
Citation: Samtiya, M.; Matthews,

K.R.; Dhewa, T.; Puniya, A.K.

Antimicrobial Resistance in the Food

Chain: Trends, Mechanisms,

Pathways, and Possible Regulation

Strategies. Foods 2022, 11, 2966.

https://doi.org/10.3390/

foods11192966

Academic Editors: Sinisa Vidovic and

Susana Casal

Received: 29 July 2022

Accepted: 20 September 2022

Published: 22 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Review

Antimicrobial Resistance in the Food Chain: Trends,
Mechanisms, Pathways, and Possible Regulation Strategies
Mrinal Samtiya 1 , Karl R. Matthews 2 , Tejpal Dhewa 1,* and Anil Kumar Puniya 3

1 Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123029, India
2 Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
3 Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India
* Correspondence: tejpaldhewa@gmail.com

Abstract: Antimicrobial resistance (AMR) remains of major interest for different types of food stake-
holders since it can negatively impact human health on a global scale. Antimicrobial-resistant bacteria
and/or antimicrobial resistance genes (transfer in pathogenic bacteria) may contaminate food at any
stage, from the field to retail. Research demonstrates that antimicrobial-resistant bacterial infection(s)
occur more frequently in low- and middle-income countries (LMICs) than in developed countries.
Worldwide, foodborne pathogens are a primary cause of morbidity and mortality. The spread of
pathogenic bacteria from food to consumers may occur by direct or indirect routes. Therefore, an
array of approaches both at the national and international level to control the spread of foodborne
pathogens and promote food safety and security are essential. Zoonotic microbes can spread through
the environment, animals, humans, and the food chain. Antimicrobial drugs are used globally to treat
infections in humans and animals and prophylactically in production agriculture. Research highlights
that foods may become contaminated with AMR bacteria (AMRB) during the continuum from the
farm to processing to retail to the consumer. To mitigate the risk of AMRB in humans, it is crucial to
control antibiotic use throughout food production, both for animal and crop agriculture. The main
inferences of this review are (1) routes by which AMRB enters the food chain during crop and animal
production and other modes, (2) prevention and control steps for AMRB, and (3) impact on human
health if AMR is not addressed globally. A thorough perspective is presented on the gaps in current
systems for surveillance of antimicrobial use in food production and/ or AMR in the food chain.

Keywords: antimicrobial resistance/AMR; food chain; foodborne infection; pathogens; food safety;
pathways of antimicrobial resistance; regulatory guidelines

1. Introduction

Antibiotic therapy is one of the dominant strategies of contemporary medicine used to
fight bacterial infections. From the 1930s to the 1960s most antibiotics available today were
developed; the period is considered the ‘golden era’ of antibiotics [1]. Failure to develop
or discover new antibiotics and indiscriminate use of existing antibiotics without proper
guidelines are contributing factors that have led to antibiotic resistance [2]. AMR has be-
come a general threat to the prevention and management of bacterial infections [3]. Swann
was one of the first to sound the alarm about the problems linked to indiscriminate use of
antibiotics, suggesting that the enormous amount of antibiotics used without following
norms could be unsafe for human health [4].

Several decades later, with disregard for warnings, data shows, for example, from
2014 to 2016, nearly a million people died due to antimicrobial-resistant infections, and
the outlook is bleak, with premature mortality of nearly 300 million people by 2050 [5].
The relative ease of accessibility and low cost of antibiotics for treating infections have
improved human health and life expectancy. Perhaps an unintended consequence of ample
availability and low cost is off-label and unregulated widespread use and development of
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AMR. AMR occurs when microbes (i.e., bacteria, fungi, and viruses) alter their physiology
or genetic makeup following frequent contact with antimicrobial agents (i.e., antibiotics).
For example, ‘Superbugs’ are bacteria resistant to multiple antimicrobials [6]. Factors
contributing to the ‘global resistome’ or AMR include excessive overuse of antibiotics, an
international movement of people and food, poor hygiene, and the release of non-digested
antibiotics into the environment [7]. The impact on humans is exemplified by foodborne
illnesses associated with antimicrobial-resistant strains of Salmonella enterica serovar Ty-
phimurium of pork and poultry origin [8,9]. Antibiotics are often used prophylactically in
food-producing animals (i.e., cattle, chickens, and pigs); it is predicted that by 2030 such use
will increase by nearly 67% globally [10]. The abundant use of antibiotics raises concerns
about increased AMR in microbes. The World Health Organization (WHO) reports that
although 50 newer antibiotics and 10 biologicals are under evaluation, they target only
32 WHO-priority pathogens, and for the remaining pathogens, no targeted antimicrobials
have been developed [11]. To provide better treatments, the WHO and ‘Drugs for Neglected
Diseases Initiative’ by 2025 have formed a non-profit organization called ‘Global Antibi-
otic Research and Development Partnership’ to develop new antibiotics that challenge
antimicrobial-resistant organisms [11]. In LMICs, the prospect of AMR leads to increased
illness and mortality that may be linked to limited patient presentation, reduced accessibil-
ity to diagnostics, and poor access to second-line antibiotics [12]. Research establishes a
link between the indiscriminate overuse of antibiotics in agricultural production and the
increase in AMR of human infections [8,9,13–18]. AMRB can spread to humans indirectly
through ingesting contaminated food and interacting with animals harboring AMRB and
biologicals, including blood, urine, feces, saliva, and semen [19]. The use of antimicrobials,
biocides, and heavy metals in the food and agriculture sector impacts the emergence of
AMRB. AMR genes may also contaminate food; for example, a previous study showed that
plasmid-borne ampicillin-resistant genes transfer into Escherichia coli K12 from Salmonella
Typhimurium DT104 in ground meat and inoculated milk [20].

