The classical microarray genotyping approach, based on specific capture sequences immobi-

lized on the surface of a glass slide, fails in detecting minority point mutations. When a small

amount of mutated sequence is present in a large amount of wild-type background, high ana-

lytical sensitivity and specificity are required. In classical SNP microarray detection, after

denaturation, only one PCR strand is captured on the surface. However, due to re-annealing

with the complementary strand and steric hindrance of the surface, the capture efficiency is

extremely low with dramatic consequences on assay sensitivity. Multiplexing the mutations

detected is even more challenging, as it is difficult to design capture reporters that bind selec-

tively to their complementary PCR strand at a single temperature. In this study, we overcome

both problems with a sequence of operations that render the assay highly sensitive, multiplex-

able and robust.

The scheme of the assay is shown in Fig 1. After amplification, the biotinylated double

stranded PCR product was bound to streptavidin-coated magnetic beads and captured on a

magnet. Following thermal denaturation, the single strand PCR product was released in the

supernatant and recovered while the DNA strand bound to the beads was captured with a

magnet and discarded. The ssDNA was hybridized in solution with a stabilizer oligonucleotide

to open and stabilize the secondary structures eventually present on the DNA strand and then

with specific oligonucleotide reporters (see S2 Table) whose sequence consists of two domains.

The 5’ domain corresponds to a segment of KRAS, NRAS or BRAF sequence (wild-type or

mutant reporters) whereas the 3’ domain is a synthetic “barcode” sequence that recognizes

complementary oligonucleotide probes arrayed at specific locations on the silicon chip

Tissue and ctDNA genotyping by combination of in-tube hybridization and universal tag-microarray
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Fig 1. Scheme of the assay. (A) In the case of KRAS wild-type allele, the specific wild-type reporter hybridizes in

solution with the single strand PCR product (ssPCR), whereas the specific mutant reporter (with the variant position

circled and in red) does not. (B) Different barcodes in the 3’ domain of the reporter sequences (Barcode W for wild-

type, Barcode M for mutation) direct the ssPCRs to different position on the array. The position in the array is revealed

when the U-tag sequence at 5’-end of the ssPCR interacts with the complementary Cy3-labeled oligonucleotide,

Universal-Cy3 (U-Cy3), added in the last step of the assay.

https://doi.org/10.1371/journal.pone.0207876.g001
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(barcode probe). Following hybridization, the tagged PCR was captured on the surface of the

array through its specific barcode domain and revealed with a universal Cy3-oligonucleotide

complementary to the tag present at the 5’-end of the single stranded PCR (U-tag).

The key to achieve successful genotyping by this technique was to decouple mutation

sequence recognition from surface capture. To obtain a correct genotyping without false posi-

tives/negatives, in standard microarray assays, the surface hybridization must be carried out at a

specific temperature. For example, in a previous work we reported seven different temperatures

for the detection of KRAS codon 12 and 13 mutations [28]. The sequence dependence of the

probe/target melting temperature limits the number of mutations that can be detected simulta-

neously. Even though a careful optimization of probe length and sequence can partially over-

come this problem, it is difficult to find optimal conditions for all mutations. In our new

approach, the hybridization with mutation specific sequences is carried out in solution in a ther-

mal gradient ranging from 42˚C to 29˚C. In this gradient each reporter oligonucleotide binds to

the amplicon in optimal conditions. When the single strand PCR bound to the dual-domain

reporters are captured onto the microarray surface, less stringent conditions are required and

the same temperature applies to all the barcodes. Another important feature of this system is the

surface chemistry used to bind the 20mer oligonucleotide barcodes to the surface as well as the

use of a silicon/silicon oxide substrate that enhances fluorescence [31]. A three-dimensional

coating made of copoly (DMA-NAS-MAPS), a copolymer well known for its high binding

capacity and low non-specific adsorption, was used [29]. Also the selection of the barcode probe

sequences is important because it affects the efficiency and the specificity of the detection.

Optimization of genotyping

We developed a microarray covering the 22 mutations as well as wild-type controls listed in

the Sample section above. Fig 2 shows the spotting scheme of the array and typical examples of

genotyping of KRAS (G12S, Q61R and A146T), NRAS (G13R) and BRAF (V600E) mutations

from reference or mutagenized controls. We succeeded in correctly genotyping all the KRAS,

NRAS and BRAF mutations considered. As shown in Fig 2, an intense fluorescence signal

appears only at the location where the immobilized oligonucleotide is complementary to the

barcode domain of the reporter sequence that captures the PCR with very low cross-hybridiza-

tion and a good reproducibility from spot to spot. The assay was optimized also by analysing

DNA extracted from Formalin-Fixed Paraffin-Embedded (FFPE) clinical samples previously

characterized by the QX100 Droplet Digital PCR (ddPCR) System (Bio-Rad) [28]. FFPE sam-

ples from subjects either mutated in KRAS codon 12 (G12A, G12C, G12D, G12R, G12S,

G12V), 13 (G13D), 61 (Q61L) and NRAS codon 12 (G12D) or wild-type were unambiguously

genotyped as shown in S1 and S2 Figs.

