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Development and deployment of a
histopathology-based deep learning
algorithm for patient prescreening in a
clinical trial

Albert Juan Ramon 1 , Chaitanya Parmar1, Oscar M. Carrasco-Zevallos2,
Carlos Csiszer3, Stephen S. F. Yip2, Patricia Raciti 4, Nicole L. Stone4,
Spyros Triantos4, Michelle M. Quiroz4, Patrick Crowley5, Ashita S. Batavia3,
Joel Greshock6, Tommaso Mansi3 & Kristopher A. Standish1

Accurate identification of genetic alterations in tumors, such as Fibroblast
Growth Factor Receptor, is crucial for treating with targeted therapies; how-
ever, molecular testing can delay patient care due to the time and tissue
required. Successful development, validation, and deployment of an AI-based,
biomarker-detection algorithm could reduce screening cost and accelerate
patient recruitment. Here, we develop a deep-learning algorithm using >3000
H&E-stained whole slide images from patients with advanced urothelial can-
cers, optimized for high sensitivity to avoid ruling out trial-eligible patients.
The algorithm is validatedon adataset of 350patients, achieving an area under
the curve of 0.75, specificity of 31.8% at 88.7% sensitivity, and projected 28.7%
reduction in molecular testing. We successfully deploy the system in a non-
interventional study comprising 89 global study clinical sites and demonstrate
its potential to prioritize/deprioritizemolecular testing resources and provide
substantial cost savings in the drug development and clinical settings.

Comprehensive genetic and molecular testing of cancer tissue is cri-
tical for providing physicians with actionable insights to drive precise
selection of targeted cancer treatments1. Currently, Fibroblast Growth
Factor Receptor (FGFR) alteration testing is used to identify patients
who could benefit from FGFR-targeted therapies such as BALVER-
SA™(erdafitinib), the first targeted therapy approved by the FDA to
treat patients with metastatic or locally advanced bladder cancer who
have previously received platinum-based chemotherapy2,3. For
instance, theQIAGENTherascreen FGFRRT-PCR kit4,5 is the companion
diagnostic approved by the FDA to screen patients for the presence of

specific alterations in FGFR2 and FGFR3 genes that determine eligibility
for treatment with erdafitinib and is also used to identify which
patients are eligible to enroll in clinical trials using erdafitinib to treat
urothelial cancer6–8.

While FGFR-targeted treatments improved clinical care9, the wide
adoption of molecular testing as standard of care remains slow due, in
part, to its high cost and slow turn around, with an average 7 day turn-
around time for test results10–14. Furthermore, molecular tests require
substantial amounts of tissue with up to six, 4–5 µm sections of tumor
tissue15 and can fail to detect the target due to poor DNA/RNA quality
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and low tumor purity16. Moreover, FGFR genes are only mutated in
10–20% of advanced/metastatic urothelial cancer patients16,17, result-
ing in a majority of test results coming back FGFR-. Therefore, finding
fast, reliable strategies for screening patients is crucial for improving
patient care and efficiently enrolling clinical trials.

Hematoxylin and Eosin (H&E) staining is a routine histopatholo-
gical technique for diagnosing cancer that is affordable, widely prac-
ticed, and provides comprehensive visual representation of the tumor
and associated microenvironment18,19. Previous work has demon-
strated the feasibility of computational pathology algorithms for
tumor classification and segmentation, mutation classification, mole-
cular sub-typing, and outcome prediction from H&E images20–32. Fur-
thermore, recent studies showed that some families of FGFRmutations
may be associated with cytomorphologic tissue changes in H&E-
stained images in urothelial carcinoma33,34. Loeffler35 developed
machine learningmodels to predict the FGFR3 status of an individual’s
tumor on digitized histology slides35–37. Although promising, with an
AUC of ~0.7 on FGFR3 mutations, these studies were performed on
relatively small datasets (i.e., <300 whole slide images (WSIs)) and
therefore their generalizability is not clearly understood. Furthermore,
these algorithms did not focus on the currently clinically actionable
class of FGFR alterations4,5. To our knowledge, there have not been any
examples of these algorithms being used in a clinical trial setting.
Deploying an H&E-based FGFR+ screening device in clinical trials or
clinical practice could be valuable in a number of ways: (i) reduce costs
by avoiding molecular testing of patients that are unlikely to harbor
genetic mutations, (ii) reduce the time to enrollment or access to the
right targeted therapies by providing fast, actionable insight to phy-
sicians (i.e., enriching cohorts with patients likely being FGFR+)

In this work, we describe the development, validation, and
deployment of a deep learning (DL)-based algorithm that infers the
presence of specific FGFR alterations from common H&E-stainedWSIs
from patients with advanced urothelial cancers. Datasets from public
repositories, commercial sources, and internal clinical trials are com-
piled and the algorithm is trained on H&E-stained WSIs from >3000
patients with urothelial carcinomas and FGFR mutation status. We
perform a robust validation on multiple independent large-scale
datasets and in a prospective real-time clinical setting following the
international standard for device quality management systems (ISO
13485)38. The algorithm is deployed prospectively in a non-
interventional clinical study6 comprising 89 global study sites across
9 countries, to screen patients prior to molecular testing, enabling a
physician to halt molecular testing for patients unlikely to harbor the
targeted alterations and thereby saving tissue for other tests. We
demonstrate this technology’s potential to reduce screening burden

and improve trial efficiency. We believe this work also constitutes a
step forward for precision medicine by enabling rapid, actionable
clinical insight into a patient’s specific disease and increasing access to
effective, targeted therapies where approved for use.

Results
Algorithm development and packaging for deployment
Todevelop a robust algorithm for predicting FGFR genomic alterations
from H&E slides, we used whole slide images from patients with
muscle-invasive urothelial cancer (MIBC, pT2 or higher) or metastatic
urothelial cancer from three different cohorts: 407 from The Cancer
Genome Atlas (TCGA) consortium (https://portal.gdc.cancer.gov/
projects/TCGA-BLCA), 2811 from BLC3001 (NCT03390504), and 184
fromBLC2002 (NCT03473743), twoerdafitinib trials7,8. Theprevalence
of FGFR in each cohortwas 12.5%, 11.6% and 15.7% respectively, totaling
a ~12% average prevalence. Figure 1 shows the study design that was
followed, which is explained further in the Methods sections. The
Development Datasets were split into Training Data (85%, or
2820 slides) and Hold-out Data (15%, or 582 slides). The data split
preserved the same ratio of FGFR+ vs. FGFR- patients, as well as the
proportion of samples from each cohort. The Training Data was used
for algorithm optimization, and the Hold-out Data to assess algorithm
performance prior to packaging it for the deployment platform. Once
onboarded, a stepwise validation was performed, first with a well-
powered Retrospective Validation to decide if the algorithm would be
implemented in the clinical workflow, followed by a Deployment Set-
ting Validation to assess workflow integration of the algorithm in the
proposed deployment trial (ANNAR (NCT03955913)6).