The Food and Agriculture Organization (FAO), World Organization for Animal Health
(OIE), and WHO recommended the ‘One Health’ approach supporting healthy animals,
healthy people, and healthy environments [21,22]. LMICs are far behind in the resources
available for implementing the ‘One Health’ initiative and reducing the spread of AMRB.
AMR has spread rapidly through the globalization of the food supply, increased population
in urban areas, and international travel [23].

2. Trends in AMR

The worldwide spread of antibiotic-resistant microbes substantially raises the risk
to public health [24]. The concerns surrounding AMR are exacerbated by the lack of
discovery of new antibiotics. Even when antibiotics are used properly, a few cells may
survive and transfer resistance characteristics, creating bacteria that may ultimately become
multi-antibiotic resistant [23,25]. One of the foremost reasons associated with the spread
of antibiotic resistance is the widespread overuse of antibiotics linked with the lack of
enforcement of regulations [26]. Major health problems are related to the global AMR crisis,
with an estimated 0.7 million deaths globally linked to AMR. This figure may increase to
10 million by 2050 [27]. These AMR threats are growing daily due to the occurrence of
resistivity in the bacterial strains for antibiotics, so this figure may be more in the future [28].

AMR in bacteria occurs through spontaneous mutation(s) and the transfer of genetic
material (e.g., transposons, plasmids). The paucity in developing new antibiotics limits
the number of effective antibiotics against multi-antibiotic-resistant bacteria and permits
the increase in the spread of AMRB [29]. In 2014, the WHO stated that in its six reporting
regions > 25% of Streptococcus pneumoniae were resistant to penicillin, and five out of the
six regions > 50% of Escherichia coli were resistant to third generation cephalosporins. AMR
surveillance data is limited in many regions globally, although available data suggest that in
Africa nearly 100% of bacteria are resistant to β-lactam antibiotics [12]. Antibiotic-resistant
bacteria are associated with urinary tract infections, tuberculosis, sepsis, gonorrhea, and
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foodborne illnesses. Common medical procedures, including surgery, organ transplanta-
tion, neonatal care, diabetes, and chemotherapy, present an increased human health risk
without effective antibiotics [6,30].

Research confirms that in at least ten countries, third-generation cephalosporins
fail to treat Neisseria gonorrhoeae. Similarly, carbapenem-resistant Klebsiella pneumoniae
has spread worldwide [31]. The efficacy of commonly used antimicrobials has been re-
duced because of AMR, for example, Acinetobacter, Pseudomonas, E. coli, K. pneumoniae,
Salmonella enterica, Staphylococcus aureus, and S. pneumoniae that are often linked to nosoco-
mial infections [31,32].

AMRB adversely impacts LMICs since those countries often lack the resources to
mitigate the spread of AMRB [33]. Exposure to 1000 colony-forming units (CFU) of
cephalosporin-resistant E. coli (CREC) through consumption of contaminated chicken
meat was estimated at the rate of 1.5%; the greatest concern was actually through cross-
contamination in the kitchen during a meal [8]. Aquaculture practices that include the
indiscriminate use of antimicrobial agents are linked to an increase of AMRB isolated from
farm-raised fish [34,35]. Antimicrobial-resistant microbes are seemingly ubiquitous and can
spread to new environmental niches while transferring resistance to other bacteria [36,37].
Presently, no single approach is adequate to mitigate the occurrence and spread of AMR.
Without a synchronized and multi-sectoral ‘One Health’ approach, the world may revert to
the pre-antibiotic era [6,7].

3. Mechanisms in AMR

Different mechanisms are employed by microbes against antimicrobial agents: degra-
dation of antibiotics/antibacterial agents by enzymes, modification of antibiotic targets,
altering cell wall permeability, and activation of alternate pathways [38]. AMR is recog-
nized as an international threat and is an exquisite example of the rapid adaptation of
microbes to a new bionetwork [39]. A common mechanism of resistance in bacteria is the
enzymatic degradation of antimicrobial agents. Resistance to aminoglycosides is primarily
facilitated by enzymatic degradation using acetyltransferases, nucleotidyltransferases, and
phosphotransferases [40]. An example of a naturally arising resistance mechanism influ-
encing bacteria’s survival is resistance to β-lactam antibiotics; β-lactamases have existed
for thousands of years [41]. A study on breastfed babies found that on the first day of
breastfeeding 14.3% of isolated Enterobacteriaceae were extended-spectrum β-lactamase
(ESβL) positive, increasing to 41·5% by the 60th day in the breast-fed infants [42].

Saprophytic microbes produce antimicrobial molecules that impede the growth of
adjacent microbes, thereby acting as a survival strategy. The antimicrobial molecules pro-
duced even at sublethal levels affect bacterial physiology and adaptive microbial evolution
and possibly act as signaling molecules that influence the expression of microbial and
host genes [43]. Resistance can be achieved by modification of the targeted antibiotic,
where the antibiotic fails to bind and exert a negative effect on the bacterial cell. Muta-
tions associated gyrase and topoisomerase genes are examples of this type of mechanism
that are targets of the quinolone and fluoroquinolone antibiotics [44]. Gut microbiota of
a pre-Columbian Andean mummy (980–1170 AD) harbored β-lactam, quinolones, fos-
fomycin, chloramphenicol, macrolide, sulfa, tetracycline, aminoglycoside, and vancomycin
resistance genes [45]. Resistance to fluoroquinolones has been widely documented, with
10–40% of clinical E. coli resistant to fluoroquinolones [23,46]. Fluoroquinolone resistance
mechanisms used by bacteria include modification of target (i.e., DNA-gyrase), increased
efflux (removal of the drug outside by the cell), inactivation of fluoroquinolone (by amino-
glycoside N-acetyltransferase), and targeting DNA-binding proteins [47].

