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Abstract: Phytochemicals and their metabolites are not considered essential nutrients in humans,
although an increasing number of well-conducted studies are linking their higher intake with
a lower incidence of non-communicable diseases, including cancer. This review summarizes
the current findings concerning the molecular mechanisms of bioactive compounds from grapes
and red wine and their metabolites on breast cancer—the most commonly occurring cancer
in women—chemoprevention and treatment. Flavonoid compounds like flavonols, monomeric
catechins, proanthocyanidins, anthocyanins, anthocyanidins and non-flavonoid phenolic compounds,
such as resveratrol, as well as their metabolites, are discussed with respect to structure
and metabolism/bioavailability. In addition, a broad discussion regarding in vitro, in vivo and clinical
trials about the chemoprevention and therapy using these molecules is presented.
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1. Introduction

Breast cancer was ranked as the fifth leading cause of death (627,000 deaths, 6.6%) worldwide in
2018 [1]. During the last decade, new strategies based on the use of dietary chemopreventive agents for
breast cancer management have been developed. Several in vitro and in vivo studies have reported
the beneficial effects promoted by bioactive compounds from grapes and its derivative products [2].
The positive impact on health has been attributed to its phenolic compounds, such as flavonoids,
stilbenes, anthocyanins and other molecules. This review aims to summarize the current findings
regarding the role of bioactive compounds from grapes and red wine and their metabolites on breast
cancer chemoprevention and treatment by exploring its molecular targets and mechanisms of action [3].

In cancer research, a wide variety of established breast cancer cell lines are used as experimental
models. Most of them resemble the different subtypes of breast cancer seen in the clinic. These cell lines
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offer an infinite supply of a relatively homogeneous cell population that is capable of self-replication in
standard cell culture medium and are available through commercial cell banks. The most commonly
used breast cancer cell line in the world, MCF-7, was established in 1973 at the Michigan Cancer
Foundation. With different molecular characteristics, MDA-MB-231, MDA-MB-453, MDA-MB-468,
TD47D, among others, are frequently used in studies, as will be described below [4].

2. Anticancer Effects Produced by Grapes and Seed Extracts

Grapes and their derivative products are a rich source of bioactive molecules, including flavonoid
compounds (flavonols, monomeric catechins, proanthocyanidins, anthocyanins, anthocyanidins)
and non-flavonoid phenolic compounds (resveratrol), as well as their metabolites. Several molecular
pathways involved in breast cancer cell signaling and differentiation, cell cycle arrest, apoptosis,
and metastasis can be modulated by these compounds, as described below (Figure 1).
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Figure 1. Anticancer activities promoted by phenolic compounds from grapes and red wine

and their metabolites.

A polyphenolic fraction isolated from grape seeds (GSP) containing 50% of procyanidins,
5% of catechin and 6% of epicatechin that has been described to cause irreversible inhibition growth of
MDA-MB-468, a metastatic breast cancer cell line, by a mechanism involving activation of MAPK/ERK1/2
and MAPK/p38, the two MAPK pathways associated with cell growth and differentiation. GSP also
promoted the induction of CDKI Cipl/p21 and a decrease in CDK4, resulting in G1 arrest [5].
Polyphenols obtained by hydroalcoholic extraction from grape seeds promoted a selective inhibition
of cell viability and induction of apoptotic cell death on MCF-7 cells. The authors hypothesize
that this effect is mediated by gap-junction-mediated cell-cell communications improvement via
re-localization of Cx43 proteins and up-regulation of CX43 gene, since gap junctions have been
associated with the apoptotic process [6].

Extracellular matrix remodeling, which is influenced by urokinase-type plasminogen activator
(uPA) and matrix metalloproteinases (MMPs), is a critical event in the metastasizing process.
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Dinicola et al. [7] have studied the effect of grape seed extract (GSE) containing 6.2 mg/g of catechins
and 5,6 mg/g of procyanidins on metastatic human breast carcinoma cell line focusing on migration
and invasion processes. Low GSE concentrations (25 pg/mL) were reported to strongly inhibit
MDA-MB-231 cell migration and invasion by decreasing uPA, MMP-2 and MMP-9 activity, as well as
down-regulating (3-catenin, fascin and NF-«B expression. On the other hand, high GSE concentration
(50 and 100 pg/mL) triggered proliferation arrest and apoptosis.

Another target in the treatment of several cancers is the inhibition of angiogenesis, which is
supported by vascular endothelial growth factor (VEGF). A study by Lu et al. [8] showed that GSE
(85% procyanidins) reduced VEGF expression in both U251 human glioma cells and MDA-MB-231
human breast cancer cells, supporting the hypothesis that GSE may be a natural anti-angiogenesis
source of compounds.

Previous studies described many phytochemicals found in grapes and wine as aromatase
inhibitors [9]. Polyphenols were demonstrated to modulate estrogen signaling and to compete for
steroid-binding sites. Kijima et al. [10] reported that GSP (74-78% proanthocyanidins and <6% catechin,
epicatechin, and their gallic acid esters) suppressed aromatase expression and activity on MCF-7aro
(aromatase transfected MCF-7 cells) and SK-BR-3 cells. Aromatase catalyzes critical reactions of
estrogen synthesis, converting androgen to estrogen, which is known to stimulate breast cancer
cell growth by binding to the estrogen receptor (ER). Another approach includes the combination
of therapeutic compounds, like doxorubicin (Dox), and phytochemicals for cancer management.
GSE (95% procyanidins) increases the efficacy of Dox in human breast cancer MCF-7, MDA-MB468,
and MDA-MB231 cells suggesting a strong possibility of a synergistic effect of GSE and Dox combination,
independent of the estrogen receptor status of cells [11].

Grape seed proanthocyanidin extract (GSPE) showed also a promising therapeutic role against
adverse effects of the chemotherapeutic agents carboplatin and thalidomide. Administration of these
agents in rats led to an enhancement in the TNF-o and IL-6 cytokine levels, which could be partially
reversed by administration of GSPE. In addition, GSPE reduced free radicals like thiobarbituric
acid-reactive substances and nitric oxide and increased glutathione and antioxidant enzymes in liver
and heart [12].

3. Flavonoid Compounds

3.1. Flavonols

Flavonols are a subgroup of the flavonoids group, structurally resembling flavones, with
the presence of an additional hydroxyl in position 3 of the A ring of the flavones general backbone
(3-hidroxyflavone) (Figure 2). The most abundant flavonols present in wine are quercetin, a majoritary
compound in this beverage, kaempferol, myricetin, isorhamnetin (quercetin 3’-methylether), and rutin,
a glucoside derivative of quercetin [13].

(a) (b) (©)
Figure 2. (a) Basic structure of flavonols. (b) Kaempferol. (c) Quercetin.

In red wine, flavonol (aglycones and glycosides) concentration ranges from around 3 to 50 mg/L [14,15],
while quercetin varies from around 1 to 10 mg/L in different wines from different regions of the world [16,17].
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Flavonol concentration appears to be related to the degree of sun exposure of the grapes while cultivated
and the degradation is both related to UV exposure and temperature [13,18]. Moreover, flavonol content
is dramatically altered during the processing of grapes, wine production, and storage [13,19,20].

Flavonol bioavailability may vary according to the substitutions found in the molecule, e.g., sugars
(mostly glycosides). A relevant example is rutin, a glycosidic disaccharide conjugate of quercetin [13].
The glycosylated forms are the most frequently found in wine and these compounds appear to be more
resistant to degradation than their correspondent aglycones [21].

We discuss below the particular effects of quercetin and kaempferol, the most abundant flavonols
in wine, on breast cancer. Their effects encompass both chemoprevention and therapy. Although their
aglycone forms share a high structural resemblance, the targets, mechanisms of action and bioavailability
of these compounds may vary according to the metabolites produced and substitutions found [22,23].

The anticancer effects of kaempferol and quercetin have been described in several different
cancer types, such as bladder, breast, prostate, ovarian, liver, and colon. A special feature is given
to breast cancer due to a superior number of published works. The few epidemiological studies
available using flavonoids such as quercetin or kaempferol on breast cancer involve the observation
of their dietary contribution. However, their findings vary from null to positive effects in cancer
prevention [24-26]. It is important to mention that, in spite of the larger number of basic research
papers published so far, there is a small number of pre-clinical and clinical studies using kaempferol or
quercetin as anticancer agents [27,28]. This is due to their low bioavailability, which is around 2% for
kaempferol [29,30] and 20% for quercetin, while only 1% was found in the free form in serum [31,32].
This has inspired several works describing drug delivery systems including quercetin and other drugs,
such as doxorubicin [33-35]. Likewise, the blending of kaempferol and other flavonoids, either in a
complex mixture [36] or simply in combination with quercetin, has been described to increase their
anticancer properties [37].

