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Abstract: Herein, we first report an electrochemical methodology for the site-selective alkylation of
azobenzenes with (thio)xanthenes in the absence of any transition metal catalyst or external oxidant.
A variety of groups are compatible with this electrochemical alkylation, which furnishes the products
in moderate to good yields.
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1. Introduction

Azobenzenes are a class of unique aromatic compounds that have been broadly applied
in numerous fields, including biomedicine, solar thermal fuels and organic synthesis [1–3].
The azo unit is always considered as a privileged scaffold in the design of polymer and
chiral catalysts as it readily undergoes cis/trans isomerization upon irradiation under UV
or visible light [4–8]. Particularly, azobenzenes have also received increasing attention
because of their powerful ability to manipulate organic molecules in synthetic chemistry.
Accordingly, various synthetic methods that provide access to, and direct functionalization
of, azobenzenes have become an area of interest within the fields of organic synthesis [9–11].

To the best of our knowledge, transition metal-catalyzed inert C–H activation, assisted
by a directing group, is the most reliable method for chemical bond formation, and has
proven to be indispensable for organic synthesis [12–14]. More specifically, azobenzenes,
containing an “N=N” unit, can readily coordinate with a suitable transition metal, such
as Pd, Ru, Rh, Co, Mn and some others, enabling the activation and late-stage function-
alization of an ortho-position C–H bond (Scheme 1A) [15–25]. For example, our group
and Ellman’s group early in 2013 completed indazole synthesis from the inert ortho C–H
activation of azobenzenes enabled by Pd and Rh catalysis, respectively [16,17]. A number
of excellent works on the functionalization of azobenzenes have been reported, using the
same strategies. Recently, our group found that aryne chemistry could realize the mild
transformation of azobenzenes into carbazole derivatives under sunlight irradiation, which
bypasses the use of toxic transition metal catalysts and oxidants (Scheme 1B) [26]. Most
precedents mainly focus on the ortho-C–H, while those involving meta- or para-position
C–H functionalization remain relatively scarce [27,28]. Yang, Li and coworkers in 2017
reported Ru-catalyzed CAr–H (di)alkylation reactions of azobenzenes with various types
of alkyl bromides, in which meta-/ortho-selectivity could be well controlled and achieved
(Scheme 1C) [27]. Furthermore, advancement on the para-position C–H activation and func-
tionalization of azobenzenes has just been achieved. Very recently, Su’s group first reported
a cobalt-catalyzed para-selective amination of azobenzenes with a variety of secondary
amine compounds, in which the presence of a ligand is crucial for the transformation
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(Scheme 1D) [28]. Remarkably, most of the previously reported works on the functional-
ization of azobenzenes suffered from the use of transition metal catalysts, toxic oxidants
and high reaction temperatures, which have severely restricted their further application
in synthetic chemistry. Currently, the development of a simple and mild method for the
diverse functionalization of azobenzenes is highly desirable.

Molecules 2022, 27, x FOR PEER REVIEW 2 of 16 

 

 

be well controlled and achieved (Scheme 1C) [27]. Furthermore, advancement on the para-
position C–H activation and functionalization of azobenzenes has just been achieved. 
Very recently, Su’s group first reported a cobalt-catalyzed para-selective amination of 
azobenzenes with a variety of secondary amine compounds, in which the presence of a 
ligand is crucial for the transformation (Scheme 1D) [28]. Remarkably, most of the 
previously reported works on the functionalization of azobenzenes suffered from the use 
of transition metal catalysts, toxic oxidants and high reaction temperatures, which have 
severely restricted their further application in synthetic chemistry. Currently, the 
development of a simple and mild method for the diverse functionalization of 
azobenzenes is highly desirable. 

 
Scheme 1. Strategies for the C−H functionalization of azobenzenes. 

In recent years, electrochemical synthesis has received increasing attention for its 
powerful ability to forge chemical bonds, presumably due to the advantages of no external 
stoichiometric chemical oxidants or reductants and milder conditions over the 
conventional approaches [29–40]. As a result, we speculate that electrochemistry maybe 
provides a unique opportunity to facilitate the functionalization of azobenzene. In a recent 
study, we disclosed an electrochemical formal [3 + 2] cycloaddition of azobenzenes with 
hexahydro-1,3,5-triazines, which afforded 1,2,4-triazolidine derivatives in an efficient 

Scheme 1. Strategies for the C–H functionalization of azobenzenes.