Antimicrobial exposure enhances selective pressure through the survival and prolifera-
tion of bacteria having intrinsic resistance or newly attained resistance (e.g., mutations) [41].
The widespread use of antibiotics exerts selective pressure on commensal microbiota and
pathogens, increasing the likelihood of recovery of AMRB from patients [48]. The alteration
of cell-wall permeability and regulation of efflux systems are mechanisms the cell may
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employ to protect itself from certain types of antibiotics. For example, decreased sensitivity
to tetracycline is associated with genes related to efflux systems [49]. Intrinsic AMR sys-
tems are found in different genera and species of bacteria. Concerns are infections linked
to opportunistic antibiotic-resistant pathogens such as Clostridium difficile in humans or
Trueperella (Arcanobacterium) pyogenes in bovines that can ultimately result in death [50,51].

AMR genes can be acquired through vertical gene transfer (VGT; parent to progeny)
and horizontal gene transfer (HGT; transmission of cell-to-cell genetic material). VGT
and HGT may happen simultaneously. HGT results in a population of microbes having
enhanced resistance profiles through the acquisition of new resistant genes and mech-
anisms [52]. HGT can occur using pili (conjugation), bacteriophage (transduction), or
assimilation of extracellular DNA (transformation) [5]. HGT permits interspecies transmis-
sion and is a prominent driving force in the spread of AMR [23,25].

4. Pathways of AMR in the Food Chain

Food is an excellent vehicle for spreading AMR spoilage and pathogenic bacteria.
Notably, an increase in AMRB in food would have a negative effect on human health. The
degree to which AMR is spread worldwide through the food supply may not be fully
appreciated [53]. AMRB may enter the food supply at any time during the farm-to-fork
continuum. AMRB that contaminates products at the farm level is likely to remain on
raw and undercooked foods going to the consumer [54–59]. The routes of exposure to
AMRB are indirect through consumption of food and direct through contact with infected
animals or biological constituents (i.e., blood, urine, feces, saliva, semen) [19]. The potential
pathways of AMR in the food chain are shown in Figure 1.
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4.1. Spread through Foods of Animal Origin

Foods of animal origin are a primary source of AMRB in the food chain [53]. Central
to this are domesticated livestock and the meat derived from animals that are harboring
AMRB. The spread of AMR Salmonella is generally linked to contaminated poultry meat,
eggs, pork, and beef. AMR Salmonella has also been linked to turkey [60,61]. In addition
to AMRB, AMR genes have been reported in food products derived from poultry, swine,
goats, cattle, and sheep [62–64]. Seafoods grown in aquaculture systems and farms are des-
ignated as “Hotspots of AMR” due to the more significant genetic exchange, which makes
seafood more susceptible to gaining resistivity. AMR in food derived from aquaculture
could reduce antibacterial effectiveness in humans. Aquaculture also made indirect trans-
mission of resistant genes from aquatic environments (bacteria) to the pathogens related
to humans [65,66] possible. Several studies demonstrate that antibiotic-resistant microbes
and AMR genes found in humans are present in animals that have not been in contact
with humans. This suggests the transfer of AMR to humans through the consumption
of contaminated food and improper food handling [52,67]. Poultry is one of the most
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prominent vehicles for the transmission of AMR Campylobacter [53,68]. Quinolone-resistant
E. coli have been recovered from cattle and the surrounding farm environment [69]. In the
study, nearly 60 % of the E. coli isolates were recovered from calves and about 28% from the
fecal matter of cows. Results showed that there was substantial variability in the recovery
of E. coli farm samples. The prevalence of antibiotic-resistant Salmonella, Campylobacter, and
E. coli associated with veterinary samples is being tracked [70]. Large differences in the
incidences of antimicrobial-resistant E. coli associated with veal, beef, and dairy products
have been reported by Catry et al. [71].

4.2. Spread Associated with Non-Animal Origin Foods

The surveillance data of AMRB associated with foods of non-animal origin are quite
limited. Outbreak data between 2007 and 2011 indicate that foods of non-animal origin
were linked with 10% of foodborne pathogen outbreaks [72]. Certain key non-animal origin
food categories contribute to the AMR problem, including but not limited to Salmonella-
contaminated leafy greens, stem vegetables, tomatoes, and melons. Contamination of
legumes and grain with AMR E. coli contributes to the spread of AMR [72].

4.3. Environment and Water Spread of AMRB

AMRB isolated from foods is found in the animal production environment [73–75].
Research demonstrates the spread of Staphylococcus aureus at great distances through
attachment to dust particles that travel through the air [76]. Microbes in the atmosphere
frequently form large bunches of dust particles. Dispersed microbes contaminate the
environment: soil, water, vegetation, and eventually animals/humans [77,78]. Coliforms
normally associated with feces are widely dispersed in the environment, particularly
in areas adjacent to livestock production operations [79]. Methicillin-resistant S. aureus
(MRSA) has been recovered from environmental samples [80]. Friese et al. [81] reported
that 85.2% of air samples collected from swine-housing environments were positive for
livestock-associated MRSA. Dust was identified as a significant vehicle for the spread of
MRSA through the air. Drug-resistant S. aureus isolated from samples collected inside and
outside pig-housing units were likely spread by dust [82]. Dust particles may have been
involved in the spread of extended-spectrum β-lactamases-Enterobacteriaceae [83]. Water
is a crucial vehicle for the spread of extracellular mobile genetic elements associated with
AMRB-resistant organisms [84,85].