In a general way, the anticancer activities of these two flavonols in breast cancer can be organized in
three groups: apoptosis induction, growth inhibition (cell cycle arrest), and inhibition of the metastatic
behavior: invasion, migration and epithelial-mesenchymal transition (EMT). Several different papers
describe the effects of kaempferol and quercetin in the induction of apoptosis in breast cancer cells,
such as MCF-7, MDA-MB-453, SK-BR-3, and MDA-MB-231 [38-40]. Kaempferol and quercetin decrease
the growth of MCF-7 and MDA-MB-231 cells with micromolar concentrations. However, the MCF-7 cell
line appeared to be more sensitive to quercetin than MDA-MB-231 [41-44]. The same was observed for
kaempferol in an MCF-7 3-D model, with ERK signaling being responsible for the apoptotic death [45]
and cell cycle arrest at the sub-G1 phase [40].

Kaempferol was found to inhibit the RhoA and RacA signaling pathways, leading to cell migration
and invasion inhibition in MDA-MB-231 and MDA-MB-453, triple negative breast cancer (TNBC)
cells [41]. This compound was also found to promote PARP cleavage for apoptosis induction through
the downregulation of Bcl-2 and BAX induction [38]. On the other hand, kaempferol demonstrated
a strong antioxidant activity that was able to attenuate ROS-induced hemolysis and to promote an
antiproliferative effect on different tumor cell lines, including MCF-7 cells [46].

Quercetin has been widely reported for its activity against breast cancer cell lines such as MCE-7
and MDA-MB-231 [47-49]. The mechanisms of action involved apoptosis induction through different
pathways, such as caspase activation through the mitochondrial pathway [50,51], inhibition of the Akt
signaling pathways [52,53], and cell cycle arrest in the G2/M phase [39,44,50,54]. These effects have
been shown in vitro, but also in vivo [22]. Quercetin induces necroptosis, with an increase in BAX
expression and Bcl-2 inhibition [55]. In combination with chloramphenicol, isorhamnetin, the main
metabolite of quercetin in mammals, was shown to induce mitochondrial fission through CaMKII/Drp1,
leading to apoptosis [56]. Also, quercetin-3-O-d-galactopyranoside induced apoptosis via ROS
through the inhibition of NFkf signaling pathway and activation of the BAX-caspase 3 axis [57].
Dietary quercetin has demonstrated an inverted “U”-shaped dose-dependent curve on the C3(1)/SV40
Tag breast cancer mouse model [58].
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The antimetastatic potential of these compounds involves their ability to inhibit the expression of
metalloproteinases such as MMP-3 and MMP-9 [53,59,60]. EMT and angiogenesis in breast cancer cells
are also inhibited by quercetin [61,62].

Fatty acid synthase inhibition by flavonoids has been reported and associated with modulation of
cell growth and promotion of apoptosis [63]. Quercetin led MDA-MB-231 and MCF-7 cells to EGFR
reduction and this signaling promoted fatty acid alterations, including fatty acid isomerization and free
radicals production [64].

The structure similarity of estradiol and flavones confers on them a potential to interfere in tumor
growth and development through the interaction with ERs [65-68] and aromatase [69,70]. Preliminary
reports show an anti-estrogenic activity for quercetin [71,72], but kaempferol stood out in a panel
of phytoestrogens as the one with the most affinity with ERe, which enhances estrogen-dependent
cell proliferation [68], displaying estrogenic affinity at 5 uM in a luciferase model in MCF-7 cells.
Also, in this cell line, kaempferol revealed a dual effect, according to the concentration used: at
the 10 uM range, it was described as an ER competitor with estrogen, since the increase in estrogen
concentration was able to impair its functions. On the other hand, at a higher concentration of
kaempferol, 100 uM, increments in estrogen concentration were unable to block the kaempferol effect,
suggesting different pathways for activation by this compound [73].

In this sense, kaempferol is able to overcome the effects produced by triclosan and bisphenol
A, exogenous xenoestrogenic compounds considered endocrine-disrupting chemicals (EDCs) with
anti-apoptosis effects [74]. Kaempferol was shown to reverse these effects, increasing BAX levels
and reducing Bcl-2 levels, leading VM7Luc4E2 cells to apoptosis [75]. Kaempferol was also able to
suppress the EMT and metastatic-related behaviors of MCEF-7 cells induced by triclosan [76] and to
reverse triclosan-induced phosphorylation of IRS-1, AKT, MEK1/2 and ERK. In a 173-estradiol (E2)
or triclosan tumor growth-induced in vivo xenograft mouse model, co-treatment with kaempferol
inhibited tumor growth [74].

Quercetin has been described as a multidrug resistance (MDR) inhibitor in several different
works. It is defined as an inhibitor of p-glycoprotein by direct binding to this efflux pump,
but also through the downregulation of p-gp expression [77-79]. Furthermore, quercetin was
shown to potentiate the doxorubicin effect and to reduce its toxicity and side effects, both in vitro
and in vivo [33,80]. Similar effects were seen with other drugs such as docetaxel [81], tamoxifen [82],
paclitaxel and vincristine [79] using different drug delivery systems. Kaempferol is able to reverse drug
resistance promoted by ABCG2 [83,84] and to inhibit quercetin efflux by this transporter [85].

Multidrug transporters are also acknowledged in the metabolization/elimination of quercetin
and kaempferol. ABCG2 and ABCC2 participate in kaempferol-3-glucuronide (the major metabolite
of kaempferol) elimination invivo [86]. Finally, the cooperation between ABC transporters
and UDP-glucuronosyltransferases appears to regulate kaempferol glucuronidation, thus regulating
its accumulation in cells (in comparison to the glucuronide forms) with effects on the pharmacological
properties of this compound [87].

3.2. Monomeric Catechins and Proanthocyanidins

Catechins, epicatechins, and proanthocyanidins are naturally occurring flavan-3-ols, typically
found in tea, cocoa, grape, and wine [88]. Proanthocyanidins are the major phenolic compounds in
grape seed and skin [89] and catechins are present in large amounts in green and black teas [90] and in
red wine [91]. Proantocyanidins, also known as condensed tannins, are phenolic compounds that take
the form of dimers, trimers, and highly polymerized oligomers of flavan-3-ol units [92,93]. Therefore,
proanthocyanidins are metabolized to catechins and catechin derivatives [94].

Previous studies indicated that (+)-catechin and (-)-epicatechin (Figure 3) are rapidly absorbed
from the upper portion of the small intestine in both human and animal organisms [95].
Catechin bioavailability is inversely proportional to its molecular masses. For example, although
the (—)-epigallocatechin-3-gallate (EGCG) content in tea is much higher than other catechins, the peak
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plasma levels for EGCG (458 Da), (—)-epigallocatechin (306 Da), and (—)-epicatechin (290 Da) are
0.26, 0.48, and 0.19 uM, respectively. Plasma (+)-catechin concentrations increased in response to
the ingestion of a single serving of reconstituted red wine. A maximum level of (+)-catechin at
76.7 nmol/L was detected in humans at 1.4 h after intake of both dealcoholized and reconstituted
wine [91]. The bioavailability of procyanidins closely resembles that of flavan-3-ol monomers. Different
studies, following the ingestion of GSE and GSPE, have shown that during digestion, the oligomers
are fragmented into monomeric units of (+)-catechin and (—)-epicatechin and free forms of dimers
and trimers have been detected in rat plasma [96,97]. Procyanidin B1 was also detected in human
serum 2 h after intake of GSE [98]. Biotransformation of catechins directly undergoes phase II of
metabolism, where they can be methylated by catechol-O-methyltransferase (COMT), glucuronidated
by UDP-glucuronosyltransferase (UGT) or sulfated by sulfotransferase (SULT) [99]. Catechins can also
be degraded in the intestinal tract by microorganisms to ring fission metabolites M4, M6, and M6’ [100].

OH
HO O “\\@
OH

."""OH

HO

(b)
Figure 3. Structures of (a) (+)-catechin and (b) (—)-epicatechin.

The biological activities of these polyphenols that exert an effect on breast cancer were obtained
from a variety of studies, including in vitro and in vivo data. Isolated catechin decreased cell viability
and proliferation of MCF-7 human breast cancer cells at 30 and 60 pug/mL [101]. Alshatwi et al. [102]
demonstrated that catechin hydrate (150 pg/mL and 300 pg/mL) effectively induced apoptosis in MCF-7
cells through increased expression levels of caspases -3, -8, -9 and p53.

Interestingly, inhibition of cell proliferation by purified (+)-catechin and (—)-epicatechin was more
effective in hormone-sensitive breast cancer cells (MCF-7 and T47D), also demonstrating a possible
implication of steroid hormone receptors in the action of polyphenols, and in fact, a competition of
epicatechin for ER was reported [103].

The anti-carcinogenic activity of wine polyphenols is related to the protection of DNA damages
by chemically reactive molecules, such as ROS (reactive oxygen species). The antioxidant effect of
purified polyphenols was investigated in three types of breast cancer cells. The treatment with catechin
and epicatechin decreased about 80% of ROS production on T47D cells, while no effect was noticed
on MDA-MB-231 and MCE-7 cells. The authors attributed the results to different constitutive ROS
production between cell lines, hormone receptor spectrum (considering interaction of ROS and these
molecules) and limitations of the method [103].