Detection limit

The PCR sequencing method, which is generally considered a gold standard for clinical diag-

nosis, is reliable only when the percentage of mutant-to-wild type reaches 10%-20% [32]. In

tissue biopsy it is very difficult to obtain homogenous tumor samples and sometime the muta-

tion content can be below the limit of detection of PCR sequencing. Even more challenging is

the analysis of ctDNA because of its low mutant allele frequency and large dynamic range. The

level of ctDNA in cancer patients ranges from <0.1% to>50% out of the total cfDNA. There-

fore, the technical sensitivity and dynamic range of the assay are critical [33]. Thus, more sen-

sitive mutation-testing methods are urgently needed to improve clinical diagnosis. We

evaluated the sensitivity of our method with serial dilutions (2,5%; 1,25%; 0,62%; 0,31%; 0,15%

and 0,075%) of mutated DNA opportunely mixed with wild-type DNA. We prepared the

Tissue and ctDNA genotyping by combination of in-tube hybridization and universal tag-microarray
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mixtures starting from the heterozygous reference standards by Diatech Pharmacogenetics

(50% mutated G12A, G12C, G12D, G12R, G12S, G12V and G13D alleles) with a constant

input of 20 ng of total DNA for all the mutations. To build the calibration curves for each of

the seven most common mutations of the KRAS gene, we spotted the barcode probes shown in

Fig 2A in 14 replicates on a coated silicon slide (one slide for each mutations) and then we

used to separate the dilutions a commercial incubation chamber (Nexterion IC-16, SCHOTT)

(Fig 3A). Samples with increasing percentage of mutated DNA were hybridized simulta-

neously in different wells (Fig 3B). The value of fluorescence intensity detected for each of the

Fig 2. Examples of genotyping of KRAS, NRAS and BRAF mutations. A) Schematic representation of the spotted barcode probe array. Silicon chips coated with

copoly(DMA-NAS-MAPS) are used as substrates for the covalent attachment of amino-modified barcode probe oligonucleotides arrayed at discrete locations. Each

position in the grid identifies an individual barcode probe address corresponding to KRAS codon 12–13, KRAS codon 61 (Q61H1 c.183A>C, Q61H2 c.183A>T), KRAS
codon 146, NRAS codon 12–13 and BRAF mutations. The light grey portion of the array is spotted with an amino-modified oligonucleotide (COCU8), not correlated

with the genes, to be used as reference spots. B) Microarray scanning of the Cy3 fluorescence signal of five different silicon chips. Each robotically spotted array is

hybridized with an individual single strand PCR incubated with the whole set of dual-domain reporters. The fluorescence detection is obtained incubating the array with

a mixture of the universal Cy3 labeled oligonucleotide complementary to the tagged-reverse primer of the single strand PCR and with a Cy3-labeled oligonucleotide

(COCU10) complementary to COCU8. KRAS G12S, KRAS Q61R, KRAS A146T, NRAS G13R and BRAF V600E correspond to the control sample containing the

indicated mutation. All the five samples of known genotype (mutant homozygous or heterozygous in case of KRAS G12S and BRAF V600E) were correctly identified.

https://doi.org/10.1371/journal.pone.0207876.g002
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seven KRAS codon 12–13 mutations together with the background fluorescence of the control

sample (wild-type DNA) were plotted versus the percentage of mutated DNA. Fig 3C shows

an example of calibration curve for the KRAS G12S mutation. The LODs (lowest percentage of

detectable mutated DNA) extrapolated for each mutation are reported in Table 1. The deter-

mination of LOD is based on the equation: 3,3σ/s where s is the slope of calibration curve and

σ is the standard deviation of fluorescence background in wild-type sample. The LODs found

with this system range from 0,03% for KRAS G12C and G12D mutations to 0,28% for KRAS
G13D mutation. This is a significant improvement over the sensitivity of PCR sequencing

which could detect mutations only when present at 10%. The high sensitivity achieved makes

it possible to apply the method to single mutation detection in ctDNA. We choose to demon-

strate the sensitivity of our method in KRAS codon 12–13 mutations because they are highly