Drinking water contaminated with animal or human feces containing AMRB can be a
vehicle for spreading AMRB and antibiotic residues. The gastrointestinal tract of humans
and animals can become colonized with AMRB due to consuming water contaminated with
AMRB [86]. Water acts as a very effective vehicle for spreading AMRB, genetic elements,
and antibiotic residues with the potential to contaminate the environment, crops, and
livestock and ultimately result in human illness.

Nonpathogenic bacteria can also be a source of antibiotic resistance genes [85].
Hölzel et al. [87] predicted that AMRB could spread in the food chain through the use of
untreated human and animal manure as fertilizer. Consequently, the spread of AMRB, resis-
tant genes, and antibiotics associated with human wastewater or animal manure cannot be
overlooked. Vital et al. [88] indicated that multidrug-resistant bacteria were isolated from
irrigated water, soil, and vegetable samples collected from urban farms, suggesting that
water serves as a vehicle for the extensive spread of AMRB across different environments.

4.4. Spread-Associated Food Handlers and Food Contact Workers

Food handlers are frequently associated with the spread of AMRB resulting from poor
hygienic practices or cross-contamination from handling contaminated food. Food handlers
may harbor AMR E. coli, although limited information supports contamination of food
by such individuals [89,90]. Non-thermal technologies (high-pressure, ionizing radiation,
ultraviolet radiation, and pulsed electric field) for food processing and preservation have
been developed to improve the microbial safety of food while retaining nutritional and
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sensory qualities. Since these technologies damage cell membranes, the potential exists for
the release and transfer of genetic material associated with AMR to environments the food
contacts [53]. McMahon et al. [91] reported that sub-lethal preservation methods of food
using heat, acid, and salt could considerably change the phenotypic characteristics of AMRB
(including E. coli, S. typhimurium, and S. aureus). When used at a sub-lethal concentration(s),
certain biocides can precipitate the development of AMR and/or decreased sensitivity to
antimicrobial agents. The single exposure of a strain of S. typhimurium to a biocide resulted
in multidrug resistance in the strain [92]. Other probable routes of introducing AMR in
foods include bacteria added to food during fermentation or as probiotics. Studies have
demonstrated that AMRB has occasionally been isolated from fermented foods containing
probiotics [93,94]. Speculatively, another potential route for the spread of AMR is through
genetically modified plants. During genetic modification, AMR marker genes are used to
enable the identification of transformed cells. The resistance genes may potentially transfer
to commensal bacteria associated with plants, soil, and animals [95,96].

5. Correlation between AMR and Usage of Antimicrobials

Antibiotics are the most prescribed drugs; approximately half are not required [97].
The driving force of AMR is the inappropriate use of antimicrobial drugs [3,30]. The
use of antimicrobials during the production of foods such as meat, milk, and products
derived from these is of major concern since antimicrobial residues may remain in the foods
intended for human consumption. Considerable shifts in etiological agents of bacteremia
and the associated antimicrobial susceptibility profiles of those agents have been noted.
In clinical settings, the rapid administration of a suitable antimicrobial drug is required
to treat, for example, bacteremia, but with the emergence of AMR, treatment choices are
becoming limited [98]. The development of AMR is a common evolutionary progression for
microbes, but this is accelerated due to selective pressure caused by inappropriate use or
overuse of antimicrobials [99]. There is a compelling link between AMR and the excessive
use of antimicrobials [100–103].

In humans and animals, a range of pathogens (E. coli, S. enterica, Campylobacter spp.,
and S. aureus) may cause illness. The evidence supports that in the last couple of decades
in LMICs, consumption of antimicrobials has increased [104,105]. Patterns have evolved
with respect to the overuse of antimicrobials agents; prescribing to comply with a patient’s
request even when the infection is non-bacterial, prescribing an antibiotic that is considered
a ‘last resort’ treatment, use of improper dosage or administration, and failure to adhere to
a treatment regimen. Comprehensive data are lacking on the efficacy of antimicrobial use,
but in Organization for Economic Co-operation and Development countries, nearly half of
antimicrobial drugs are considered ineffective for heatlhcare [106].

The extensive use of antibiotics as growth-promoting agents for food animals and
aquaculture exacerbates the increase in AMRB [107]. The appearance of AMRB in the food
chain is an issue linked to the extensive use of antibiotics in aquaculture, livestock, and
crop production [52,107]; the ease of the spread of AMRB and antibiotic-resistant genes at
every phase of the food chain [107,108]; and human disease [19,21]. The administration of
antibiotics prophylactically and as growth promotants to animals increases the probability
that trace amounts of antibiotics may contaminate food and feed. Animals receiving an-
tibiotics as growth promotants often carry antibiotic-resistant bacteria, including MRSA,
antibiotic-resistant Campylobacter spp., and extended-spectrum β-lactamase (ESBL) produc-
ing Enterobacteriaceae [62,109–111]. Overuse of antibiotics leads to resistant strains that
may contaminate the food supply [23,25]. Enhanced surveillance, implementation, and
adherence to the guidelines and regulations on the use of antibiotics in food production
and human medicine are essential [112].