The chemopreventive activity of GSP was demonstrated in an established carcinogen-induced
animal model of breast cancer. Adult rats that received 5% GSE (86% proanthocyanidins) showed 44%
reduction in the number of DMBA (7,12-dimethylbenz(a)anthracene)-induced mammary tumors [94].
The same effect was observed on a xenograft model using BALB/c nu/nu, athymic, ovariectomized mice
carrying MCF-7aro tumors. Mice gavaged with GSE (74-78% proanthocyanidins and <6% catechin,
epicatechin and their gallic acid esters) had a 70% reduction in tumor growth, indicating that GSE
could suppress aromatase-positive tumors in vivo [10]. On the other hand, diets supplemented with
0.1%, 0.5% and 1.0% of grape seed proanthocyanidins (3.8% of catechin and epicatechin, 96.2% of
oligomers and polymers) were not effective in reducing DMBA-induced rat mammary carcinogenesis.
The authors attributed the results to the poor absorption of the components and, thus, insufficient
amounts being available in the mammary gland to modulate tumorigenesis [104].
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In humanes, a pilot study with daily doses of grape GSPE failed to decrease plasma estrogens in
postmenopausal women [105], despite the same extract exhibit inhibition in cell growth on MCEF-7 cells
in culture [106]. A double-blind placebo-controlled randomized phase Il trial investigated the efficacy of
IH636 GSPE in patients with tissue induration, considered a late adverse effect of curative radiotherapy
for early breast cancer. In this study, 44 volunteers were given 100 mg of GSPE three times a day
orally for six months. The authors considered that the study failed to demonstrate the efficacy of
orally-administered GSPE, since there was no significant difference between the groups in terms of
external assessments (tissue hardness, breast appearance) or patient self-assessments (breast hardness,
pain or tenderness), 12 months post-randomization [107], although the same extract exhibited inhibition
in cell growth of MCF-7 cells in culture at 25 mg/L [106].

Additionally, other health effects attributed to GSE and GSPE demonstrated potential to improve
antioxidant cell defenses and modulate proinflammatory cytokines, which possibly complement
the antitumoral functions of these matrices [108].

3.3. Anthocyanins and Anthocyanidins

Anthocyanins are the most abundant flavonoid pigments in young red wines, being responsible
for their intense red color [109]. To date, the number of reported types of anthocyanins exceeds
600 [110], but the most common anthocyanidins, aglycone forms of anthocyanins, are cyanidin,
pelargonidin, delphinidin, peonidin, petunidin, and malvidin [111] (Figure 4). Anthocyanidins
could be immediately metabolized after ingestion of anthocyanins since the (3-glucosidase found
in intestinal bacteria can easily hydrolyze respective anthocyanins (glycosides) to anthocyanidins
(aglycones) [112]. Anthocyanins are known for their apparent poor bioavailability (less to 1-2%).
However, presystemic metabolism of these compounds may underestimate their bioavailability if only
parent compounds and/or phenolic acid breakdown products are targeted in bioassays. Taking into
account the original parent compounds, generated metabolites (from phase I and phase II metabolism
and from microbiota-generated) and conjugated products, total bioavailability is much higher than
previously credited, after all, anthocyanins are very influential to health [113].

(d)

Figure 4. The most frequent anthocyanidins. (a) cyanidin, (b) pelargonidin, (c) delphinidin, (d) peonidin,

(e) petunidin, (f) malvidin.

Anthocyanins show a range of antitumor activity in vitro and in vivo, from chemoprevention
to chemotherapy. Their potential antitumor effects include antioxidant activities, anti-inflammatory
effects, anti-mutagenesis, induction of differentiation and cell cycle arrest, stimulation of apoptosis,
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autophagy modulation, anti-metastasis, reversion of drug resistance and increasing the sensitivity of
cancer cells to chemotherapy [114].

The effects of anthocyanins on breast cancer are some of the most studied, both concerning
prevention and treatment of this disease. One of the proposed mechanisms of carcinogenesis is
the formation of carcinogen-DNA adducts in target tissues, which is essential to the initiation of
chemically induced breast cancer [115]. Singletary et al. [116] evaluated an anthocyanin-rich extract
from Concord grapes and the major anthocyanins detected in this extract, delphinidin aglycone
and its glucoside, for their capacity to inhibit DNA adduct formation due to the environmental
carcinogen benzo[a]pyrene (BP) in a noncancerous, immortalized human breast epithelial cell line
(MCF-10F). These authors observed that both grape extract (10 and 20 ng/mL) and isolated compounds
(0.6 uM) inhibited BP-DNA adduct formation, through enhancing phase II metabolizing enzymes
(GST and NQO1) activities, and suppressed reactive metabolites such as ROS.

Syed et al. [117] also showed that delphinidin, the most common anthocyanidin monomer,
could prevent tumor development and malignant progression through inhibition of breast oncogenesis.
These authors also assessed experiments with the MCF-10A cell line, a non-tumorigenic mammary
epithelial cell line for studying normal breast cell function and transformation, and demonstrated
that delphinidin (5 to 40 pM) inhibited HGF-induced early biochemical effects, blocking proliferation
and migration of this cell line.

Hepatocyte growth factor (HGF) is produced mainly by mesenchymal cells and acts primarily
through its only receptor, c-Met [118]. A variety of cellular responses are activated by c-Met/HGF
signaling and mediate critical physiological processes for tumor growth and metastasis in human
cancers, including angiogenesis [119], cellular invasion [120-122], and morphogenic differentiation [123].
In addition to observing effects on non-tumor breast cells, Syed et al. [117] showed that delphinidin
treatment caused growth inhibition of breast cancer cells that express HGFE, suggesting that
this compound could prevent HGF-mediated activation of signaling pathways implicated in
breast cancer.

The chemopreventive effects of delphinidin-3-glucoside were also evaluated on breast
carcinogenesis [124]. Yang et al. [124] described that this phytochemical effectively suppressed
carcinogenic transformation of MCF-10A cells induced by carcinogen treatment (NNK and BP).
After that, these authors investigated the molecular mechanism related to IncRNA HOX transcript
antisense RNA (HOTAIR) modulation. Long non-coding RNAs (IncRNA) are usually related to a group
of RNAs with more than 200 nucleotides and are not involved in protein generation, despite being
involved in different regulatory processes, such as modulation of gene expression [125]. HOTAIR, which
is over-expressed in different types of cancers, is a IncRNA that plays a role in carcinogenesis and cancer
progression by promoting cancer cell viability, growth, and metastasis [126]. In its turn, HOTAIR is
regulated by the interferon regulatory factor-1 (IRF1) protein, which decreases HOTAIR expression.
On the other hand, Akt activation decreases IRF1 expression and, consequently, elevates HOTAIR
levels [127,128]. Yang et al. [124] observed that delphinidin-3-glucoside treatment (40 uM) inhibited
HOTAIR expression in breast carcinogenesis and breast cancer cells. Besides that, these researchers also
found the same results in xenografted breast tumors in athymic mice. Mechanistically, in this study
delphinidin-3-glucoside down-regulates HOTAIR by inhibiting Akt activation and promoting IRF1.

The first report of tumor cell proliferation inhibitory activity of anthocyanidins from grape
skin was published by Zhang et al. [129]. These authors tested the cell proliferation inhibitory
activity of five anthocyanidins (cyanidin, delphinidin, pelargonidin, petunidin, and malvidin)
and four anthocyanins (cyanidin-3-glucoside, cyanidin-3-galactoside, delphinidin-3-galactoside,
and pelargonidin-3-galactoside) against diverse human cancer cell lines. Although anthocyanins
did not inhibit proliferation of any cell line tested, even at the highest concentration (200 ug/mL),
anthocyanidins inhibited cancer cell proliferation, with malvidin and pelargonidin being the most
promising compounds, since they affected many different cancer cells at the same time.
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Afaq et al. [130] evaluated the effect of delphinidin (5-40 uM) on epidermal growth factor
receptor (EGFR)-positive breast cancer AU-565 cells and non-tumorigenic MCF-10A cells. EGFR is
overexpressed in about 20% of invasive breast carcinoma [131] and has been implicated in tumor
progression since it promotes a loss of balance between proliferation and apoptosis. The authors
showed that this compound is an inhibitor of EGFR and its downstream signaling, the PI3K/AKT
and MAPK pathways, both of which play a significant role in the mitogenic and cell survival responses
mediated by EGFR. This same study also demonstrated that delphinidin treatment caused more
dramatic inhibition of growth of AU-565 cells than MCF-10A cells and had minimal effect on normal
mammary epithelial 184A1 cells, which express very low levels of EGFR, suggesting an important
contribution of EGFR in delphinidin action. Moreover, delphinidin treatment of AU-565 cells resulted
in induction of caspase 3-dependent apoptosis.