Fig 3. G12S calibration curve. A) Picture showing the setup utilized to realize the calibration curves for the KRAS codon 12–13 mutations. B) Microarray scanning of

the Cy3 signal of the coated silicon slide and the magnification of a portion of it showing the result of the hybridization of four different concentration of mutant DNA

in four different wells. C) Plot representing the relative fluorescence intensity of the signal corresponding to the Cy3-labeled mutated single strand PCR bound to the

G12S barcode probe. The points, calculated as the average of the intensity of four spots, correspond to the percentage of the KRAS G12S mutation in a background of

KRAS wild-type DNA. The value at point 0 represents the relative fluorescence intensity of the background presents on the G12S barcode probe array of the well

hybridized with wild-type control sample. The error bars are the standard deviations of the fluorescence intensity of each well. The equation of the trend line of the

graph is utilized to extrapolate the limit of detection (LOD) for the assay.

https://doi.org/10.1371/journal.pone.0207876.g003
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abundant in mCRC being present in 35%-56% of cases whereas the frequency of NRAS muta-

tions is between 1%-7%. Moreover, the majority of KRAS mutations are in codon 12 (80%)

and 13 (15%) of exon 2; mutations in other positions of the KRAS gene, such as codon 61 and

146, are much less frequent, representing only ~ 1% [34].

Detection of KRAS mutations in Formalin-Fixed Paraffin-Embedded

(FFPE) cancer tissues and in cell-free circulating tumor DNA (ctDNA)

The assay was validated by blind analysis of DNA extracted from 18 Formalin-Fixed Paraffin-

Embedded (FFPE) clinical samples and liquid biopsy samples. In order to correctly genotype

the tumour DNA with a single chip, we hybridized single stranded PCR of the different sam-

ples with a mixture of all specific reporters (22 mutant reporters and 5 wt reporters) in a step-

wise gradient of temperature ranging from 42˚C to 29˚C. The mixture was kept for 5 minutes

at 42, 37, 36, 30 and 29˚C. All the 18 samples were analysed in parallel and correctly genotyped

in less than 90 minutes. Typical results are shown in Fig 4 for the samples identified with

KRAS G12S mutation (A), KRAS Q61H (c.183A>C) mutation (B) and NRAS G12V mutation

(C). The corresponding wild-type is always present while different 2X2 spot replicates are pres-

ent at different locations on the slide depending on the mutation detected.

Finally, we performed a proof of concept analysis of ctDNA extracted from plasma of 4

patients with metastatic colorectal cancer to demonstrate the feasibility of our methodology as

a tool for liquid biopsy. The results of the analysis are shown in Fig 5. After having been ana-

lyzed with our approach the same samples were assayed also by ddPCR. Interestingly, the

plasma number 1, which according to the Pathological Anatomy was mutated in G12D, was

found to be mutated correctly in G12D but also in G12R. Digital PCR confirmed the presence

of G12R mutation with a fractional abundance of 0,95%. Interestingly this mutation was not

detected in the tissue biopsy. The fractional abundance of the G12D mutation found by

ddPCR was 0,036%, a value close to the limit of detection of our method but still visible. The

discordance between tissue and liquid biopsy may have a biological significance. Moreover,

considering the heterogeneity of solid tumors, we cannot exclude that the tumor section that

was selected for tissue biopsy analysis may not have been representative of the total tumor pop-

ulation. In the other 4 plasma samples there was perfect concordance between tissue biopsy,

our method and ddPCR: plasma 2 was wild-type in KRAS but mutated in BRAF codon V600E,

while plasma 3 and 4 were wild-type for all the genes analyzed.

Conclusions

In summary, we describe a microarray platform for rapid, specific and sensitive detection of

the most common mutations in the KRAS, NRAS and BRAF genes suitable for high-through-

put analysis without costly instrumentation.

Table 1. The extrapolated limits of detection for the seven most common mutations of the KRAS gene.