6. Status of AMR in the Food Chain

Antimicrobials include antibiotics and related semi-synthetic or synthetic agents that
demonstrate antimicrobial efficiency and discriminating toxicity [113]. The emergence
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of AMR limits the therapeutic possibilities of an antimicrobial, both for clinicians and
veterinarians, impacting human and animal health. The WHO issued a report indicating
that the antibiotics being developed against pathogens that present the greatest risk to
human health are insufficient to control the expanding AMR problems [31]. If not properly
regulated, AMR’s impact on mortality is alarming, with mortality increasing from 700,000
to 10 million yearly by 2050 [114].

From 1994 to 2000, AMR contagions were 6, 17, and 22% for the USA, Kuwait, and
China, respectively. By 2050, it is predicted that AMR will drop the gross domestic product
by 2–3.5%, with a decrease in livestock of 3–8%, substantially impacting the global econ-
omy [27]. Cases of MRSA bacteremia decreased by 81% between 2007 and 2013; however,
total carbapenemase-producing Enterobacteriaceae increased tenfold between 2009 and
2014 [115]. AMR emergence results in about 25,000 mortalities in the US annually, and the
number may vary depending on types of resistance and associated infections [116]. Patient
data from 2001 to 2015 in France indicate that multidrug-resistant bacteria (>2 antibiotics)
were uncommon (37 of 27,681 patients), with four deaths of which three were attributed to
other reasons [117].

India published approximately 2152 studies on AMR of which 1040 (48.3%) were
associated with humans, 70 (3.3%) with animals, 90 (4.2%) with the environment, and
11 (0.5%) linked to ‘One Health’. The remaining publications included novel agents,
diagnostics, editorials, and miscellaneous subject areas related to AMR [118]. Estimation
of the AMR problem in LMICs is based on extrapolation; for example, neonatal sepsis
attributed to drug-resistant infection was estimated at 214,500 in the year 2012 based on an
estimation of all neonatal deaths attributable to severe infection and drug-resistant infection
in first-line management [119].

AMR frequently includes ‘one world’ reflecting the ‘One Health’ approach and a
universal problem that links food systems and travel [120]. The ‘One Health’ concept
encompasses problems that have inter-relatedness between human health, animal health,
food, and the environment and raises common efforts on the part of regulatory agencies to
address those challenges [121]. This is exemplified by a research paper that included an
animated map displaying the worldwide spread of the ‘New Delhi metallo-β-lactamase
1’ or ‘NDM-1’ resistance gene [122]. Another example is the ‘mobilized colistin resistance
1’ or ‘MCR-1’ gene. The MCR-1 gene was initially isolated from pigs and humans in
China [123]. Colistin resistance was <1%, but colistin-resistant K. pneumoniae was linked to
high mortality of up to 70% [124]. Researchers reported the occurrence and frequency of
antibiotic-resistant S. aureus in 80 samples of meat and chicken. The study was conducted
on two swine farms 45% of workers were colonized with the same MRSA strain that was
isolated from swine. In the study, S. aureus isolated in 67.5% of the samples were resistant to
methicillin, and 87.5% were resistant to bacitracin [125]. A report from India on AMR indi-
cates that more than 70% of E. coli, Klebsiella pneumoniae, and Acinetobacter baumannii isolates
and almost 50% of Pseudomonas aeruginosa were resistant to third generation cephalosporins
and fluoroquinolones [118]. Additional studies indicated that among Gram-positive bacte-
ria, 42.6% of S. aureus were methicillin-resistant, and 10.5% of Enterococcus faecium were
vancomycin-resistant. For Salmonella Typhi and Shigella species, 28 and 82% were resistant
to ciprofloxacin, 0.6 and 12% to ceftriaxone, and 2.3 and 80% to co-trimoxazole, respectively.
Vibrio cholera showed resistivity rates against tetracycline that varied from 17 to 75% [126].
More than 2.8 million antibiotic-resistant infections occur annually in the US, with more
than 35,000 deaths. In 2017, 223,900 cases of Clostridium difficile occurred, and at least
12,800 people died [127]. Table 1 summarizes various AMR bacteria and their presence in
food samples.
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Table 1. Different AMR bacteria in various food samples (plant and animal origin).

AMR Microorganisms Food Samples Country/Region References

Escherichia coli, Listeria monocytogenes,
Staphylococcus aureus, and Salmonella spp. Raw bovine milk Iran [128]

ESBL producing E. coli Pigs, broiler, fish, etc. Thailand (Different
selected areas) [129]

Salmonella, L. monocytogenes, and S. aureus Raw milk, cooked food products,
and raw meat China [130]

Campylobacter jejuni, C. coli, C. iari Poultry products Africa [131]

C. jejuni, C. coli Poultry meat and neck skin Sri Lanka [132]

Escherichia coli, Salmonella, Vibrio cholerae,
Staphylococcus

Meats
products,
dairy
products, etc.

Cuba [133]

Methicillin-resistant
Staphylococcus aureus (MRSA) Pigs - [134]

Aeromonas Catfish and eel farms
(aquaculture) Netherlands (southern) [135]

Salmonella species
Animal origin food (such as
cream cake, egg sandwich, raw
meat, raw milk, etc.)

Ethiopia [136]

Bacillus spp., Erwinia spp.,
Ewingella americana. Staphylococcus spp.,
Enterobacter cloacae, and
Stenotrophomonas maltophilia

Herbal products (such ginger root,
garlic powder, etc.) - [137]

7. Microbes Displaying Resistance

The CDC is concerned about the occurrence of community-acquired AMRB. The
incidence and development of previously non-antibiotic-resistant microbes remain among
the most significant concerns. A CDC report listed 18 AMRB and fungi; some of those
microbes are presented in the following section [127]. Table 2 shows the selected microbes
that developed drug resistivity, as well as the approved antibiotic drugs for the treatment
of infection associated with those microbes.