Delphinidin has also been shown to induce apoptosis and autophagy in MDA-MB-453
(concentrations of 20, 40 and 80 uM) and BT474 (concentrations of 60, 100 and 140 uM) cell lines [132].
In this study, the autophagy inhibitors, 3-methyladenine (3-MA) or bafilomycin Al (BA1), enhanced
the delphinidin-induced apoptosis in both breast cancer cell lines, suggesting that autophagy might
exert a protective effect in this experimental model. In addition, these authors showed that delphinidin
induced autophagy via the mTOR and AMPK signaling pathways.

The effect of cyanidin-3-glucoside, the main anthocyanin studied in breast cancer cells,
was evaluated on breast cancer-induced angiogenesis [133]. This anthocyanin attenuated breast
cancer-induced angiogenesis via inhibiting the expression and secretion of VEGF, the most important
angiogenic cytokine, in a dose-dependent manner (concentrations up to 20 uM). The mechanism
proposed by these authors involves the downregulation of STAT3, at both mRNA and protein level,
via inducing miR-124, resulting in VEGF inhibition. Thus, the inhibitory effect of cyanidin-3-glucoside
on the endogenous STAT3 may occur in a non-canonical way, via miRNAs, which could downregulate
target gene expression with mRNA degradation.

Recently, Liang et al. [134] reported that cyanidin-3-glucoside (20 uM) decreased the migratory
and invasive nature of triple-negative breast cancer cell lines through reversion of the EMT, which
is highly associated with cancer metastasis. Cyanidin-3-glucoside increased epithelial markers
(E-cadherin and zonula occludens-1), decreased mesenchymal markers (vimentin and N-cadherin)
and EMT-associated transcription factors (Snaill, Snail2). Mechanistically, this phytochemical also
attenuated the pivotal factor for EMT, NF-«B, and induced the inhibitor Sirt1 in triple-negative breast
cancer cell lines.

There is currently available evidence that endogenous estrogens play a critical role in
the development of breast cancer [135]. Despite the fact that triple-negative breast cancer is characterized
by a lack of ERo expression [136], data suggest that estrogen still plays a critical role in the etiology of
this type of cancer since a 36-kDa variant of ER«, known as ER alpha 36 (ERx36), is highly expressed
in triple-negative breast cancer [137] and is involved in rapid estrogen signaling [138]. Studies also
emphasize the causal link between ERx36 and EGEFR, since this receptor is one of the most critical
downstream targets of activated ERx36 signaling [138].

Wang et al. [139] found that cyanidin-3-glucoside (150 uM) preferentially promotes cell death,
by the extrinsic apoptosis pathway of triple-negative breast cancer cells (MDA-MB-231) that co-express
ER«36 and EGFR. Cyanidin-3-glucoside directly binds to the ERoa36 receptor, which in turn inhibits its
downstream signaling, the EGFR/AKT pathway leading to EGFR degradation through the proteasome
system. A xenograft mouse model also confirmed these properties of cyanidin-3-glucoside.

Fernandes et al. [140] evaluated the effect of cyanidin-3-glucoside, delphinidin-3-glucoside,
and vinylpyranoanthocyanin-catechins (portisins) on MCF-7 cells. Overall, the studied compounds
inhibited, in a dose-dependent manner (12.5-100 uM), the growth of MCE-7 cells, however,
delphinidin-3-glucoside and its respective portisin presented the highest cytotoxic effect. This same
study also highlighted a structural requirement for a more potent cytotoxicity effect on MCF-7 cells,
characterized by an ortho- trihydroxylated substituent attached to the phenolic ring. Nevertheless,
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this study was unable to elucidate whether anthocyanins antiproliferative effect could be dependent or
independent of ERs or other molecular pathways involved.

Although the monoclonal antibody trastuzumab improves survival of patients with HER2-positive
breast cancers [141], the majority of patients who initially respond to this therapy demonstrate
disease progression within 12-24 months [142]. Thereby, identifying alternative strategies to
overcome trastuzumab resistance targeting HER2 may improve treatment response in breast
cancer. Li et al. [143] investigated the antitumor properties of anthocyanins, peonidin-3-glucoside,
and cyanidin-3-glucoside, on parental HER2-positive cells and their trastuzumab-resistant cell lines.
Treatment with cyanidin-3-glucoside and peonidin-3-glucoside significantly inhibited cell growth
in the parental and trastuzumab-resistant cells in a dose-dependent manner. The authors also
observed that the mechanisms of action of cyanidin-3-glucoside (5 pg/mL) and peonidin-3-glucoside
(5 ug/mL) involve the inhibition of HER2 phosphorylation, the induction of apoptosis in both sensitive
and trastuzumab-resistant cell lines, and in a higher anthocyanins concentration (1 mg/mL), an inhibition
of trastuzumab-resistant cells migration and invasion was also observed. Besides that, treatment with
both anthocyanins (6 mg/Kg/twice weekly, intraperitoneal) reduced trastuzumab-resistant cell-mediated
tumor growth in vivo.

As described above, cyanidin-3-glucoside can act alone against breast cancer. However, it has also
been shown to be effective in combination with trastuzumab in three representative HER2-positive breast
cancer cell lines [144]. These researchers demonstrated that HER2 inactivation seems to represent a
central role in the synergistic effect between cyanidin-3-glucoside and trastuzumab in all HER2-positive
breast cancer cells tested. Moreover, cyanidin-3-glucoside (5 ng/mL) alone and in combination with
trastuzumab (5 pg/mL) induced cell apoptosis in HER2-positive cell lines. These authors also evaluated,
in an in vivo xenograft model in mice, the effect of 6 mg/mL cyanidin-3-glucoside in association with
6 mg/mL trastuzumab intraperitoneally twice a week for 25 days. These results demonstrated that
anthocyanins were able to significantly enhance trastuzumab-induced tumor growth inhibition.

4. Non-Flavonoid Phenolic Compounds

Resveratrol

Natural stilbenes are an important group of non-flavonoid polyphenols characterized by
the presence of a 1,2-diphenylethylene nucleus in their structure [145]. Among them, resveratrol
(3,4’ 5-trihydroxy-trans-stilbene) is a phenolic compound derived from grapes, berries, peanuts,
and other plant sources. The molecule consists of two aromatic rings that are connected through a
methylenic bridge and exists as cis- and trans-resveratrol isomers (Figure 5), and their glucosides,
cis- and trans-piceid [146]. Resveratrol was originally identified as a phytoalexin by Langcake
and Pryce [147] and is produced by a wide range of plant species under stressful environmental
conditions, such as pathogen infection and ultraviolet radiation. Grapes and their derivative products,
particularly red wine, are the most important natural sources of resveratrol. The resveratrol composition
of wines depends on the grape varieties used, as well as the growing conditions and the wine-making
methods, which may vary. In fresh grape skin, the concentration of this compound is in the range of
50-100 pg per gram, and red wine contains about 1.9 + 1.7 mg/L of trans-resveratrol [148-152].

In humans, resveratrol is extensively metabolized and rapidly eliminated. When consumed orally,
the molecule is absorbed via passive diffusion or by membrane transporters in the intestine, and then
conjugated into glucuronides and sulfates. Although oral absorption is around 75%, only a small
fraction of resveratrol ingested from dietary sources reaches the bloodstream and body tissues. It was
previously described that metabolism in the liver and intestine results in oral bioavailability of about
1-2% of trans-resveratrol [153-155]. Rapid conjugation and low bioavailability are some of the major
limitations and challenges of the in vivo use of this compound. Different methodological approaches,
such as encapsulation in liposomes, emulsions, micelles, insertion into polymeric nanoparticles,
solid dispersions, and nanocrystals, have been developed to improve the low aqueous solubility
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and the poor bioavailability of resveratrol [156]. Furthermore, the use of naturally occurring or
synthetic resveratrol derivatives, with a better pharmacokinetic profile, low toxicity, less side effects,
and improved biological activities, are promising strategies for clinical applications of stilbene
compounds [157].

OH
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Figure 5. Structures of stilbenes. (a) Trans- resveratrol and (b) cis-resveratrol.

Resveratrol exhibits multiple bioactivities, including anti-oxidative, anti-inflammatory,
cardioprotective, neuroprotective, anti-aging and anticancer properties. Accumulated experimental
and clinical evidence clearly shows the chemopreventive and chemotherapeutic potential of resveratrol,
as reviewed in our recent publication [158]. Scientific interest in this molecule has grown considerably
during the last 23 years, since Jang and colleagues first demonstrated the ability of resveratrol to
inhibit in vivo carcinogenesis in a mouse skin cancer model [159,160]. Resveratrol is reported to act as
a multi-target suppressor of all three carcinogenesis stages (initiation, promotion, and progression),
by regulating signal transduction pathways that control cell division and growth, apoptosis,
inflammation, angiogenesis, and metastasis. Furthermore, resveratrol increases the efficacy of
traditional chemotherapy and radiotherapy by reducing drug resistance and sensitizing tumor cells to
a chemotherapeutic agent [160-163].