In order to maintain high enrollment rates of FGFR+ patients and
to mitigate potential selection bias in trial participants upon deploy-
ment, the algorithm was required by the clinical and trial operations
teams to achieve a target minimum sensitivity of 0.9 on Retrospective
Validation. Thus, we performed hyperparameter tuning via 5-fold
cross-validation and selected the best-performing model with a sen-
sitivity above this target. Then, we evaluated its performance on: (1)
the Hold-out Data (i.e., 582 slides from BLC3001, BLC2002 and TCGA);
and (2) an independent dataset with slides from multiple solid tumor
tissues (i.e., PAN-Tumor dataset with 361 slides).

Figure 2 shows the receiver-operating-characteristic (ROC) curves
as well as the area under the ROC curve (AUC), area under the
Precision-Recall curve (auPR), sensitivity and specificity values for each
dataset. In the Hold-out Data (582 slides from BLC3001, BLC2002 and
TCGA), the algorithm achieved an AUC of 0.80, auPR of 0.42, sensi-
tivity 0.94 and specificity 0.38. We observed a slight drop in AUC
(0.77), auPR (0.37) and sensitivity (0.92) but similar specificity (0.38) in

Fig. 1 | Study design. Dataset use and workflow from algorithm development
through validation and deployment. Whole slide images (WSI) from three different
cohorts were used for model development: 407 from The Cancer Genome Atlas
(TCGA) consortium, 3161 from BLC3001 (NCT03390504) and 184 from BLC2002
(NCT03473743) from two erdafitinib trials7,8. A subset of 350 samples (150 FGFR +,
200 FGFR-; enriched for FGFR+ to achieve a ~93% statistical power) from the
BLC3001 cohort, the trial with closest population to the deployment setting, and

188 samples from ANNAR (NCT03955913)6, the deployment trial, were left out for
Retrospective Validation after packaging the algorithm into a deployable device
and onboarding on deployment platform. There were no patients used in both
Development and Retrospective Validation. An additional cohort with 361 slides
from multiple tumor tissues (i.e., PAN-Tumor) from a data vendor was used to
evaluate performanceof the algorithmon solid tumors as exploratory analysis after
deployment of the tool.
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the BLC3001 subset (420 slides). Consistent with observations from
other internal studies, the performance in the curated and publicly
available TCGA dataset was elevated in comparison to the real-world
clinical trial datasets. In the PAN-tumor dataset, we observed a drop in
AUC (0.75), auPR (0.39) and specificity (0.27), however, high overall
sensitivity (0.95) remained.

The selected algorithm’s sensitivity of 0.92 in the BLC3001 subset
(Fig. 2), the cohortmost representative of the deployment setting, was
well above the targeted0.9 sensitivity threshold, predefined as success
criteria by the clinical teams. Therefore, we packaged the algorithm
into a deployable Docker container, referred to as FGFR Device in
subsequent sections, following the international standard for medical
device quality management systems (ISO 13485). Once the FGFR
Devicewasonboarded in the deployment platform,wemoved forward
with the subsequent phases of the study (Retrospective Validation,
Deployment Setting Validation and Full Deployment).

Given the reported association between FGFR+ and certain his-
topathologic findings on H&E, a pathologist who is US-Board Certified
in Anatomic and Clinical Pathology reviewed randomly selected true
positive and true negative WSIs and tiles with highest attention score
within thoseWSIs33 (see AlgorithmDescription in theMethods section
for more details on tiling of WSIs and attention models). Figure 3, A-F,
shows 3 true positive and 3 true negativeWSIs of MIBC from BLC3001,
with a green heatmap provided by the algorithm representing nor-
malized attention weights. True positive slides appear to harbor areas
of solid tumor cell nests which is where attentionweights appear to be
concentrated; the morphology of the tumor on true negative slides
appears more dispersed. Figure 3, G-L, shows the tiles with highest
attention score from corresponding WSIs from A-F. True positive tiles
show more solid tumor cells of lower to intermediate grade as com-
pared with true negative tiles which show relatively more dispersed
tumor cells of higher cytologic grade. The true positive tiles showed
features in keeping with morphologies deemed typical for the few
FGFR+ mutant tumors with histologic findings described by
pathologists33, suggesting our algorithm was selecting representative
areas for the task of FGFR+ classification.

Retrospective validation of the FGFR device for deployment
The goal of Retrospective Validation was to evaluate the analytical
performance of the FGFR Device after onboarding in the deployment

platform. The dataset was comprised of 350 (150 FGFR+ and 200 FGFR-
samples; to achieve 93% power at detecting a 10% difference in sensi-
tivity using a two-sided exact test with 5% type I error) H&EWSIs from
the BLC3001 (NCT03390504) study7 (Fig. 1). Note that these 350
samples were not used for model development and have similar
characteristics as those in ANNAR, the clinical trial proposed for
deployment (i.e., samples from patients with high stage disease, and
images from the same five central laboratory sites).

The Retrospective Validation results are shown in Fig. 4A. The
sensitivity and specificity of the proposed FGFR Device was assessed
using themolecular test results as reference standard. We obtained an
88.7% sensitivity and 31.8% specificity. The specificity obtained was
above the specified threshold in the success criteria for deployment
(30%), while the sensitivity was slightly below the threshold set (90%).
Also, note that the FGFR Device returned image quality control (QC)
errors on two of the 350 slides tested. Those slides had insufficient
high quality tissue tiles to perform a prediction. Tiles were deemed of
enough quality based on their QC score, as explained in the Methods.
Stratification by gender and age showed consistent results (supple-
mental Fig. 1) with those presented in Fig. 4.

Figure 4B shows a simulated clinical trial example using the
obtained performance in A and assuming a 15% prevalence of FGFR
alterations, representative of a patient population with MIBC or
higher10. These results suggest that nearly 1 in 3 FGFR- patients (28.7%)
could be accurately ruled out of molecular screening by using our
device. Also, about 9 in 10 FGFR+ patients (88.7%) would still be
identified for subsequent confirmatorygenetic testing. Assuming a 15%
FGFR prevalence, the implied reduction in molecular screening would
be ~29% while maintaining a high sensitivity.

The central laboratory had a total of 5 laboratory sites (i.e.,
Geneva, Indianapolis, China, Japan, and Singapore) serving clinical
sites across the globe. Figure 4C shows the ROC curves along with
AUC and sensitivity values for each of the central laboratory sites.
This analysis reveals that the method is not biased towards one lab,
although most samples were scanned at one site (Site #1, N = 210
sample). Algorithm performance was at the 0.9 target sensitivity,
within the 95% CI on sensitivity for all central laboratory sites, where
the obtained point estimates were [0.9 (Site #1, N = 210), 0.9 (Site #2,
N = 47), 0.87 (Site #3, N = 35), 0.77 (Site #4, N = 30), 0.9 (Site
#5, N = 26)].