7.1. Carbapenem-Resistant Acinetobacter (CRA)

CRA causes pneumonia, urinary tract infections, and wound infections. From a food
perspective, Acinetobacter is linked to the spoilage of meats and vegetables. Acinetobacter
may contain mobile genetic elements that are effortlessly transmitted among bacteria. Some
strains produce a carbapenemase enzyme that protects the cell from damage. Acinetobacter
is an emerging risk to hospitalized patients, as it is a fomite contaminating common medical
equipment in clinical settings. Acinetobacter baumannii is of considerable concern since it
cannot be treated with existing antibiotics. In 2017, CRA infected nearly 8500 hospitalized
patients, resulting in approximately 700 deaths in the US [127].

7.2. Carbapenem-Resistant Enterobacteriaceae (CRE)

Enterobacteriaceae include spoilage and foodborne pathogens. They may be isolated
from fresh vegetables, soil, and irrigation water. CRE is an imminent concern to patients
in healthcare settings. Patients that require devices such as catheters and may take antibi-
otics for a long duration are at maximum risk of infections with CRE. CRE also harbors
mobile genetic materials that can be spread easily between other microbes. Around 30%
of CRE carry a mobile genetic component encoding for enzyme production that targets
carbapenem antibiotics eliminating these drugs as a treatment option. Some of the most
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pathologically related Enterobacteriaceae are E. coli, Klebsiella pneumoniae, and Enterobacter
species which are common infectious agents of the intra-abdominal region and urinary
tract infections [127,138].

Table 2. Selected microbes that developed drug resistivity coupled with the release year of
antibiotic drugs.

Resistant Identified (Year) Antibiotic Released (Year)

Amphotericin B-resistant Candida auris (2016) Amphotericin B; 1959

Azithromycin-resistant N. gonorrhoeae (2011) Azithromycin; 1980

Ceftazidime-avibactam-resistant KPC-producing
K. pneumonia (2015) Ceftazidime-avibactam; 2015

Ciprofloxacin-resistant N. gonorrhoeae (2007) Ciprofloxacin; 1987

Daptomycin-resistant methicillin-resistant
S. aureus (2004) Daptomycin; 2003

Extended-spectrum β-lactamase-producing E. coli (1983) Extended-spectrum cephalosporins;
1980 (Cefotaxime)

Fluconazole-resistant Candida (1988) Fluconazole; 1990 (FDA approved)

K. pneumoniae carbapenemase (KPC)-producing
K. pneumonia (1996) Imipenem; 1985

Methicillin-resistant Staphylococcus aureus (1960) Methicillin; 1960

Penicillinase-producing N. gonorrhoeae (1976)

Penicillin; 1941Penicillin-resistant S. aureus (1942)

Penicillin-resistant S. pneumonia (1967)

Plasmid-mediated vancomycin-resistant
Enterococcus faecium (1988) Vancomycin; 1958

Vancomycin-resistant S. aureus (2002) Vancomycin; 1958
Content source: Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious
Diseases (NCEZID), Division of Healthcare Quality Promotion (DHQP) Available online: https://www.cdc.gov/
drugresistance/biggest-threats.html (accessed on 20 November 2020)

7.3. Drug-Resistant Campylobacter

Campylobacter is a major cause of foodborne illness and is associated with raw poultry
and unpasteurized milk. Campylobacter commonly causes diarrhea (bloody), fever, ab-
dominal pains, and sometimes sequelae such as irritable bowel syndrome, Guillain-Barre
syndrome, and arthritis. Around 29% of all infections are associated with strains that have
reduced sensitivity to fluoroquinolones or macrolides (azithromycin), antibiotics used to
treat severe Campylobacter infections. Campylobacter spp. are a prominent cause of diarrheal
infections and deaths (n = 109,700) in 2010 [127,139].

7.4. ESBL Producing Enterobacteriaceae

Foods such as seed sprouts (alfalfa, radish) may be favorable for Klebsiella. Klebsiella
is not considered a foodborne pathogen, but foodborne isolates may be ESBL-positive.
ESBLs are enzymes that target antibiotics such as penicillins and cephalosporins. CTX-M,
a specific ESBL enzyme, emerged in bacteria in the US and spread internationally. The
genes encoding the CTX-M enzyme can be transferred to different Enterobacteriaceae species.
The combination of CTX-M and ST131 enhances resistance and may spread in combina-
tion [127]. E. coli carrying CTX-M genes are common and considered primary contributors
to spreading resistance genes across species and/or geographic regions [140,141]. In tropi-
cal and subtropical regions, 25 to 50% of infections are linked to ESBL-E, and in the healthy
population, the carriage is 20 to 40% in regions endemic to ESBL-E [140,142].

https://www.cdc.gov/drugresistance/biggest-threats.html
https://www.cdc.gov/drugresistance/biggest-threats.html
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7.5. Vancomycin-Resistant Enterococcus (VRE)

CDC’s ‘National Healthcare Safety Network’ specified that central line-associated
bloodstream infections are most often caused by Vancomycin-resistant Enterococcus faecium.
Over 70% of E. faecium are vancomycin-resistant, the antibiotic of choice for treating
E. faecium infections. The development of vancomycin resistance may be linked to the
egregious use of vancomycin to treat MRSA and C. difficile infections [143]. Enterococcus
species may be used in starter cultures, so there is a concern that VRE may be spread by
food. However, VRE is not considered a foodborne pathogen.