A plethora of studies, including in vitro and in vivo investigations, have suggested that resveratrol
triggers chemopreventive and therapeutic responses against several tumor types, such as skin, breast,
prostate, lung, colon, and liver cancer [163,164]. As indicated by a recent search on PubMed (accessed in
April 2020), most of these studies (570 of 3524 hits) have been reported in breast cancer models. In 2005,
it was shown for the first time that resveratrol from grape consumption is inversely related to breast
cancer risk, as reported in a case-control study conducted between 1993 and 2003 in the Swiss Canton
of Vaud on 369 cases and 602 controls [165]. Among its wide range of biological properties, resveratrol
has attracted considerable attention in breast carcinogenesis because of its role as a phytoestrogen.
This compound can compete with natural estrogens for binding to ERs, thus modulating its biological
responses [146,155,166,167].

Hormone-dependent tumors may be prevented by regular exposition to selective estrogen receptor
modulators (SERMs). These compounds exhibit different levels of estrogen agonism or antagonism,
depending on the cell type and gene expression targeted by ERs [168]. Gehm and colleagues
were the first to investigate whether resveratrol would have estrogenic activity due to its structural
similarity to the synthetic estrogen diethylstilbestrol (DES; 4,4’-dihydroxy-trans-«, 3-diethylstilbene).
Based on its ability to compete with E2 for binding to and modulating the activity of ER«, resveratrol
was characterized as a phytoestrogen [169]. It binds to ER at a low micromolar range (3—-10 uM) and with
lower affinity than estradiol. Despite this, resveratrol may act as a superagonist in activating hormone
receptor-mediated gene transcription in MCF-7 cells [169,170]. In contrast, the antiestrogenic activity of
resveratrol in breast cancer was also reported, being related to pathways that inhibit estrogen-induced
cellular outcomes, such as proliferation, tumoral transformation, and progression [146]. Lu and Serrero
reported ER antagonism of resveratrol (5 pM) in the presence of E2 and partial agonism in its
absence [171]. It was also demonstrated that resveratrol exerted a mixed agonist/antagonist action
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in cells transiently transfected with ER, and mediated higher transcriptional activity when bound to
ERp than to ERx. Moreover, resveratrol showed antagonist activity with ER«, but not with ERp [172].
Based on these reports, resveratrol may be categorized as a natural SERM, since it behaves as both
agonist and antagonist of ERs. These opposite responses vary according to cell type, resveratrol
concentration, hormone competition and ERs expression [155,173]. Resveratrol also modulates
the expression of the progesterone receptor (PR). It was previously reported that resveratrol produces
greater transcriptional activation of PR than estradiol. In MCF-7 cells, resveratrol was as effective as a
maximal dose of estradiol in activating PR gene expression [169].

In tumors, expression of aromatase is upregulated compared to that of surrounding noncancerous
tissue. The suppression of in situ estrogen formation by using aromatase inhibitors is a promising
route for chemoprevention against breast cancer. In SK-BR-3 cells, resveratrol significantly reduced
aromatase mRNA and protein expression in a dose-dependent manner [174]. Resveratrol also inhibits
the expression and enzyme activity of aromatase, thus reducing localized estrogen production in breast
cancer cells [175]. When tested in a co-culture system of T47D breast cancer cells with human breast
adipose fibroblasts (BAFs), resveratrol (20 uM) promoted an aromatase inhibitory effect as potent as
20 nM of letrozole, which is a clinically used anti-aromatase drug in breast cancer treatment [176].

As reviewed by different authors, several experimental approaches have been used to describe
the molecular mechanisms of resveratrol in breast carcinogenesis [155,158,162,177]. In addition
to the phytoestrogenic action, resveratrol modulates xenobiotic metabolism by altering ABCG2
and CYP1A1 activities [178]; decreases the production of prostaglandins by inhibiting COX-2
expression and activity at multiple levels [177]; suppresses the growth of different breast cancer
cell lines and induces a number of biological pathways, thus leading to cell growth arrest
and apoptosis [155,165,177,179,180]; modulates the p53 tumor suppressor protein by inducing
post-translational modifications [158,180]; prevents mutant p53 aggregation in breast cancer cells and in
breast tumor xenografts [181]; regulates extracellular growth factors and receptor tyrosine kinases [162];
induces epigenetic mechanisms by modulation of histone acetylation/methylation [182]; inhibits
angiogenesis, EMT, and metastasis [155]; acts as an MDR reversion molecule [183] and sensitizes breast
cancer cells toward chemotherapy [161]. In animal studies, resveratrol inhibits chemically-induced
breast carcinogenesis; it reduces tumor growth, decreases angiogenesis and increases the apoptotic index
in xenograft breast cancer models; delays the tumor development, reduces the mean number and size
of tumors and diminished the number of lung metastases in spontaneous breast tumor models [155].
In recent years, accumulating evidence also suggests that resveratrol may be effective in breast cancer
management when given in combination with other naturally occurring and chemotherapeutic agents,
thus suggesting that resveratrol can enhance the efficacy of other compounds [184].

Although the antitumor activity of resveratrol in in vitro and animal breast cancer models is well
established, the clinical evidence regarding its therapeutic effect against breast cancer is still limited.
Considering that preclinical and clinical studies suggested that resveratrol may modulate several
hormone-related factors involved in breast cancer risk, a pilot phase I clinical study was conducted in
a group of forty postmenopausal women with high body mass index, to determine the clinical effect of
resveratrol on systemic sex steroid hormones. The resveratrol intervention (1 g daily, for 12 weeks) did
not result in significant changes in serum concentrations of estradiol, estrone, or testosterone, but had
favorable effects on estrogen metabolism and steroid hormone-binding globulin (SHBG) [185]. Further
clinical trials are required to ascertain and validate the efficacy of resveratrol on breast cancer.

5. Grape and Wine Metabolites and Breast Cancer (In Vitro and In Vivo Studies)

The health-promoting effect of wine can be focused on consumption, bioavailability, metabolism
and microbiota influence on bioactive compounds. There is now strong evidence that the molecules
responsible for those effects are probably not the ingested ones but rather their metabolites that occur
after the action of microbiota and absorption process. The identification and quantification of these
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metabolites has not been an easy task, but improvement of analytical methods and sensitivity has
allowed some advances in metabolomics area [186].

The WinMet database contains 2030 putative compounds present in oenological matrices covering
10 different families, such as phenols, organic acids, biogenic amines, sugars, polyols, fatty acids,
higher alcohols, aldehydes, lignans, and ketones [187]. These molecules can be divided into primary
metabolites (e.g., sugars, amino acids, and short chain organic acids) and secondary metabolites
(flavonoids and phenol compounds) and are well documented in the literature about wines [188].

Wine is a complex mixture of many different molecules and several factors interfere in its
composition, such as grape type, fermentation process, aging, among others. For example, catechin
and epicatechin decrease during aging in all wines, while gallic acid increases in almost all red
wines [189]. Thus, the purpose of this section will be to discuss in vitro and in vivo studies related
to the metabolites of the flavonoid and non-flavonoid compounds present in red wine described
previously in this review, and the relationship between these molecules and breast cancer.

The majority of phenolic compounds from grapes and wine are metabolized in the gastrointestinal
tract, where they are broken down by gut microbiota and typically involve deglycosylation, followed
by breakdown of ring structures to produce phenolic acids and aldehydes. These metabolites can be
detected in bloodstream, urine, and fecal samples by using sophisticated instrumentation methods for
quantitation and identification at low concentrations [190].

An intervention study with red wine offered to eight healthy adults for 20 days revealed significant
changes in eight metabolites: 3,5-dihydroxybenzoic acid, 3-O-methylgallic acid, p-coumaric acid,
phenylpropionic acid, protocatechuic acid, vanillic acid, syringic acid and 4-hydroxy-5-(phenyl)valeric
acid without any influence of ethanol on the microbial action [191]. The same research group
characterized the metabolome of human feces after moderate consumption of red wine by healthy
subjects during four weeks and showed 37 metabolites related to wine intake, from which 20 could
be tentatively or completely identified, including the following: wine compounds, microbial-derived
metabolites of wine polyphenols and endogenous metabolites and/or others derived from different
nutrient pathways. After wine consumption, fecal metabolome is usually enriched in flavan-3-ols
metabolites [192].

To determine which compounds in grapes and wine are the most bioactive, their
effects in disease models must be known, including absorption and metabolism. Rats that
consume a red wine extract have elevated levels of the microbial phenolic acid metabolites
3-hydroxyphenylpropionic, 3-hydroxybenzoic, 3-hydroxyhippuric, hippuric, p-coumaric, vanillic,
4-hydroxybenzoic, and 3-hydroxyphenylacetic acids in urine. These urine metabolites account for
roughly 10% of the administered red wine polyphenols [193]. Most grape and wine flavonoids
and others are rapidly metabolized in the human body, making it difficult to determine whether these
compounds are effective against disease.