Fig. 2 | Algorithm performance on held-out datasets. In the left figure, shown in
black is the performance on the Hold-out Data (582 slides from BLC3001, BLC2002
andTCGA); in red theperformanceon the subsetwith closest population to theone
in the deployment setting (BLC3001 subset with 420 slides from the 582 slides) and
in yellow the performance on an independent dataset with slides from multiple

tumor tissues (i.e., PAN-Tumor with 361 slides). Performances are summarized in
the legend by area under the curve (AUC). The sensitivity, specificity and estimated
molecular testing reduction rate given the algorithm performance and dataset
FGFR+ prevalence values are shown in the table.
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We then evaluated the algorithm in a simulated real-world
deployment setting (outside of a clinical trial), selecting an addi-
tional “High Specificity” cut point to form a 3-tier device. The 3-tier
device provided three FGFR likelihood levels (i.e., High, Mid, Low)
based on the selected thresholds (refer to supplemental Fig. 2 for
details on threshold selection). The cut point for high specificity (i.e.,
0.9 specificity) was selected to create a distinction between theHigh vs
Mid FGFR likelihood groups, and the cut point for high sensitivity to
create a distinction between theMid vs Low FGFR likelihood groups. If
the predicted patient FGFR likelihood was High, the patient could be

prioritized for molecular screening. If the predicted patient FGFR
likelihood was Low, the patient would be deprioritized. The results are
shown in Fig. 4D. Assuming a baseline population prevalence of 15%,
the prevalence of FGFR alterations across the three tiers would be as
follows: Low= 5.9%; Medium= 11.4%; and High = 49.3%, resulting in
a >8 x enrichment of FGFR+ from the Low- to High- likelihood groups.
In this scenario, nearly half of all FGFR+ patients in the population
could be identified by testing only the 14% of patients (those con-
sidered High likelihood by the FGFR Device). These results demon-
strate the potential clinical utility of this device for prioritizing (or de-

Fig. 3 | Interpretability analysis. A–C From BLC3001, examples of randomly
selected truepositiveWSIs showingMIBC tumor tissuewithheatmaps representing
normalized attention weights (in green). The attentionweights were normalized to
1. The colorbar on the right side of each panel maps to the normalized weights, all
images in the panel share the same colorbar. Brighter green areas represent tiles
the model deemed important to make the prediction (higher attention weight).
Note that whether a slide is predicted to be FGFR+ or FGFR-, the algorithm still

yields attention weights spread across all tiles used for inference on that slide.
D–F Examples of true negative WSI with heatmaps. G–I Top scoring tiles at 40x
magnification from the true positives shown in (A–C) showmore solid tumor cells
of lower to intermediate grade, and overall in keeping with prior observations33.
J–LHigh scoring tiles from the true negatives shown in (D–F) show relatively more
dispersed tumor cells of higher cytologic grade.
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prioritizing) patients formolecular testing in a standard clinical setting
(where molecular testing may not be part of standard of care).

Deployment setting validation of the clinical trial workflowwith
the embedded FGFR device and full deployment for patient
prescreening
The goal of the Deployment Setting Validation was to assess workflow
integration of the FGFR Device in the proposed deployment trial. The
deployment trial was the non-interventional ANNAR (NCT03955913)
study6. ANNAR is a prescreening study to find FGFR+ participants with
urothelial cancer (UC) for other erdafitinib studies, such as BLC3001
(NCT03390504) study7. The clinical workflow with the embedded
FGFRDevice is shown in Fig. 5 and is explainedwith further detail in the
Methods section. The deployment workflow represents a “Centralized
Deployment” strategy where tissue is sent to a central laboratory and
tested for trial qualifying FGFR alterations. At the central laboratory,
the tissue was also stained, scanned, and (after embedding the FGFR
Device into the workflow) an automated tool sent the image to a cloud
platform daily to run the image through the Device. The physicians
then received the FGFR Device prediction on an online-portal and
could notify the central laboratory to cancel the molecular test if
desired.

The FGFR Device was run prospectively for 1month on samples
collected from patients diagnosed with MIBC (pT2 or higher) trans-
ferred in real time from the clinical trial, in parallel to molecular test-
ing, using a standardized workflow. During the period of validation in
real time, a total of 17 sampleswere received by the device. Of those 17,
a predictionwas generatedon 15 (88%)while 2 (12%) samples could not
be processed due to image QC errors. Those slides had insufficient
high-quality tissue tiles to perform a prediction. Tiles were filtered
based on theirQC score, as explained in theMethods. The turn-around
time (TAT) from receipt of images to posting results on the online-
portal (to which physicians did not have access during this phase) was
an average of 62min, with aminimum TAT of 45min andmaximum of
177min.

Due to the small number of real time samples obtained during the
validation in real time (17 samples in ~1month), supplemental retro-
spective samples from the ANNAR study (171 samples) were also run
through the clinical workflow to calculate performance metrics. The
molecular test result was used as reference, and performance is shown
in Fig. 6A. Previous FGFR negative samples could not be used due to
language contained in the ICF, so only FGFR positive samples were
used from the timeperiod prior to an updated ICF being approved and
implemented. This resulted in an elevated FGFR prevalence rate in this
cohort (84% FGFR +, compared to a reference prevalence of 15% FGFR
in MIBC—see Discussion for additional details). The sensitivity
obtained was 0.95 (with 95% confidence interval (CI) of [0.915-0.984],
and the specificity was 0.25 (with CI = [0.41-0.09])), again meeting our
trial team’s requirements tomaintain high sensitivity from an AI-based
screening tool.

The algorithm was deployed for patients in 89 global study sites
across 9 countries, following the international standard for device
qualitymanagement systems (ISO 13485)38. Once live, a patient’s tissue
sample in WSI underwent prescreening with the FGFR device prior to
undergoing confirmatorymolecular testing. Upon receiving the results
of the image-based screening, the physician decided whether to stop
molecular testing. In the event that a physician did not act on the
results of the FGFR Device, the molecular test proceeded as planned.
Results during Full Deployment of the device are shown in Fig. 6B. A
total of 24 samples were received by the device in the production
environment. A prediction was generated for 22 (91.67%) samples and
an error message (QC Failure) was generated for 2 (8.33%). The FGFR
device predicted 5 samples as FGFR- (~23%) and 3 of these samples are
FGFR- by the molecular test (1 test canceled, 1 insufficient) and thus,
the model’s sensitivity is 100%. The FGFR device predicted 17 samples
as FGFR + (~77%) and 3 of these samples are FGFR+ by the molecular
test (1 insufficient) and thus, the model’s specificity is 19%. The mole-
cular test was performed on 20 patients’ samples and an FGFR+ pre-
valence of 15% was observed. For 3 (12.5%) samples, the FGFR Device
provided a prediction, but the molecular test was not performed.