7.6. Methicillin Resistant S. aureus

S. aureus is of concern in healthcare facilities as well as in the community. MRSA
was initially discovered in 1968 in association with nosocomial infections and has since
become community-acquired [144]. S. aureus infections can be challenging to treat since the
pathogen may resist methicillin and several other vital antibiotics. S. aureus is a foodborne
pathogen that causes food poisoning due to toxin production in food.

7.7. Drug-Resistant Non-Typhoidal Salmonella

Non-typhoidal Salmonella may be responsible for diarrhea, fever, and abdominal
pains. People may acquire Salmonella infections by eating contaminated foods or after
contact with the feces of infected people or animals. Antibiotics used to treat patients
with Salmonella infections include ciprofloxacin, azithromycin, and ceftriaxone. Infections
caused by resistant strains of Salmonella may be more severe and result in higher rates
of hospitalization. In 2018, it was reported that Salmonella enterica serovar Infantis was
associated with 25% of infections. The majority of infected people had no history of travel
but had eaten chicken [127]. Almost all AMR Salmonella infections are foodborne and linked
to the consumption of contaminated pork, turkey, and beef [145]. In 2017, 59,066 deaths
were due to non-typhoidal Salmonella infection [146]. International traveling has been
acknowledged as a contributing risk for Salmonella infection [147].

8. Strategies to Regulate AMR

The foodborne infections associated with AMR are foremost among key public health
concerns. Infections caused by AMRB substantially increase the morbidity and mortality
rates, especially in the developing world, while in developed nations, the therapeutic costs
increase due to these infections [148]. The WHO created a ‘Strategic and Technical Advisory
Group’ on AMR and endorsed that the WHO should be a primary party in forming the
action plan. The FAO launched its Plan for Antimicrobial Resistivity to support WHO’s
global action plan in food and agricultural regions [21]. The One Health approach was
proposed by international bodies to control AMR risks, forming an association between
WHO, FAO, and OIE as a ‘tripartite alliance’. WHO, also initiated a plan to stabilize this
worldwide issue in association with tripartite partners and issued a ‘Global Action Plan’
on AMR [22]. Emphasizing the possible strategies to regulate concerns of AMR, the five
strategic objectives of WHO’s Global Action Plan are shown in Table 3 and as follows:

Table 3. Possible strategies to regulate concerns of AMR.

Possible Strategies Consequence

Increase awareness
Awareness programs are supported by mass, and social media
repeated messaging regarding issues related to AMR, which may
decrease antibiotic usage and AMR rates.

Support knowledge
through observation

Organizations (govt/non-govt) along with industry and academia
can improve the practical knowledge to combat AMR concerns

Cleanliness, hygiene, and
preventive measures

Proper hygiene and cleanliness by following necessary guidelines
can help to decrease AMR issues.
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Table 3. Cont.

Possible Strategies Consequence

Regulate the use of
antimicrobials

Guidelines should be compulsory, especially for antibiotics used
to treat infectious diseases in animals and humans.

Improve economic situation
There is a need for investment in the advancement of novel
antimicrobial treatments, analytical tools, and vaccines. Shortage
in such investment reveals the trends of continued AMR.

8.1. Increase Awareness of AMR via Active Communication, Education, and Training

Steps should be taken simultaneously to increase the awareness of AMR and support
behavioral transformation through community communication programs that consider
diverse audiences in human and animal health and agricultural practices [21]. ‘World
Antibiotic Awareness Week’, as a part of its Global Action Plan was started by the ‘WHO’.
WHO also issued guidance for a skilled program for health workers’ learning and train-
ing, recognizing discrepancies in the quality and analysis of initiatives to strengthen the
education and training on AMR of healthcare workers [149]. Awareness programs are
supported by mass media, and social media repeated messaging regarding issues related
to AMR that may decrease antibiotic usage and AMR rates [148]. A program started by
the joint partnerships Wellcome Trust/DBT India Alliance called ‘superheroes against
superbugs’ was started in India. Its main aim was to include school students as partners to
engage creatively with the public on AMR [150]. The intention behind these efforts was
to change human behavior, social beliefs, and lack of education on the use of antibiotics
and AMR [151]. The OIE provides guiding principles on primary veterinary education,
emphasizing a planned profession with well-trained experts [152].

8.2. Support Knowledge through Observation

Resolving the issues linked to AMR requires the implementation of suitable activities
supported by a strong rationale for their cost-effectiveness as well as widespread benefits.
Organizations, including intergovernmental, professional, and non-governmental, along
with industry and academia each have significant roles to play in enhancing and trans-
forming such knowledge into practice [22]. The USA ‘National Antimicrobial Resistance
Monitoring System’, ‘Danish Integrated Antimicrobial Resistance Monitoring and Research
Programme’, and ‘Antimicrobial Resistance and Antibiotic Usage in Animals in the Nether-
lands’ are well-known programs formed by developed nations to collect data related to
AMR and the food supply [153–155]. Indeed, to control AMR it is important to realize
how resistance increases and spreads. Understanding how AMR moves in the network
of humans, animals, food, water, and the environment is relevant for developing new
tools, guidelines, and laws to regulate AMR [22]. The ‘Colombian Integrated Program for
Antimicrobial Resistance Surveillance’ (COIPARS) is a model for surveillance of foodborne
infections by the ‘International Molecular Subtyping Network’ as well as by the WHOs
‘Global Foodborne Infections Network’ [156]. The WHO ‘Advisory Group on Integrated
Surveillance of Antimicrobial Resistance’ used COIPARS methods for the regulation of
AMR and the use of antibiotics in food animals [156]. The WHO (2015) indicates that 6 out
of 47 and 6 out of 21 countries of the WHO African and Eastern Mediterranean Regions,
respectively, have national reference laboratories that evaluate the antibiotic susceptibility
of microbes [157]. In developing nations, revision of research policies for food animals,
food-derived products, and humans is needed to control the spread of AMR from farm to
fork [158].