Based on these metabolites, the combination of hippuric acid (HA) nanocomposite (intercalation
of hippuric acid into a zinc-layered hydroxide) with doxorubicin and oxaliplatin induced cytotoxicity
in MDA-MB-231 and MCEF-7 cell lines [194]. 4-Hydroxybenzoic acid (4-HBA) and a histone deacetylase
6 (HDACS) inhibitor could successfully reverse adryamicin (ADM) resistance in human breast cancer
cells. 4-HBA significantly promoted the anticancer effect of ADM on apoptosis induction, as evidenced
by the increased expressions of caspase-3 and PARP cleavage, which were associated with the promotion
of p53 and homeodomain interacting protein kinase-2 (HIPK2) expressions in ADM-resistant breast
cancer cells. Therefore, 4-HBA could be applied as an effective HDAC6 inhibitor to reverse human
breast cancer resistance. Herein, the 4-HBA and ADM combination might represent a useful therapeutic
strategy to prevent human breast cancer [195].

Apoptotic effects of protocatechuic acid (PCA), another metabolite of wine, were examined
on MCF-7 cells. Results showed that PCA concentration-dependently decreased cell viability,
increased lactate dehydrogenase leakage, enhanced DNA fragmentation, reduced mitochondrial
membrane potential and lowered Na*-K*-ATPase activity. PCA also concentration-dependently
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elevated caspases-3 and -8 activities and significantly inhibited cell adhesion. These findings suggest
that PCA is a potent anticancer agent to cause apoptosis or retard invasion and metastasis in breast
cancer and other cells [196].

The metabolites gallic acid, 4-O-methylgallic acid and 3-O-methylgallic acid are detected in
the plasma of humans who consume 300 mL of red wine [197]. In fact, the metabolites gallic acid
and 4-O-methylgallic acid are well correlated with wine consumption and may be used as urinary
biomarkers for wine intake in health-related studies [198]. Phenolic acid metabolites are mainly formed
from gut microbiota metabolism and could be responsible for much of the disease reduction associated
with consuming wine and grape phenolics.

Gallic acid (GA) possesses potential for antitumoral activity on different types of malignancies.
GA treatment significantly decreased the cell viability of MDA-MB-231 and HS578T cells in a
dose-dependent manner. In addition, GA exerted relatively lower cytotoxicity on non-cancer breast
fibroblast MCF-10F. The changes in cell cycle distribution in response to GA treatment led to an
increase of G0/G1 and sub-G1 phase ratio in MDA-MB-231 cells. GA also downregulated cyclin
D1/CDK4 and cyclin E/CDK2, upregulated p21Cip1 and p27Kip1 and induced activation of caspase-9
and caspase-3. In addition, it modulated p38 mitogen-activated protein kinase that was involved
in the GA-mediated cell-cycle arrest and apoptosis. GA inhibited the cell viability of TNBC cells,
which may be related to the G1 phase arrest and cellular apoptosis via p38 mitogen-activated protein
kinase/p21/p27 axis. Thus, GA could be beneficial for TNBC treatment [199]. GA also promoted
inhibition of proliferation and induction of apoptosis in MCE-7 cells. The results revealed that
GA induced apoptosis by triggering the extrinsic or Fas/FasL pathway as well as the intrinsic or
mitochondrial pathway. Furthermore, the apoptotic signaling induced by GA was amplified by a
cross-link between the two pathways. Taken together, these findings may be useful for understanding
the mechanism of action of GA on breast cancer cells and provide new insights into the possible
application of such a compound and its derivatives in breast cancer therapy [200].

5.1. Resveratrol Metabolites

Resveratrol is a minor component of red wines and, following its ingestion, it is converted
to glucuronide and sulfate metabolites, which are present in the circulatory system in nanomolar
concentrations [201]. Nevertheless, the by far most commonly studied form of resveratrol is the aglycone,
often at concentrations largely exceeding those attainable in vivo. By contrast, very little is known
about the biological activity of the resveratrol metabolites formed upon intestinal absorption, which
represent the major circulating forms of resveratrol; in particular, the glucuronic acid and the sulfate
conjugates of trans-resveratrol, which are produced at the enterocyte and hepatocyte level [202]. Besides
dihydroresveratrol, Bode et al. [203] found, in vivo and in vitro, bacterial trans-resveratrol metabolites:
3’,4-dihydroxy-trans-stilbene and 3’,4’-dihydroxybibenzyl (lunularin). In estrogen-sensitive cancer
cells, like MCF-7, 3’,4-dihydroxy-trans-stilbene showed agonist properties [204].

Resveratrol-3-O-sulfate (R3S), but no other resveratrol derivative, exerted a pronounced
antiestrogenic activity on both receptors (x and (3), with a marked preference for ER. R3S, the main
resveratrol metabolite accumulating in human plasma after ingestion of dietary amounts of resveratrol,
is an effective ER-preferential anti-estrogen in both yeast and mammalian cells [205]. A significant
increase in MCF-7 cancer cells growth rates was shown in the presence of picomolar concentrations
of dihydroresveratrol (DH-RSV) because this polyphenol has a profound proliferative effect on
hormone-sensitive tumor cell lines such as MCF-7.

The proliferative effect of DH-RSV was not observed in cell lines that do not express
hormone receptors (MDA-MB-231, BT-474 and K-562) [206]. Human MCF-7 (wild-type p53),
MDA-MB-231 (mutant p53) and nontumorigenic MCF-10A cells are treated with resveratrol
and physiological-derived metabolites (RSV-3-O-glucuronide, RSV-3-O-sulfate, RSV-4’-O-sulfate,
DH-RSV and DH-RSV-3-O-glucuronide). Cellular senescence is measured by SA-f-gal activity
and senescence-associated markers (p53, p21Cip1l/Wafl, pl6INK4a and phosphorylation status
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of retinoblastoma (pRb/tRb). While no effect is observed in MDA-MB-231 and normal cells,
resveratrol metabolites induce cellular senescence in MCF-7 cells by reducing their clonogenic capacity
and arresting cell cycle at the G2M/S phase, but do not induce apoptosis. Senescence is induced
through the p53/p21Cip1/Wafl and p16INK4a/Rb pathways, depending on the resveratrol metabolite,
and requires ABC transporters, but not ERs. Recent evidence demonstrates that resveratrol metabolites,
but not free resveratrol, reach malignant tumors (MT) in breast cancer (BC) patients. Since these
metabolites, as detected in MT, do not exert short-term antiproliferative or estrogenic/antiestrogenic
activities, long-term tumor senescent chemoprevention has been hypothesized. These data suggest
that resveratrol metabolites, as found in MT from BC patients, are not deconjugated to release free
resveratrol, but enter the cells and may exert long-term tumor-senescent chemoprevention [207].

5.2. Catechins Metabolites

Catechin appears to be metabolized only if absorbed from the small intestinal lumen.
Both 3’-O-methylcatechin-glucuronide and catechin-glucuronide are produced in intestinal cells
and methylation and sulfation of catechin metabolites occur in the liver [208]. Catechin glucuronide
and 3’-O-methylcatechin glucuronide are mainly found in plasma of rats after ingestion of
catechins [208,209]. Large amounts of the 3’-O-methyl metabolite are also found to be glucuronidated
and sulfated on the same compound, presumably produced in the liver, and are only detected in
the bile [208]. In humans, between 3.0 and 10.3% of ingested catechins from red wine are accounted for
in urine, mostly as catechin and its 39-O-methyl-glucuronide and sulfate metabolites [210].

Aside from metabolism that occurs in intestinal cells and liver, catechins can also be metabolized
by gut microbiota to produce phenolic acid metabolites. In rats, these metabolites can be found
in urine, being 3-hydroxyphenylpropionic acid, 3-hydroxybenzoic acid and 3-hydroxyhippuric
acid present in the highest concentrations [193]. When catechin is incubated with human gut
microbiota, it is metabolized to 4-hydroxybenzoic acid, 2,4,6-trihydroxybenzaldehyde, phloroglucinol
and 4-methoxysalicylic acid [211], again emphasizing the effects of individual microbiota profiles on
gut metabolism. We have not found much research showing the association of catechin metabolites
with breast cancer, only with the use of phloroglucinol, as can be seen above.

Metastasis is a challenging clinical problem and the primary cause of death in breast cancer
patients. Treatment with phloroglucinol (PG) effectively inhibited mesenchymal phenotypes of
basal type breast cancer cells through downregulation of SLUG without causing a cytotoxic effect.
Importantly, PG decreased SLUG through inhibition of PI3K/AKT and RASRAF-VERK signaling.
Treatment with PG sensitized breast cancer cells to anticancer drugs such as cisplatin, etoposide,
and taxol, as well as to ionizing radiation. Taken together, these data indicate PG to be a good candidate
to target breast cancer stem-like cells (BCSCs) and to prevent disease relapse [212,213].