Fig. 4 | Retrospective validation results. A Confusion matrix with sensitivity and
specificity metrics (target and achieved). Note this dataset was enriched for FGFR+
patients to achieve a statistical powerof 93% (FGFRprevalenceof 43%).B Simulated
confusionmatrix given 1000 patients assuming typical FGFR+ prevalence in trial of
~15%10 and observed algorithm performance (shown in A). Note that 28.7% of
patients screened by the image-based device would not be recommended for FGFR
molecular testing. C Performance stratified by central laboratory site. Left-side plot

shows ReceiverOperating Curves (ROC) and area under the curve (AUC) values per
site. The right-side plot shows sensitivity point estimates alongwith95% confidence
intervals (CI) per site. All sites totaled to n = 348 independent samples, distributed
across Site #1 to #5 as n = 210, n = 47, n = 35, n = 30 and n = 26 respectively.
D Simulated 3-tier FGFRmodel showing potential clinical utility for prioritizing (or
de-prioritizing) patients for molecular testing in a standard clinical setting (where
molecular testing may not be part of standard of care).
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Notably, themolecular test was canceled by the investigator on 20% of
the patients predicted FGFR- by the FGFR Device. For 9% of patients
with available predictions from thedevice, therewasnot enough tissue
for a confirmatory molecular test to be performed.

To demonstrate the impact of AI-based biomarker prescreening
on molecular testing rates, we simulated three scenarios using per-
formance specifications from our FGFR model and a range of bio-
marker prevalences (Fig. 7). Figure 7A shows AI prescreening with an
operating point tuned to reducemolecular testing for patients likely to
be biomarker negative (88.7% sensitivity and 31.8% specificity as shown
in Fig. 4A), aligned with our algorithm deployed in ANNAR study sites.
Molecular testing reduction rates due to AI prescreening are shown for

a range of biomarker prevalences. Optimizing for AI prescreening with
high sensitivity results in greater false positives but fewer false nega-
tives; therefore, a substantial proportion of molecular tests can be
avoided (~30% for low-prevalence biomarkers) while minimizing the
risk that patients are incorrectly deemed ineligible for a clinical trial.
We further suggest that this AI device could be used to prioritize
patients for molecular testing, showing that half of all biomarker-
positive patients could be detected by only testing 20% of patients
when assuming biomarker prevalences≤ 15% (Fig. 7B). Finally, Fig. 7C
shows potential enrichment using the 3-tier model presented in
Fig. 4D. Notably, for biomarkers with low prevalence (e.g., 1%), this
3-tier approach results in an enriched (“High”) cohort that is over 14

Fig. 6 | Deployment setting validation and full deployment results. AConfusion
matrix with sensitivity and specificity metrics on real-time samples ingested from
central laboratory sites (n=17) and supplemental retrospective samples from
ANNAR (n=171).B Results during the 1.5months of Full Deployment. The sensitivity

achieved by the FGFR device was 100% and the specificity 19% (FGFR prevalence of
15% based on molecular test results). The FGFR device could not generate a pre-
diction for 2 patients due to image quality errors (i.e., insufficient high-quality tiles
to generate a prediction).

Fig. 5 | Proposed clinical workflow for patient prescreening using the image
based FGFR prediction device. Clinical workflow shows three parties involved:
clinical study sites, central laboratory, and cloud platform with image-based AI
device. Central laboratory routinely tests tissue for clinical study qualifying FGFR
alterations (Standardworkflow). Tissue is also stained, scanned, then an automated

tool sends the image to a cloud platform to run the FGFRDevice (Machine Learning
(ML)workflow). The physicians can then evaluate the FGFRDevice prediction on an
online-portal and notify the central laboratory to cancel the molecular test
within 48h.
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timesmore likely to be biomarker-positive than patients deemed to be
“Low” likelihood of harboring a specific biomarker. Note the “High”
likelihood cohort shows enrichment compared to Baseline prevalence
as well, with up to 5 times enrichment for biomarkers with low pre-
valence. In this case, patients in the “High” category could be prior-
itized formolecular testing while testing could be deprioritized for the
“Low” likelihood cohort.

Discussion
In this study, we developed and validated a deep learning-based
algorithm for inferring the presence or absence of select FGFR
genetic alterations from H&E-stained tissues using images from
large-scale bladder cancer clinical trials and real-world data sources.
We demonstrated high performance on multiple retrospective
datasets (i.e., AUC= 0.80 on BLC3001, BLC2002 and TCGA com-
bined, AUC = 0.75 on PAN-Tumor data, and AUC=0.75 on Retro-
spective Validation) and showed that the algorithm accurately
interpreted morphologies deemed typical of FGFR+ mutant tumors
by pathologists (Fig. 3). We also demonstrated the feasibility of
deploying the algorithm in a real clinical trial to screen patients prior
to molecular testing, enabling exclusion of those unlikely to harbor
the targeted alterations, and demonstrate the potential impact of
such AI-based biomarker models to reduce screening burden,
prioritize testing resources, improve trial efficiency, and provide
actionable clinical insights.

This study represents an advancement for the field in a number of
ways: (1) the algorithm was developed with and validated using mul-
tiple, independent datasets, including >3000 urothelial cancer
patients, allowing for a robustperformance validation of anH&E-based
FGFR prediction algorithm; (2) the algorithm was retrospectively and
prospectively validated, following the international standard for
device quality management systems (ISO 13485)38, and then actively
deployed in a non-interventional study6, comprising of 89 global study
sites across 9 countries; (3) the achieved performance indicates a
projected reduction of 28.7% in molecular testing when deployed,
which would translate to a reduction in screening burden and
improved trial efficiency; and (4) the potential clinical utility for
prioritizing (or de-prioritizing) patients for molecular testing in a
standard clinical setting (where molecular testing may not be part of

standard of care) was demonstrated with an >8 x enrichment from
Low- to High-likelihood groups.

Weoptimized the algorithm for high sensitivity to avoid ruling out
trial-eligible patients and to mitigate any selection bias for patients
recommended to continue with molecular testing. This was a
requirement from the clinical and trial operations teams for the
deployment of the prescreening device in an ongoing trial. Here,
patients had already enrolled in the observational study and their
sample was sent for molecular testing. The prescreening device was
used to recommenddiscontinuation ofmolecular testing if therewas a
low likelihood of the patient’s sample being positive for qualifying
FGFR alterations. False-positive FGFR predictions would be ruled out
with the molecular test itself. However, other deployment scenarios
may require a threshold tuned toward specificity. If, for example, there
were a limited amount of resources to dedicate tomolecular testing, a
group may want to use those tests on patients most likely to be
identified as biomarker positive, yielding an enriched cohort for
molecular testing. Figure 4D represents this scenario, with simulated
results from a device that stratifies patients into three groups.
Depending on resources available and varying standards of care across
clinics, the physician could leverage the results of the algorithm when
deciding whether to perform themolecular test or not. As you can see
the probability that a patient in the “High” group is biomarker positive
(~49%) is >8 x higher than patients in the “Low” group (~6%). This is the
type of information we believe a physician would find invaluable when
making care decisions for their patients. Additionally, the algorithm
offers the added value of being able to adjust the sensitivity to fit
different use cases. This flexibility allows for optimizing to various
deployment scenarios and clinical decision-making processes, ulti-
mately leading to better patient care.