In recent years, electrochemical synthesis has received increasing attention for its
powerful ability to forge chemical bonds, presumably due to the advantages of no external
stoichiometric chemical oxidants or reductants and milder conditions over the conventional
approaches [29–40]. As a result, we speculate that electrochemistry maybe provides a
unique opportunity to facilitate the functionalization of azobenzene. In a recent study, we
disclosed an electrochemical formal [3 + 2] cycloaddition of azobenzenes with hexahydro-
1,3,5-triazines, which afforded 1,2,4-triazolidine derivatives in an efficient fashion [41].
Based on these works, and our recent findings in electrochemical synthesis [41–43], we
continue our effort to address the problem of para-position C–H functionalization in the
azobenzenes with the electrochemical method. Herein, we report a catalyst-free alkylation
of azobenzenes with (thio)xanthenes enabled by electrochemistry, which affords a series of
azobenzenes derivatives with high regioselectivity (Scheme 1E).
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2. Results and Discussion

Initially, (E)-1,2-Diphenyldiazene (1a) and xanthene (2a) were chosen as the model
substrates to optimize the reaction conditions for the electrochemical alkylation reaction
(Table 1). The reaction system was conducted with two carbon rods as the anode and
cathode, nBu4NPF6 as an electrolyte, MeOH as a solvent, at constant current of 9 mA and
room temperature for 4 h, generating the desired product 3a in 76% yield (Table 1, entry 1).
Meanwhile, the faradaic efficiency for the electrochemical alkylation of azobenzene was
determined as 33.9% (For details, see the electronic Supporting Information). Replacing
the electrolyte nBu4NPF6 with some other commonly used electrolytes, such as nBu4NBF4,
nBu4NI and LiClO4, led to the formation of 3a in decreasing yields (entries 2–4). It was
found that choice of electrode materials proved to be crucial for this alkylation reaction.
Employment of Pt(+)|Pt(−) as an electrode did not promote the model reaction (entry 5).
Lower yields of 3a were obtained when carbon with Pt was used as either the anode or
cathode (Table 1, entries 6 and 7). Graphite felt (GF) or Ni electrodes could not improve the
yield (entries 8–10). Next, a variety of solvents, including DCE, CH3CN, THF, DMF and ace-
tone, were screened, and the result showed that MeOH was the best solvent (entries 11–15).
Decreasing or increasing the reaction time did not improve the yield of 3a (entries 16–17).
Subsequently, changing the intensity of constant current from 8 mA to 10 mA also failed
to enhance the yield of 3a (entries 18–19). The control experiment demonstrated that the
reaction could not proceed without electric current (entry 20). Furthermore, the reaction
performed under N2 atmosphere had no obvious effect on the yield of 3a (entry 21).

Table 1. Optimization of the reaction conditions a.
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Entry Variation from the “Standard Conditions” Yield (%) b

1 none 76
2 nBu4NBF4 instead of nBu4NPF6 62
3 nBu4NI instead of nBu4NPF6 35
4 LiClO4 instead of nBu4NPF6 n.d.
5 Pt(+)|Pt(−) instead of C(+)|C(−) n.d.
6 Pt(+)|C(−) instead of C(+)|C(−) 68
7 C(+)|Pt (−) instead of C(+)|C(−) 64
8 C(+)|GF(−) instead of C(+)|C(−) 19
9 GF(+)|C(−) instead of C(+)|C(−) 65
10 C(+)|Ni(−) instead of C(+)|C(−) 11
11 DCE instead of MeOH 55
12 CH3CN instead of MeOH 43
13 THF instead of MeOH 40
14 DMF instead of MeOH 29
15 Acetone instead of MeOH n.d.
16 3 h instead of 4 h 55
17 5 h instead of 4 h 68
18 8 mA instead of 9 mA 46
19 10 mA instead of 9 mA 67
20 no electric current n.d.
21 N2 74 c

a Reaction conditions: 1a (0.30 mmol), 2a (0.36 mmol), nBu4NPF6 (1.5 equiv), MeOH (5.0 mL), carbon rod anode
(Φ 6 mm), carbon rod cathode (Φ 6 mm), rt, 4 h (Q = 4.48 F mol−1). b Isolated yields. c N2. n.d. = not detected.