5.3. Anthocyanins Metabolites

In humans, nanomolar plasma concentrations of anthocyanins are found after they are consumed.
Anthocyanins such as cyanidin-3-glucoside and pelargonidin-3-glucoside could be absorbed in
their intact form into the gastrointestinal wall, undergo extensive first-pass metabolism, and enter
the systemic circulation as metabolites. Phenolic acid metabolites were found in the bloodstream in
much higher concentrations than their parent compounds. These metabolites could be responsible for
the health benefits associated with anthocyanins [214].

After rats ate cyanidin-3-glucoside, the aglycone was only found in the small intestine,
cyanidin-3-glucoside was found in the plasma, and methylated cyanidin-3-glucoside was found
in the liver and kidney [215]. Cyanidin-3-glucoside attenuates the angiogenesis of breast cancer via
inhibiting STAT3/VEGF pathway [133].

In humans and Caco-2 cells, cyanidin-3-O-glucoside’s major metabolites are protocatechuic acid
(PCA) and phloroglucinaldehyde which are also subjected to entero-hepatic recycling, although caffeic
acid and peonidin-3-glucoside seem to be strictly produced in the large bowel and renal tissues [216].
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Previous studies evaluated the bioavailability of anthocyanins using red wine and dealcoholized
red wine [217,218]. One of the first studies is the work of Bub and co-workers who only detected
the main native anthocyanin in plasma and urine with no effect of ethanol on the amount quantified [217].
Ethanol enhances cyanidin-3-O-glucoside’s metabolism potentiating its conversion into methylated
and glucuronidated derivatives, showing an increase in the two main anthocyanin conjugates,
methyl-cyanidin-glucuronide and 3’-methyl-cyanidin-3-O-glucoside, of 59% and 57%, respectively.
But in this case, the food matrix used was blackberry puree with or without ethanol, and not wine or
grapes [219].

The accumulation of multiple phenolic metabolites might ultimately be responsible for
reported anthocyanin bioactivity, with the gut microbiota apparently playing an important role
in the biotransformation process. Nevertheless, phase II conjugates of cyanidin-3-O-glucoside
and cyanidin (cyanidin-glucuronide, methyl cyanidin and methyl-cyanidin-glucuronide) were also
detected in plasma and urine [186]. The most important metabolites corresponded to products of
anthocyanin degradation (i.e., benzoic, phenylacetic and phenylpropenoic acids, phenolic aldehydes
and hippuric acid) and their phase II conjugates, which were found at 60- and 45-fold higher
concentrations than their parent compounds in urine and plasma, respectively [220].

Delphinidin-3-glucoside, cyanidin-3-glucoside and petunidin-3-glucoside methylated metabolites
were obtained by enzymatic hemi-synthesis and decreased or did not alter the antiproliferative effect of
the original anthocyanin in MCF-7 cells [221]. The methylation reaction alters the number of hydroxyl
and methoxyl groups in ring B, so these metabolites are likely to have different antioxidant activities
in comparison with the original anthocyanins. Generally, the health effects of anthocyanins are
associated with an increase in the endogenous antioxidant defenses. In a paper by Fernandes et al. [221]
the synthetized methylated metabolites still displayed some antiproliferative activities for the three
cell lines although not as intense as parental anthocyanin. The biological studies conducted with
the metabolites in comparison with the native compounds allow understanding of the real contribution
of methylation towards the antioxidant and antiproliferative effects of anthocyanins. However,
this subject is new and needs more publications for a good discussion, especially from methylated
anthocyanin-derived metabolites.

5.4. Quercetin Metabolites

Quercetin or its metabolites may have cytotoxic activities [222]. Studies on the metabolism of
quercetin suggest degradation by intestinal microbiota and relatively low absorption [223], limiting its
use as a biomarker. Metabolism of quercetin includes 3,4-dihydroxyphenylacetic acid (DHPAA) as
homoprotocatechuic acid, m-hydroxyphenylacetic acid (mHPAA), and 3-methoxy-4-hydroxyphenylacetic
acid as homovanillic acid (HVA) [224]. These three metabolites are excreted in the urine of rats, rabbits,
and humans [224,225].

Recently, Yamazaki et al. [226,227] investigated the effects of quercetin and its main circulating
metabolite quercetin-3-O-glucuronide on MCF-10A and MDA-MB-231 cells and suggested that these
flavonoids may suppress invasion of these cells by controlling (3;-adrenergic signaling, and may be a
dietary chemopreventive factor for stress-related breast cancer.

5.5. Metabolites and Breast Cancer Patients

In relation to breast cancer patients, previous reports have shown that glycolysis, lipogenesis
and the production of volatile organic metabolites were increased in the serum of these patients
compared to healthy women [228]. The serum levels of choline, tyrosine, valine, lactate, isoleucine are
up-regulated, and glutamate levels are downregulated in patients with early-stage breast cancer [229].
These studies reveal that metabolic alterations are important indications for breast cancer. There is
evidence that metabolic changes are correlated with metastasis and metabolism of tumors [230-232].
Metabolism changes are often associated with resistance to chemotherapy and therapeutic sensitivity in
clinical chemotherapy. Breast cancer cells not only show significant differences in metabolism compared
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with healthy breast cells, but also show differences in drug resistance [233,234]. Cancer and metabolism
are deeply interconnected, studies indicate that cancer evolution is associated with abnormal glucose
metabolism that is related to high proliferation, metastasis and clinical characteristics and is allied
to the action of a particular drug. In this context, chemoresistance enables cancer cells to survive
drug action and proliferate uncontrollably, which may lead to strong metastatic potential and cancer
progression [230-234].

A recent clinical trial has reported resveratrol accumulation, mainly as sulfates and glucuronides,
in normal and malignant human breast tissues. Although phase-II conjugation might hamper a
direct anticancer activity, long-term tumor-senescent chemoprevention cannot be discarded [235].
Metabolites of wine bioactive compounds have been positively related to in vitro and in vivo breast
anticancer properties and this evidence was associated with the ingestion of several flavonoids present
in large amounts in red wine. However, the concentration required to trigger a biological event is
dependent not only on the amount ingested, but also on critical variables that include bioaccessibility,
bioavailability, stability under in vivo conditions, and so on. Many studies are still required to clarify
the role of many of these metabolites with regard to the health-promoting properties of wine.

Table 1 summarizes the data collected from the literature about the metabolite dosage used or
found in the different in vitro and in vivo models mentioned in this review.
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Table 1. Summary of metabolites found or used in different in vitro and in vivo models.

18 of 33

Dietary Factor/Isolated Compound Model (Human/Animal/Cancer Cell Lines) Sample Type Discriminating Metabolites Ave(l:fs:; (l:/rleéz‘:g;ltes Primary Reference
catechin
Red wine Fiuman Plasma 4-o-mgeatgl;1;;ﬁc acid 0.13-1.5 pmol/L. [197]
(healthy subjects) 3-O-methylgallic acid
caffeic acid
trans-resveratrol 0-0.03 uM
trans-resveratrol-4’-O-glucuronide 0-3.9 UM
. . Human trans-resveratrol-3’-O-glucuronide 0-2.7 uM
Red wine resveratrol in capsules (healthy subjects) Plasma resveratrol 0.04-0.23 M [201]
resveratrol-O-glucuronide 0.56-2.90 uM
resveratrol-O-sulfate 0.75-4.78 uM
Red wi dred . Human Plasma lcy;mil_nl?)—gh{CdOﬂde, d'eleh;r_u(lim ST%ilucostldef di 0.42-48.8 ng/mL [218]
ed wine and red grape juice (male healthy subjects) Urine malvidin 3-glucosi 9,3 }_);lourllo Sllnd 3 glucoside, petunidin o) 0.66-86.7 h
Red wine, dealcoholized red wine Human Plasma malvidin-3-elucoside 1.38 nM (maximum) [217]
and grape juice (male healthy subjects) Urine Vidin-o-glucost 13.3-27.0 ug
Human 3,4-dihydroxyphenylacetic acid 0.7 pug/mL
Habitual diets (healthy subjects) Urine m-hydroxyphenylacetic acid 4.8 ug/mL [225]
¥ sub) homovanillic acid 2.8 ug/mL
. . . Human . catechin (unmethylated conjugates) 5.32 umol
Red wine and dealcoholized red wine (healthy subjects) Urine catechin (methylated conjugates) 1.27 umol (2101
. Human . gallic acid .
Wine (healthy subjects) Urine 4-O-methylgallic acid 16-6.1 pmol/d (198]
3,5-dihydroxybenzoic acid, protocatechuic acid,
3-O-methylgallic acid, vanillic acid, syringic acid,
p-coumaric acid, phenylpropionic acid,
4-hydroxy-5-(phenyl)valeric acid, 2-hydroxyglutaric
Human acid, 2-methylbutyric acid, 2,3-pentanedione,
Red wine and dealcoholized red wine (healthy adults) Human feces diethylmalonate, 2-phenethyl butyrate, 2-phenylethyl 0.2-50 ug/g [191]
y hexanoate,
5-(3’ 4’-dihydroxyphenyl)gamma-valerolactone,
3-(3’-hydroxyphenyl)propionic acid,
4-hydroxy-5-(3’-hydroxyphenyl)valeric acid, benzoic
acid, 4-hydroxy-5-(phenyl)valeric acid
4-hydroxybenzoic acid
. Human 2,4,6-trihydroxybenzoic acid .
Catechin (healthy subjects) Feces phlorogiucinol Not determined [211]
4-methoxysalicylic acid
H dihydroresveratrol 0-86.9 pmol/L
Trans-resveratrol (health‘;lsljll;jec ts) Feces 3,4’-dihydroxy-trans-stilbene 0-11.1 pmol/L [203]