The algorithm maintained a high performance on the urothelial
cancer Hold-out Data; however, we observed that the model general-
ized well to non-urothelial tissue in the PAN-tumor dataset as well
(Fig. 2), which included samples from diverse tissue sites (i.e., brain,
liver, lung, prostate, skin, etc.). While we saw a slight decrease in per-
formance (AUC =0.75), the results suggest that FGFR alterations in
tumor tissuemight confer a shared set ofmorphologies across diverse
tissues. Having a PAN-tumor FGFR model could be valuable in studies
exploring FGFR alterations in additional tissue types and could inform

Fig. 7 | Cost savings analysis. A Percentage of molecular test reduction vs. bio-
marker prevalence using the high-sensitivity model presented in Fig. 4A (88.7%
sensitivity, 31.8% specificity). In this scenario, patients predicted biomarker nega-
tive would be de-prioritized from molecular testing (i.e., rule-out patients in a
clinical study with pre-defined sites like ANNAR). B Percentage of FGFR+ detected
patients vs. percentage of patients receiving molecular test using different oper-
ating points of our FGFR model compared to without AI. Each curve represents

enhancement for a given biomarker prevalence. Red and blue dotted lines repre-
sent the “Low” and “High” operating points of the simulated 3-tiermodel presented
in Fig. 4D. C Prevalence enrichment using the simulated 3-tier model. Note that
“High” vs. Baseline shows enrichment in the”High” group compared to baseline
prevalence, whereas “High” vs “Low” shows prevalence enrichment of “High” group
vs. “Low” group.
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biomarker discovery efforts in those settings. Efforts to further
develop biomarker models that can be applied across tumor types
couldbenefit from inclusion of pan-tumor samples during training and
experimentation with more recent analytical techniques.

While our algorithm was initially designed as a multi-instance
learning attention-based network with a CNN backbone39, the rapid
evolution of technological advancements in computer vision meth-
odologies has outpaced the time required for proper development,
validation, deployment in a global clinical study, and drafting this
manuscript to share our experience with the scientific community.
Notably, newer methods such as vision transformer networks have
emerged as alternatives to CNNs40, with the potential to offer
increased performance, especially when trained on smaller datasets41.
Additionally, self-supervised learning (SSL) has also shown promising
results in the field of histopathology, enabling models to be more
generalizable across scanners, staining procedures, and tissue
types42,43. In our recent work43, we demonstrate how pre-training the
CNN of the model mentioned in this manuscript using a large unla-
beled dataset (consisting of 25 kWSIs frommultiple scanners, hospital
systems, disease stages, and tissue sites) via SSL resulted in a more
generalizablemodelwith improvedperformance in detecting FGFR+ in
non-muscle invasive bladder cancer (NMIBC) and pan-tumor WSIs.

Despite these advancements in performance, the interpretability
of AI-based biomarker tools still remains a significant challenge.
Though some work has been done in this space33, general pathologists
have not been trained to infer the presence of an FGFR alteration (or
others) from an H&E-stained slide, and thus should not be considered
as a point of reference on which to evaluate algorithm performance.
Nevertheless, insights from a pathology standpoint can be gleaned
from the algorithm’s attention scores, which can highlight regions of
the WSI deemed to be more (or less) informative in the algorithm’s
biomarker prediction (Fig. 3). Here, positively predicted WSIs tended
to have tiles showing solid tumor nests of lower cytomorphologic
grade, while negatively predicted WSIs tended to have tiles showing
dispersed tumor nests of higher cytomorphologic grade, overall in
keeping with limited prior descriptions by subspecialized
pathologists33. Because, in contract to tumor-detection algorithms,
results from AI-based biomarker detection tools cannot be confirmed
by a human pathologist viewing the WSI, these tools must be robustly
designed and tested in a thoughtful manner to ensure that physicians
can confidently incorporate these insights into their care decisions.

Here, we present a staged validation strategy leveraging multiple
independent datasets and incorporating decision-points throughout
the process. In collaboration with clinical and regulatory stakeholders,
we developed a Retrospective Validation study with two key factors in
mind: (1) the study be sufficiently powered to reliably confirm the
performance of the device relative to pre-specified success criteria, (2)
the study be representative of the planned deployment setting in the
ANNAR study. The BLC3001 study offered a dataset that enabled a
well-powered and representative validation study, so a sufficient
number of samples (150 FGFR +, 200 FGFR-) were set aside after power
calculations for our RetrospectiveValidation step, followingguidelines
from the international standard for device quality management sys-
tems (ISO 13485)38. To ensure the integrity of these samples, the Ret-
rospective Validation step was only performed after a model had been
selected, locked, and packaged for deployment. During model devel-
opment, we set asideparts of our development data sets (i.e., Hold-Out
Data) for evaluating performance after training a model with cross-
validation. Throughdiscussionwith various stakeholders, afinalmodel
was selected amongst several distinct, high-performing models based
onperformance in this Hold-Out Data, at whichpoint it was locked and
we proceeded to Retrospective Validation. After the Retrospective
Validation step, we pursued further validation in the planned Deploy-
ment Setting using data from the ANNAR study. This included two
parts: (1) further evaluation of performance based on patients enrolled

in the ANNAR study, and (2) live deployment into the sampleworkflow
to identify and overcome any technical hurdles that may arise. While
retrospective samples collected from theongoingANNAR studywould
have been ideal for additional validation, the ICF only allowed for
analysis of images collected from FGFR+ patients. In order to deploy
the AI-based tool on patients who tested FGFR- or who had yet to
receive a molecular test, an updated ICF was submitted to and
approved by local review boards. As a result, our Deployment Setting
validation step included significantly more FGFR+ samples than would
be expected in a standard population, but nonetheless enabled a
confirmation of the Sensitivity of the algorithm, a high priority for
project stakeholders. This step also provided an opportunity to test
and optimize the real-time data flow as the device was embedded into
the existing workflow.

The deployment workflow in this study (Fig. 5) was adapted to
seamlessly embed into the existing lab workflow, and optimized to
return results fast enough to enable decisionmaking and readjustment
on the fly (average TAT of ~1 h). The primary bottleneck was on the
image upload from the central laboratory to the deployment cloud,
which was only performed once per day, at the end of each business
day. Nevertheless, the turn-around-time for image-baseddevice results
in this setting was <24 h, and the investigators were allowed a time
window of 48 h from image generation to stop the molecular test
workflow. If the investigator did not reply to the query in that period,
the workflow for molecular testing continued to avoid delays in
molecular testing or study enrollment. Incorporating the FGFR Device
into the existing workflow also offered another benefit; it delivered
insight into the FGFR status for patients where molecular tests could
not be carried out due to a lack of sufficient RNA or tumor tissue. This
strategy could prove effective for saving resources associated with
molecular testing, by ruling out patients likely to be biomarker nega-
tive; however, other deployment strategies could provide other
benefits.