With the established optimal reaction conditions, we set out to investigate the substrate
scope of azobenzenes (Scheme 2). In general, azobenzenes bearing electron-donating and
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electron-withdrawing groups are well compatible with this reaction. First, a variety of
mono-substituted azobenzenes were examined under the optimized conditions. For the
4-substituted azobenzenes, the reaction took place specifically on the 4’-position (3b–3i).
Alkyl substituents, including Me, Et, i-Pr and t-Bu, were well tolerated in the electrochem-
ical system, and generated the desired product 3b–3e in good yields. Gratifyingly, we
further determined the exact structure of 3d by single-crystal analysis [44]. In addition, we
found that incorporation of OCF3 on the 4-position of azobenzene gave the product 3f a 63%
yield. Azobenzenes bearing strong electron-withdrawing groups, such as acetyl, cyano and
trifluoromethyl group, could interact well with xanthene to form the products 3g–3i in mod-
erate yields by prolonging reaction time, which indicated that the electron-withdrawing
group could reduce the reactivity of the substrates. Unfortunately, introduction of an ester
group failed to cause a reaction with xanthene (3j). For the 3-substituted azobenzene, the
reaction randomly happened on both the 4-positon and the 4’-position of the aromatic
ring, affording the mixture of 3k and 3k’ in 72% total yield. Next, we examined a va-
riety of disubstituted azobenzenes bearing 2,3-dimethyl,2,4-dimethyl,3,4-dimethyl and
3,5-dimethyl substituents, and all of them worked well under the reaction conditions to
form the corresponding products 3l–3o in good yields and regioselectivity. Notably, the
alkylation reaction selectively happened on the 4’-position of these disubstituted unsym-
metrical azobenzenes. In addition, some symmetrical azobenzenes were also tested. It
was found that both (E)-1,2-di-m-tolyldiazene and (E)-1,2-bis(2-isopropylphenyl)diazene
proceeded smoothly to generate the products 3p–3q in moderate yields.

We next continued to explore the dialkylation of azobenzenes with xanthene 2a
(Scheme 3). By increasing the amount of 2a to 2.2 equivalents and prolonging the re-
action time to 6 h, the dialkylation of azobenzenes proceeded well under the modified
reaction conditions. For instance, some unsymmetrical azobenzenes, bearing 2-Me and
2-iPr substituents, reacted with xanthene to generate the corresponding products 4a and 4b
in 68% and 63% yields, respectively. Additionally, we also found that symmetrical azoben-
zene (E)-1,2-bis (2-isopropylphenyl)diazene was demonstrated to be a suitable substrate
and resulted in the formation of 4c in 57% yield.

We then turned our attention to the tolerance of the reaction towards functional groups
on the xanthenes and thioxanthenes, and the results are listed in Scheme 4. More specifically,
methyl, methoxy, phenyl on the different position of xanthene were well tolerated (5a–c).
Benzoxanthene and derivatives, such as 12H-benzo[a]xanthene, 7H-benzo[c]xanthene,
10-methyl-12H-benzo[a]xanthene, reacted well with azobenzene, generating the products
5d–5f in acceptable yields. Furthermore, some simple thioxanthenes were also examined,
and products 5g–5i were achieved in 58–66% yields.

Then, the KIE experiments were carried out to gain insight into the reaction mecha-
nism (Scheme 5). The competing reaction of xanthene 2a and deuterated xanthene 2a-D2
(1:1) with azobenzene determined the KIE with KH/KD as 1.2, indicating that the cleav-
age of benzylic C(sp3)–H of xanthene was not the rate-determining step. In contrast, an
obvious isotope effect (KIE = 2.2) was observed when performing the competing reaction
of azobenzene 1a and deuterated azobenzene 1a-D10 (1:1) with xanthene under standard
conditions. These results showed that the cleavage of CAr-H within azobenzene was pre-
sumably involved in the rate-determining step (For details, see Supplementary Materials).
In addition, some cyclic voltammetry (CV) experiments were carried out to study the redox
potential of the substrates (Figure 1). Remarkably, the oxidation potential of azobenzene 1a
(Ep = 2.2 V) was far higher than that of xanthene 2a (Ep = 1.3, 1.7 V), demonstrating that
the xanthene 2a should be preferentially oxidized in the electrochemical system.