8.3. Decrease the Occurrence of Infectious Diseases through Cleanliness, Hygiene, and
Preventive Measures

AMR bacteria arise in clinical settings (e.g., hospitals), the result of seriously ill pa-
tients requiring extensive antibiotic therapy needing a range and volume of antibiotics
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for treatment. To prevent infections, it is necessary to take robust measures to reduce the
growth and dispersal of multidrug-resistant bacterial and antimicrobial-resistant infec-
tions [22]. A recent UN report emphasizes that 97 out of 158 countries are complying with
infection prevention and control programs [159]. According to the WHO, an analysis of
country self-assessments indicated about 58% of responding countries reduced spread by
implementing actions for sanitation, hygiene, and infection prevention, with around 25%
reaching full implementation of measures [160]. Water and sanitation facilities are more
accessible for hospitals in urban regions than rural regions [161]. It is difficult to measure
the influence of water and sanitation planning on the spread of AMR. At least one study
suggests that the spread of AMR is linked to poor sanitation and polluted potable water
more than selection pressure related to the substantial use of antibiotics [162].

8.4. Regulate the Use of Antimicrobials in Human and Animal Health

Evidence suggests that AMR is more likely to spread due to the substantial, improper
use of antimicrobials. Widespread AMR has been linked to inappropriate use of antibiotics,
the result of over-prescription and ease of accessibility through Internet sales [22]. In
Denmark, avoparcin (growth promoter) was the first antibiotic that was banned (in 1995)
followed by virginiamycin in 1998 for use in animals as a growth promotant and an
inclusive ban of antibiotics in 2000 [153,163]. There was a significant reduction noted in
antibiotic use and AMR after the ban, although it had little effect on pig and poultry yields
with a small drop in productivity initially at the time of the ban [164]. Veterinary use
guidelines should be compulsory, especially for antibiotics used to treat infectious diseases
in animals and humans. It is also essential to develop measures to confirm the judicious
use of antibiotics and establish targets for evaluating progress and strategies for utilizing
veterinary antibiotics [152,165]. The ‘Global Antimicrobial Resistance Surveillance System’
was launched to support the antimicrobial resistance global action plan. The main objective
was to advance the worldwide surveillance of AMR in humans to support the evidence
on AMR and to encourage decision making in addition to driving national, regional, and
global actions [166]. In 2018, 71 countries were registered in ‘The Global Antimicrobial
Resistance Surveillance System’. According to a UN report, only 29 of 106 countries
with national surveillance systems are LIMCs [159]. OIE endorsed the strengthening
of veterinary legislation and implementation policies to confirm compliance with laws
and regulations that support the responsible and judicious use of ‘Veterinary Critically
Important Antimicrobial Agents’, ‘Veterinary Highly Important Antimicrobial Agents’,
and ‘Veterinary Important Antimicrobial Agents’ [152]. It is therefore essential that every
country include stakeholders from different sectors such as government, industry, experts,
practitioners, and international bodies to set an achievable and practicable target to decrease
antibiotic consumption [27].

8.5. Improve Economic Situation for Sustainable and Increased Investment in Novel Drugs,
Diagnostic Tools, and Vaccines

An assessment of the economic impacts on health is required to evaluate the broader
socioeconomic problem of antimicrobial resistance. Assessments should compare the
cost of doing nothing compared to the cost of action. There is a need for investment
in the advancement of novel antimicrobial treatments, as well as in analytical tools and
vaccines. The shortage in such investment reveals the fears for rapidly occurring AMR,
and returns on investment also are limited due to restrictions in use [22]. The financial
burden related to humans with existing AMR infections is insignificant compared to the
cost of not investing in new drug discoveries. AMR should be a nationwide priority to
ensure public attention, confirm investment, and assign resources to contain it positively.
The formation of robust partnerships between the public and private sectors is required
to develop solutions to the problem. In the food industry, an active political drive is
essentially needed to enact sustainable engagement, investment, research, and alternatives
to antibiotics [165,167]. To overcome the global challenge of AMR, multi-sectorial and



Foods 2022, 11, 2966 13 of 20

organized efforts should be cohesively identified and research priorities targeted while
providing appropriate funding [27,167]. A comprehensive plan is needed to reduce the
challenge of AMR in the community and for the development of effective alternatives
to the use of antibiotics in production agriculture [164]. Synthetic bacteria with useful
functionalities can be used to bio-synthesize novel antibiotics with unique antibacterial
activity under artificial and engineered regulatory methods [168].

9. Conclusions

Antimicrobial resistivity is affecting the global population, resulting in health and
financial losses. The ‘One Health’ concept is supported by the ‘World Organization for
Animal Health’ and WHO, under which suitable approaches can be developed and im-
plemented to control AMR. Currently, the major focuses are on antimicrobial residues
in food that may occur due to the indiscriminate use of antibiotics in agriculture. Food
and foodstuffs can be contaminated with AMRB at any farm-to-table continuum point.
Two major steps need to be monitored to overcome or stop the risk of AMRB in the food
chain, i.e., antimicrobial use in foods and AMRB originating from agricultural practices.
The developed approaches should be policy-based, enforced for all countries, and entirely
backed by government regulations. No action taken by a single country will resolve the
AMR problems facing the global food supply, but a collective global approach will surely
do so.
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