While we chose to deploy the algorithm at a central laboratory to
optimize for the number of patients screened with the algorithm,
future efforts are likely to employ a ‘decentralized’ strategy in which
the algorithm is deployed locally at each individual clinical site. In that
scenario, tissues slides and images would be scanned and generated
locally, avoiding the need to ship tissue to the central laboratory.While
the complexity of deployment increases, the clear advantage of the
decentralized strategy is a reduction in time to insight from the algo-
rithm. Even though we optimized for rapid return of algorithm results
to physicians in central deployment, we could not get around the time
spent shipping the sample to the central laboratory. In a decentralized
deployment setting, the algorithm could be leveraged locally by phy-
sicians to inform whether to enroll a patient or ship the tissue at all.
Furthermore, it would allow having a more streamlined workflow,
given the heterogeneity of site-level paradigms for reporting back
algorithm results. One challenge in our deployment process was the
requirement to use two different web portals, one for reporting algo-
rithm results and the other for evaluating molecular test results and
reporting test cancellations, whichwas already in use by clinical sites at
the central laboratory. Thismay have added an extra layer of difficulty
for clinical site investigators at the time to report test cancellations
based on the algorithm’s predictions. One could easily imagine a sce-
nario where this type of biomarker-detection algorithm is being used
ubiquitously across all qualifying patients at a health system at which
the device is deployed, providing physicians with fast, actionable
insights that can inform treatment or testing decisions in real time.

Despite the importance of biomarker testing in clinical care and
trial enrollment for bladder cancer patients, uptake of molecular
testing can be limited by high testing cost, limited assay availability,
and slow turn-around times (especially outside academic medical
centers). These challenges are compounded when biomarker pre-
valence is low and high testing coverage is needed to ensure
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biomarker-positive patients are properly matched to optimal thera-
pies. Using the AI performance (i.e., ROC curve) obtained in our Ret-
rospective Validation (Fig. 4C), we sought to better understand the
potential impact of AI-based biomarker screening tools (Fig. 7). Our
analysis showed that with AI prescreening, a >30% reduction in mole-
cular testing during trial screening can be achieved for rare biomarkers
while minimizing the risk of patients being incorrectly categorized as
biomarker negative and ineligible for the trial (Fig. 7A). This AI-enabled
reduction inmolecular testing can translate to substantial cost savings
for healthcare systems treating patients or pharmaceutical companies
running clinical trials. For example, in 2019 an estimated 80,500
patients were diagnosed with bladder cancer United States, 30% of
whom (~24,000) presented with muscle invasive cancer44. Approxi-
mately 15% of those patients (3,600) are likely to be FGFR +, but per-
forming NGS testing on all patients (assuming a cost of $ 5000 per
test45) would result in ~$ 120million for molecular testing (~$ 33,000
per FGFR+ patient identified). However, our results show that an AI-
based screening device could result in ~$ 35million in savings annually
while maintaining high (~90%) sensitivity, resulting in a molecular
testing cost of ~$ 26,000 per FGFR+ patient detected. Additionally, our
analysis shows that AI prescreening for molecular testing can yield
significantly enriched patient cohorts that could enable detection of
more biomarker-positive patients with fewer tests (Fig. 7C). We show
that prioritizingmolecular testing based on an AI-screening tool could
enable detection of approximately half of all biomarker-positive
patients by only testing ~15–20% of patients (Fig. 7B). This suggests
that the first ~1800 FGFR+ patients could be detected for ~
$ 20–22million (~$12,000 per FGFR+ patient), a significant improve-
ment over the ~$60million it would require to identify 1800 patients if
testing was performed at random (as is currently done with no
enrichment tool available). Notably, the remaining ~1800 FGFR+
patients would require nearly $ 100million in molecular testing to
uncover (~$ 55,000 per FGFR+ patient). AI biomarker prescreening
could serve as a cost-effective method for expanding testing to
patients who are likely to be biomarker positive but who would
otherwise not have received biomarker testing due to lack of access or
limited tissue availability.

This work constitutes a milestone in the implementation of AI-
based screening in the clinical setting. We demonstrate a robust vali-
dation and deployment of AI-based screening tools in a clinical setting.
The deployment of this algorithm could increase access to care for
patients with FGFR-driven diseases, especially in areas where FGFR
inhibitors are approved for use. Additionally, we demonstrate the
potential economic impact of AI-based biomarker detection algo-
rithms for enriching patient populations in a clinical and drug devel-
opment setting. Most importantly, with this type of algorithm, we
believe physicians could gain rapid, actionable insights into a patient’s
specific disease and make more informed care decisions in a timely
and efficient manner, resulting in improved patient outcomes and a
higher quality of life.

Methods
Ethics approval and consent to participate
The study was approved by ethics review boards from 89 sites parti-
cipating in the ANNAR study, NCT03955913. These sites were spon-
sored by Janssen R&D, the entity that provided global oversight and
approval of the study. The study was carried out in accordance with
relevant legislation and ethics guidelines. Enrolled patients provided
informed signed consent prior to participating in the study.

Study design and datasets
We collected data from public repositories, third-party vendors, and
internal clinical trials amounting to 3940 histology images (H&E-
stained whole-slide images of urothelial carcinomas). These images
were linked to ground truthmolecular testing results, either by NGS or

targeted assay. Image ground truth (FGFR positive or FGFR negative)
was defined by determining whether the FGFR alterations from the
QIAGEN Therascreen® FGFR RGQRT-PCR Kit, which aids in identifying
patients eligible for treatment with BALVERSA™ (erdafitinib). The
alterations are the following: (1) FGFR3 gene point mutations with
targets p.R248C (c.742 C >T), p.G370C (c.1108G > T), p.S249C (c.746
C >G), p.Y373C (c.118 A >G); (2) FGFR3 fusions with targets TACC3v3,
TACC3v1 and (3) FGFR2 fusions with target BICC1 and CASP7.

To develop the algorithm, we used one whole slide image from
bladder tissue per patient from three different cohorts: 407 from The
Cancer Genome Atlas (TCGA) consortium (https://portal.gdc.cancer.
gov/projects/TCGA-BLCA), 2811 from BLC3001 (NCT03390504) and
184 from BLC2002 (NCT03473743), two erdafitinib trials7,8, as seen in
Fig. 1. The prevalenceof FGFR in each cohort was 12.5%, 11.6% and 15.7%
respectively, totaling a ~12% average prevalence. The Development
Data was split into Training Data (85%, or 2820 slides) and Hold-out
Data (15%, or 582 slides). The data split preserved the same ratio of
FGFR+ vs. FGFR- patients, as well as the proportion of samples from
each cohort. The Training Data set was used for algorithm optimiza-
tion via cross-validation, and the Hold-out to evaluate performance
prior to algorithmpackaging for onboarding on deployment platform,
Retrospective Validation, Deployment Setting Validation, and Full
Deployment. The Train Data was further divided into 5-folds to per-
form cross-validation for hyperparameter tunning. Similarly, the FGFR
mutation and cohort ratios were preserved in each fold.