KRAS mutation LOD %

G12A 0,07

G12C 0,03

G12D 0,03

G12R 0,07

G12S 0,13

G12V 0,09

G13D 0,28

https://doi.org/10.1371/journal.pone.0207876.t001
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To the best of our knowledge, this is the first time that a microarray based analysis reaches

the level of sensitivity reported by this work in the detection of minority mutations in a multi-

plex assay able to genotype a large number of mutations in a single test both in tissue biopsy

samples and in circulating tumor DNA from patients with mCRC. The most significant advan-

tage of our system is the ability to separate the mutation detection from the array hybridization

without the use of enzymatic reactions such as ligases or single base extensions. Direct

Fig 4. Analysis of DNA extracted from Formalin-Fixed Paraffin-Embedded (FFPE) clinical samples. The spotting schema of the barcode sequences is the same of

Fig 2A. (A) Cy3 fluorescence image and the plot of the relative fluorescence intensity of the sample identified with KRAS G12S mutation. (B) Cy3 fluorescence image

and the plot of the relative fluorescence intensity of the sample identified with KRAS Q61H1 (c.183A>C) mutation. (C) Cy3 fluorescence image and the plot of the

relative fluorescence intensity of the sample identified with NRAS G12V mutation. The yellow squares in the images were used to highlight more easily the analyzed

spots. The bars are the average of the intensity of the 4 spots (2 X 2 subarray) of each barcode probe subarrays. The error bars are the standard deviations of the

fluorescence intensity of each sample. Q61H1 c.183A>C, Q61H2 c.183A>T.

https://doi.org/10.1371/journal.pone.0207876.g004

Tissue and ctDNA genotyping by combination of in-tube hybridization and universal tag-microarray

PLOS ONE | https://doi.org/10.1371/journal.pone.0207876 December 18, 2018 11 / 15

https://doi.org/10.1371/journal.pone.0207876.g004
https://doi.org/10.1371/journal.pone.0207876


hybridization DNA microarrays suffer from poor selectivity due to mismatch hybridization and

non-specific binding. In contrast, our approach, can readily distinguish point mutations in solu-

tion, thanks to the temperature gradient, and then the use of divergent surface barcode probe

sequences with similar properties allows rapid hybridizations of the array at room temperature.

Using the tag-microarray method, the genotyping of clinical sample, can be obtained in less

than 90 minutes, a time significantly shorter than that of direct sequencing, which is generally

considered a gold standard for clinical diagnosis, which normally takes 1–2 working days.

Finally, it is worth noticing the versatility of this approach that could be defined "universal":

several mutations can be detected using the same barcoded microarray simply by changing the

portion of the dual domain reporter that is complementary to the mutated sequence. Thus,

this innovative technique is suitable for routine diagnosis of a wide range of genetic variations.

Fig 5. Analysis of ctDNA extracted from plasma of 4 patients with metastatic colorectal cancer. A) Microarray scanning of the Cy3 fluorescence signal of four

different plasma samples. Only the part of the array corresponding to the barcode probes for KRAS codon 12 and 13 is shown. In Plasma1 the barcode probes

corresponding to KRAS G12D and G12R mutation are highlighted. B) Schematic representation of the spotted barcode probe array. Q61H1 c.183A>C, Q61H2

c.183A>T C) Microarray scanning of the Cy3 fluorescence signal of the BRAF codon 600 area corresponding to the BRAF barcode probes for the Plasma 2 sample. The

frame highlights the barcode probes corresponding to the BRAF V600E mutation.

https://doi.org/10.1371/journal.pone.0207876.g005
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Supporting information

S1 Fig. Genotyping of control Formalin-Fixed Paraffin-Embedded (FFPE) clinical samples.

The plots of the relative fluorescence intensity after hybridization of six control clinical sam-

ples with six spotted chips are represented. KRAS G12A, C, D, R, S, and V indicate the Forma-

lin-Fixed Paraffin-Embedded (FFEP) genotype. Q61H1 c.183A>C, Q61H2 c.183A>T. All the

bars are the average of the intensity of the 4 spots (2 X 2 subarrays) of each barcode probe sub-

arrays. The error bars are the standard deviations of the fluorescence intensity of each subar-

ray.

(TIF)

S2 Fig. Genotyping of control Formalin-Fixed Paraffin-Embedded (FFPE) clinical samples.

The plots of the relative fluorescence intensity after hybridization of three control clinical sam-

ples with three spotted chips are represented. KRAS G13D, Q61L, and NRAS G12D indicate

the Formalin-Fixed Paraffin-Embedded (FFEP) genotype. Q61H1 c.183A>C, Q61H2

c.183A>T. All the bars are the average of the intensity of the 4 spots (2 X 2 subarrays) of each

barcode probe subarrays. The error bars are the standard deviations of the fluorescence inten-

sity of each subarray.

(TIF)

S1 Table. Primer sequences, amplification length and annealing temperature (Ta) for the

KRAS (codon 12–13, 61 and 146), NRAS (codon 12–13) and BRAF (codon 600).

(DOCX)

S2 Table. Sequences of spotted probes and reporters.

(DOCX)
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