3,4’-dihydroxybibenzyl (lunularin)

0-79.8 umol/L
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Dietary Factor/Isolated Compound Model (Human/Animal/Cancer Cell Lines) Sample Type Discriminating Metabolites Ave(l:fs:; (l:/rleltjz‘:g:ltes Primary Reference
Fried onions, quercetin rutinoside, Human . . 37-72 m
querctgin aglycone (healthy ileostomy subjects) lleostomy effluent urine quercetin 73-275 pif (2231
24 labeled metabolites were identified
(cyanidin-glucuronide, methyl cyanidin-glucuronide,
methyl C3G-glucuronide, protocatechuic acid (PCA),
phloroglucinaldehyde, phloroglucinaldehyde,
PCA-3-glucuronide, PCA-4-glucuronide,
Isotopically labeled H Serum PCA-3-sulfate, PCA-4-sulfate, vanillic acid, isovanillic .
s X uman . . S o 6.11 umol/L (maximum)
cyanidin-3-glucoside (male healthy subjects) acid, vanillic acid-glucuronide, isovanillic 15.69 1L ( . ) [220]
(6,8,10,3’,5"-13C5-C3G) male healthy subjects Urine acid-glucuronide, vanillic acid-sulfate, isovanillic 67 HmOYL tmaximum,
acid-sulfate, methyl 3,4-dihydroxybenzoate,
2-hydroxy-4-methoxybenzoic acid, methyl vanillate,
3,4-dihydroxyphenylacetic acid,
4-hydroxyphenylacetic acid, caffeic acid, ferulic acid,
hippuric acid)
Urine aromatic acids 4.7-2790 ug/d
. Animal catechins 0-8 mg/d
Red wine powder (male Wistar rats) hippuric acid 0.6-3 mgé/d (193]
Plasma hippuric acid 60-110 pumol/L
catechin glucuronide 0.2-2.8 umol/L
. Animal catechin glucuronide + sulfate 0.1-0.8 umol/L
(+)-Catechin (male Wistar rats) Plasma 3’-O-meth}§l catechin-glucuronide 0.3-19.3 umol/L [208]
3/-O-methyl catechin-glucuronide + sulfate 16.8-38.3 umol/L
catechin 0.15-44.2 pmol.h.L~!
epicatechin 0-41.9 umol.hL‘i
. Plasma 3’-O-methyl-catechin 0-23.0 pmol.h.L™
(+)-Cfa teChlr} Animal 3’-O-mefhy1}—]epicatechin 0.82-78.3 umol.h.L~!
(-)-Epicatechin le Sprague-Dawley rat techi 0.01-8.85 umol.h L1 (209
(+)-Catechin + (—)-Epicatechin (male Sprague-Dawley rats) . catecint ' -9 KMo - 1
Urine epicatechin 0.03-16.6 pmol.h.L
3/-O-methyl-catechin 0-3.60 pmol.h.L™!
3/-O-methyl-epicatechin 0-9.45 umol.h.L~!
cyanidin 3-O-p-p-glucoside 0-0.31 pmol/L
Plasma ’ protocatechuif acid 0-2.56 pmol/L
g . Animal . cyanidin 3-O-p-p-glucoside 0-3.20 pmol/L
Cyanidin 3-O-f-D-glucoside (male Wistar rats) Kidney methylited cyanidin S—S—B—D-glucoside 0-1.32 pmol/L [215]
Liver cyanidin 3-O-f-p-glucoside 0 pumol/L
methylated cyanidin 3-O-3-p-glucoside 0-0.64 pmol/L
3,4-dihydroxyphenylacetic acid
Rutin Quercetin Animal Urine m-hydroxyphenylacetic acid Not determined [224]
(rabbits) p-hydroxyphenylacetic acid
homovanillic acid
Phloroglucinol Animal (athymic Balb/c female nude mice) Mice phloroglucinol phlorogllzlginrno% ﬂ(zfg of body [213]
Hippuric acid associated with Cancer cell lines (MDA-MB-231, MCF-7, Hippuric acid associated with doxorubicin or y
dpciorubicin or oxaliplatin Caco-2) Cells PP oxaliplatin 0-13-20 pg/mlL. (IC50) (194]
Cancer cell lines (MCF-7,
4-hydroxybenzoic acid Ma];lx_aﬁg_czlglfﬁgiiﬁg{{;gii17)/ izhlﬁ; | Tifnn(ir 4-hydroxybenzoic acid g_riog;(l\g [195]

(BALB/c mice)
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Table 1. Cont.

Dietary Factor/Isolated Compound Model (Human/Animal/Cancer Cell Lines) Sample Type Discriminating Metabolites Ave(l:fs:; (l:/rlelt;:g:ltes Primary Reference
. R Cancer cell lines (MCF-7, A549, HepG2, . .
Protocatechuic acid HeLa, LNCap) Cells protocatechuic acid 1-8 umol/L [196]
Gallic acid Cancer cell lines (MDA-MB-231, HS578T, Cells gallic acid 5400 uM [199]
MCE-7)
Resveratrol . resveratrol
Hydrosystilbenes Cancer cell llg;ixclf:g ég{ DA-MB-231, Cells hydrosystilbenes 1 nM-10 uM [206]
Dihydroresveratrol ! dihydroresveratrol
Resveratrol-3-O-sulfate Cancer cell line (MCF-7) Cells resveratrol-3-O-sulfate 500 nM-100 uM [205]
Resveratrol resveratrol
Resveratrol-3’-O-glucuronide resveratrol-3’-O-glucuronide
Resveratrol 3’-O-sulfate . resveratrol 3’-O-sulfate
Resveratrol 4/-O-sulfate Cancer cell lines (MCF-7, MDA-MB-231) Cells resveratrol 4'-O-sulfate 0.4-10 pmol/L [207]
Dihydroresveratrol dihydroresveratrol
Dihydroresveratrol-3’-O-glucuronide dihydroresveratrol-3’-O-glucuronide
. Cancer cell lines (BT549, MDA-MB-231, . p
Phloroglucinol MCF-7, SK-BR3, BT549) Cells phloroglucinol 0-100 uM [212]
Delphinidin-3-glucuronide delphinidin-3-glucuronide
Cyanidin-3-glucuronide Cancer cell lines (MKN-28, Caco-2, MCE-7) Cells cyanidin-3-glucuronide 6.3-100 uM [221]
Petunidin-3-glucuronide petunidin-3-glucuronide
Non-tumorigenic cell line
Quercetin-3-O-glucuronide (MCF-10A) and cancer cell line Cells quercetin-3-O-glucuronide 0.01-pM [226]

(MDA-MB-231)
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6. Conclusions

As can be seen in this compilation, grapes and wines are rich and complex sources of bioactive
molecules with multiple targets and effects. The natural polyphenols from these dietary products belong
to different classes of compounds, both flavonoid and non-flavonoid, and have been studied in different
models of breast cancer, both in vivo and in vitro. The major anticancer activities promoted by these
compounds are summarized in Figure 1 and include modulation of estrogen cell signaling, cancer cell
differentiation, cell growth inhibition, apoptosis induction and suppression of the metastatic behavior.

Based on dietary source, bioactive compounds or their metabolites used in different in vitro
and in vivo studies for breast cancer, we conclude that there is a great variation of doses utilized
or found. When the studies utilize wine or grape as a bioactive compound source, it is possible to
observe a great variation on metabolite quality and quantity. On the other hand, when the isolated
metabolite or its precursor were used, mainly in cancer cell lines, variations from 1 nM until 100 uM
were used, and some authors justify the use of these concentrations to approximate the physiological
concentrations. It is also important to point out that the effects produced by the glycosidic forms
and the aglycones might lead to different routes of absorption and/or metabolization, leading to
important variations in bioavailability and global effects produced.

The bioavailability of these compounds is another important issue that must be circumvented to
improve local biological effects. In this way, grape and wine have long been used as sources of lead
compounds in the search for breast cancer chemotherapy candidates and should be further explored in
clinical studies, along with the biotechnological improvements necessary for their application.
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