Note that an extra subset of samples from the BLC3001
(NCT03390504) cohort (350: 150 FGFR +, 200 FGFR-) were left out for
Retrospective Validation of the FGFR Device for deployment. To
achieve the desired confidence intervals calculated via statistical
power analysis for the estimated sensitivity and specificity (to detect a
10% difference in sensitivity using a two-sided exact test with 5% type I
error), a total of 150 samples was randomly selected from the positive
dataset population, and 200 from the negative dataset population.
Furthermore, data from ANNAR (NCT03955913)6, the deployment
trial, was used for the Deployment Setting Validation of the
FGFRDevice (17WSIs acquired in real time for workflow validation and
171 retrospective WSIs to assess performance). An additional inde-
pendent test dataset (361WSIs) fromanexternal laboratorywith tissue
from multiple tumors (i.e., PAN-Tumor) was used to evaluate gen-
eralization of the algorithm to solid tumors (not represented in
the figure).

Algorithm description
Deep learning methods were used to predict FGFR+ based on an H&E-
stained histopathology slide. Specifically, we used convolutional
neural networks (CNNs), which excel at pattern recognition for data
with inherent structure, like images or sequences. For more efficient
training, we incorporated transfer learning46 into our approach. That
is, we used CNNs that had been previously trained on more general
image data sets to recognize simple and complex patterns, which
allows them to be more quickly tuned to new, related tasks such as
classifying histopathology images.

Additionally, we developed a multi-instance learning approach to
accommodate the exceptionally large images obtained by scanning
histopathology slides39,46,47. In this framework, a whole histopathology
slide is broken into many smaller tiles. The patient-level outcome
associated with the slide is associated with each individual tile during
training and the network learns patterns that differentiate the patient
label (e.g., FGFR+ or FGFR-). This approachhas the added benefit of not
requiringmanual annotationof thewhole-slide imageby a pathologist,
resulting in a lower cost of obtaining data and a broader set of out-
comes on which to train. Figure 8 shows the multi-instance learning
pipeline embedded in the FGFRdevice. Note that all tiles in the slide are
fed into the network to predict a single outcome (i.e., FGFR+ or FGFR-)
for the entire slide.
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Whole slide images were preprocessed into 224 × 224 pixel non-
overlapping tiles to train themulti-instance learning pipeline. The tiles
were fed into the quality-control pipeline48 to remove the tiles with
artifacts (i.e., pen marks, blur, etc…), followed by a stain-based data
augmentation step49 to generatemultiple stain versions of each tile for
training. Tiles where the quality control (QC) score was below 0.75
were dropped (see device description in Fig. 8 and provided pseudo-
code from Box. 1 for detailed QC steps). Given that similar perfor-
mance was obtained at multiple magnifications available, we decided
to train on images at 10 xmagnification to speed up algorithm training
and inference time. A CNN followed by an attention-based network39

was trained end to end using the multiple-instance learning pipeline50.
The CNN initial weights used were from an ImageNet pre-trained
ResNet34 network from the pyTorch library in Python. The attention
network started with random initialized weights. We performed hyper
parameter tuning via grid search and used a cross-entropy weighted
loss function to offset the class imbalance between positive and
negative FGFR slide count. We selected the best algorithm as being the
one with the highest positive predictive value (PPV) at 0.9 sensitivity
on the validation sets from a 5-fold cross-validation data split. The
optimal hyperparameters were found to be the following: learning rate
of 0.00001, weight decay of 0.0001 and dropout of 0.5.

Proposed clinical workflow
Figure 5 shows the proposed workflow for patient prescreening using
the image-based FGFR Device. The device is used prior to planned
molecular testing to identify subjects in whommolecular FGFR testing
is likely to be negative. Results of digital device analysis are provided to
inform clinical trial investigators and help them screen patients who
could be eligible for the clinical trial and prioritize patients for mole-
cular testing.Note there are threeparties involved in theworkflow. The
clinical study sites, which are distributed around the globe, the central
laboratory, which has multiple central locations (i.e., Indianapolis,
Geneva, Japan, and Singapore) in contact with its corresponding
investigator sites, and the cloud platform partner, which is connected
to the central locations from the lab and the investigators sites.

The gray boxes represent the workflow steps that were being
followed for patient enrollment prior to the implementation of the

image-based AI prescreening. Starting at a clinical trial site, a patient
that meets the enrollment criteria for the trial would sign consent to
enroll, and then archival tissue of a tumor biopsy would be sent to the
central laboratory for H&E staining and scanning. After quality control
of the tissue, the CRO would then send it to genomics to perform a
molecular test (i.e., QIAGEN therascreen® FGFR RGQ RT-PCR Kit) to
identify if the patient is FGFR +, and hence, eligible for treatment with
BALVERSA™ (erdafitinib).

The green boxes represent the steps added to the prior workflow
to add the image-based prescreening. Starting at the central labora-
tory, the staining and imaging department performs a daily transfer of
the scanned images and corresponding metadata (i.e., patient id, slide
id, tissue site of specimen, etc.) to the cloud platformhosting the FGFR
Device. The device runs as soon as the images reach the platform, and
in a matter of minutes, the results of the algorithm (i.e., FGFR like-
lihood) are available via web portal to the investigators. Investigators
receive an email notifying them an FGFR result is available for them to
review, and based on the result, they decide whether to cancel the
molecular test. In that case, they notify the central laboratory by
answering a query in their portal.

Design control development and validation of FGFR device
As determined by our regulatory and clinical diagnostics teams, the
algorithmwas classified as Software asMedicalDevice38. As a result, we
applied medical device standards, including design controls, to the
development and validation process. The development, design ver-
ification and design validation steps that were followed explained in
more detail below. The decision to move forward to fully deploy the
algorithmwas based on the results of a Retrospective Validation study
using representative samples (section C), and a Deployment Site
Validation study in which the device was deployed on prospectively
collected ANNAR samples (section D).

A. Algorithm packaging and software verification
The first step after algorithm training and optimization using the
3402 slides was to package the selected algorithm into a user-friendly
device (see schematic in Fig. 8). The device is a Docker container with
the algorithm combined with error checks that allowed for easy

Fig. 8 | FGFR device overview. The device is a Docker container with the algorithm
combined with error checks that allowed for easy integration into the clinical
workflow. It takes an image along with the corresponding metadata as inputs, and
outputs the likelihood of FGFR for that image. The device will show explanatory
error message for the clinician when slides don’t meet pre-specified criteria (i.e.,

tissue site must be bladder, from MIBC disease stage, and 10 xmagnification
available). Similarly, it will notify the user if the image does not pass quality control
(i.e., image is corrupted or missing, or there are insufficient high-quality tiles to
perform a prediction). These checks ensured that the device would only run-on
data of same distribution as the one used for training.
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integration into the clinical workflow. The device takes an image as
input along with the corresponding metadata for that image, and
outputs the likelihood of FGFR for that image. In cases where the slide
metadata does not meet the predefined criteria (i.e., bladder tissue,
10 xmagnification image, MIBC) the device will show an explanatory
error message for the clinician. Similarly, it will notify the user if the
imagedoes notpassquality control (i.e., image is corruptedormissing,
or there are insufficient high-quality tiles to perform a prediction).
These checks ensured that the device would only run-on data of same
distribution as the one used for training.

B. Migration of device to deployment platform
After development, packaging for deployment (i.e., Docker) and soft-
ware testing under design controls, the device was shared with our
deployment partner to embed it in their cloud platform. First, the
deployment partner run the device on their cloud platform to evaluate
the fidelity of the device and ensure that the performance metrics
agreed with those obtained during software verification. Then, the
cloud platform was integrated with the clinical workflow by connect-
ing the central laboratory sites to Amazon Web Services S3 data
ingestion buckets, and by means of a web portal for investigator sites
around the world participating in the trial to show the FGFR device
predictions.

C. Retrospective validation
As mentioned in the Data section, a retrospective data set comprised
of 350 (150 FGFR+ and 200 FGFR- samples; to achieve 93% power at
detecting a 10% difference in sensitivity using a two-sided exact test

with 5% type I error) representative H&E histopathology images were
designated for the planned retrospective design validation phase.
These samples were not utilized to train the algorithm and were not
accessible during development (tuning/training/initial testing) of the
algorithm. The sensitivity and specificity of the FGFR Device was
assessed using the QIAGEN molecular test as the reference standard.

The acceptance criteria to determine if the FGFR device would be
deemed suitable for prospective design validationwasby stakeholders
as follows: if the point estimate (PE) of sensitivity ≥90%, lower bound
(LB) 95%CI ≥ 80%; and PE of specificity ≥30%with LB 95%CI ≥ 20%, the
device would move forward to prospective validation. Otherwise, it
would be an active decision, and including analytical performance in
the acceptance criteria of the prospective validation (section D) could
be considered.

D. Deployment setting validation and full deployment
The goal of the Deployment Setting Validation was to assess and
optimizeworkflow integration of the FGFRDevice in the ANNAR study.
The devicewasdeployed in the ANNAR study in parallel to theQIAGEN
molecular test. The results of the algorithm were not reported to
investigators at this stage since the objective was to demonstrate
clinical study workflow integration and concordance with the
molecular test.

The device was run on ~1month worth of prospectively collected
ANNAR samples transferred in real time (17 samples), in parallel to
molecular rest, using a standardized workflow to mimic full deploy-
ment workflow. The metrics captured were the % of images success-
fully completing workflow and the turn-around-time (TAT) from

BOX 1

Pseudocode representation of the FGFR device (shown in Fig. 8)

1. Parse input arguments (input_WSI_path, tissue_site, disease_stage).
2. Input metadata QC:

2.1 if tissue_site is not “Bladder”: return “Non-qualifying tissue site.”
2.2 if disease_stage is not “MIBC”: return “Non-qualifying disease stage.”

3. Read WSI:
3.1 if input_WSI_path is empty: return “Unsupported or missing image file.”
3.2 if OpenSlide returns read error: return “Corrupted image file.”
3.3 if 10x magnification is not available: return “Required magnification unavailable.”

4. Run image quality control (QC) filters:
4.1 Obtain low-resolution thumbnail to allow faster preprocessing.
4.2 Compute pen marks and background binary masks:

4.2.1 Red, green, blue pen marks:
filter.filter_green_pen(), filter.filter_blue_pen(), filter.filter_red_pen() *

4.2.2 Background:
filter.filter_grays()*

5. Calculate tile (x, y) locations given tile dimension [224×224] and 10xmagnification.
6. For each tile, calculate the image QC score [0,1]:

6.1 Compute percentage of tissue in tile using output masks from 4.2:
tissue_percent, quantity_factor = tiles.tissue_quantity_factor(tissue_quantity()) *

6.2 Compute color_factor and saturation_factor measurements in tile:
color_factor = tiles.hsv_purple_pink_factor(), saturation_factor=tiles.hsv_saturation_and_value_factor() *

6.3 Calculate QC score:
score = 1–10/(10+tissue_percent2·ln(1+color_factor·saturation_factor·quantity_factor)/100) *

7. Keep tiles with score > 0.75:
7.1 if number of remaining tiles (N) is <1: return “QC Failure – Insufficient tissue tiles.”

8. Run N tiles through a ResNet34 convolutional neural network** to extract feature vectors of size Nx512.
9. Run feature vectors through an attention network39 to obtain the WSI likelihood of FGFR.
10. Threshold the outputted likelihood to binarize result as FGFR+ or FGFR-
* Functions are from open-source code found in utils.py, filter.py and tiles.py from48

** Network structure available in https://pytorch.org/vision/main/models/generated/torchvision.models.resnet34.html
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receipt of images toposting results onphysicianportal. Thedevicewas
also run on supplemental retrospective samples tomeasure sensitivity
and specificity, as an exploratory analysis.

The acceptance criteria to proceed to full deployment was a TAT
of all samples onwhich the devicewas successfully run (aprediction or
error is generated) of <24 h and a holistic review of performance data
on retrospective and prospectively collected datasets by internal sta-
keholders. The validation study was conducted under an Investiga-
tional Device Exemption (IDE) regulatory designation.

Under the intended use of the device for full deployment, a
patient first underwent screeningwith our image-based device prior to
undergoingmolecular testing. Upon receiving the results of the image-
based screening, the physician had the choice to stop the molecular
testing. Enrollment into subsequent, interventional clinical trials was
contingent on the confirmed FGFR+ status, basedonmolecular testing.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data used in this article was collected from multiple Janssen
R&D (Johnson & Johnson) clinical studies (NCT03955913,
NCT03390504, NCT03473743, NCT03955913) where data was
approved for research use. This raw data and the study protocols are
not publicly available due to reasons of data sensitivity, including
research participant’s privacy/consent. Inquiries about clinical study
raw data may be made to the authors (ajuanram@its.jnj.com),
although access is subject to permission of the corresponding data
owners for each of the Janssen R&D (Johnson & Johnson) clinical stu-
dies listed above. We also used public raw data from The Cancer
Genome Atlas (TCGA) consortium for development. This data is pub-
licly available at https://portal.gdc.cancer.gov/projects/TCGA-BLCA.
The processed source data and code required to reproduce the results
presented in this manuscript are publicly available at https://github.
com/johnsonandjohnson/FGFR_Device_Review.

Code availability
We provide a technical description of the FGFR device in the online
Methods, together with Fig. 8 depicting the device structure and
pseudocode in Box. 1 to facilitate the understanding of the deep
learning algorithm for biomarker prediction from H&E WSIs. This
includes a description of what sections of the pipeline were based on
open-source code, available at https://github.com/CODAIT/deep-
histopath/tree/master/deephistopath/wsi. The full code base from
the FGFR device is not publicly disclosed to safeguard Janssen R&D
intellectual property. Access requests for such code will not be con-
sidered to safeguard Johnson & Johnson Innovative Medicine’s intel-
lectual property. However, access to predictions and source code for
data analyses and figure generation in this work are publicly available
and canbe downloaded fromhttps://github.com/johnsonandjohnson/
FGFR_Device_Review.
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