Based on the above mechanistic experiments and previous reports [41–43,45–49], a pos-
sible reaction mechanism is proposed in Scheme 6. Firstly, anodic oxidation of xanthene 2a led
to the formation of intermediate I, which was further deprotonated to generate radical II,
followed by an anode oxidation to form the cationic species III. Secondly, a possible Friedel-
Crafts reaction of 1a with the cationic species III occurred to yield the intermediate IV.
Finally, deprotonation of IV gave the product 3a.
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3. Materials and Methods
3.1. General Considerations

All 1H NMR and 13C NMR spectra were recorded on a 600 MHz Bruker FT-NMR
spectrometer (600 MHz and 151 MHz, respectively). All chemical shifts are given as δ value
(ppm) with reference to tetramethylsilane (TMS) as an internal standard. The peak patterns
are indicated as follows: s, singlet; d, doublet; t, triplet; m, multiplet; q, quartet. The
coupling constants, J, are reported in Hertz (Hz). High resolution mass spectroscopy data
of the products were collected on an Agilent Technologies 6540 UHD Accurate-Mass Q-TOF
LC/MS (ESI) and a Thermo Fisher Scientific LTQ FTICR-MS instrument. Melting points
were determined in open capillary tube using WRS-1B digital melting point apparatus.

The starting materials, such as azobenzenes and xanthenes, were prepared according to
the reported methods [42,43,50,51]. All the solvents are commercially available and directly
used in this electrochemical system. Products were purified by flash chromatography on
silica gels, eluting with petroleum ether/ethyl acetate (100:1 to 20:1).

3.2. Typical Procedure for the Synthesis of 3a

Azobenzene (1a, 0.30 mmol, 1.0 equiv), xanthene (2a, 0.36 mmol, 1.2 equiv), nBu4NPF6
(0.60 mmol, 2.0 equiv) and CH3OH (5.0 mL) were sequentially added into a 15.0 mL oven-
dried undivided single necked bottle that equipped with a magnetic stirrer bar and sealed
with rubber plugs under air atmosphere. A carbon rod (Φ 6 mm) anode and a carbon rod
(Φ 6 mm) were used as the cathode in the bottle. About 1.0 cm of the carbon rod was under
the solution. The reaction mixture was stirred and electrolyzed at a constant current of
9 mA under air at room temperature for 4 h. After completion of the reaction, the solution
was concentrated in vacuum. The resulting crude mixture was purified by flash column
chromatography (petroleum ether/ethyl acetate = 100:1) to give the desired product 3a as
an orange solid (82.6 mg, 76% yield).
(E)-1-(4-(9H-Xanthen-9-yl)phenyl)-2-phenyldiazene (3a): Prepared following general pro-
cedure and the reaction mixture was purified by flash column chromatography with
petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 3a (82.6 mg, 76%
yield). Orange solid; m.p.: 179.6~181.5 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.87 (d, J = 7.2 Hz,
2H), 7.83 (d, J = 8.4 Hz, 2H), 7.50 (t, J = 7.2 Hz, 2H), 7.46 (t, J = 7.2 Hz, 1H), 7.35 (d, J = 8.4 Hz,
2H), 7.23 (t, J = 7.8 Hz, 2H), 7.16 (d, J = 7.8 Hz, 2H), 7.08 (d, J = 7.2 Hz, 2H), 7.00 (t, J = 7.8 Hz,
2H), 5.36 (s, 1H). 13C NMR (151 MHz, CDCl3) δ 152.7, 151.5, 151.0, 149.4, 130.9, 129.7, 129.2,
129.1, 128.2, 123.8, 123.3, 122.8, 116.7, 44.3. HRMS (ESI) calcd for C25H19N2O+ [M + H]+

363.1492, found 363.1496.
(E)-1-(4-(9H-Xanthen-9-yl)phenyl)-2-(p-tolyl)diazene (3b): Prepared following general pro-
cedure and the reaction mixture was purified by flash column chromatography with
petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 3b (87.1 mg,
77% yield). Orange solid; m.p.: 176.4~178.2 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.82 (d,
J = 7.8 Hz, 2H), 7.80 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 7.8 Hz, 2H), 7.24
(t, J = 7.8 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 7.8 Hz, 2H), 7.00 (t, J = 7.8 Hz, 2H),
5.35 (s, 1H), 2.43 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 151.5, 151.0, 150.8, 149.0, 141.5, 129.7,
129.1, 128.1, 123.8, 123.3, 123.2, 122.8, 116.6, 44.2, 21.5. HRMS (ESI) calcd for C26H21N2O+

[M + H]+ 377.1648, found 377.1650.
(E)-1-(4-(9H-Xanthen-9-yl)phenyl)-2-(4-ethylphenyl)diazene (3c): Prepared following general
procedure and the reaction mixture was purified by flash column chromatography with
petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 3c (85.3 mg, 73%
yield). Orange solid; m.p.: 178.6~181.1 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.82 (d, J = 7.8 Hz,
4H), 7.35 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 7.23 (t, J = 7.2 Hz, 2H), 7.16 (d, J = 8.4 Hz,
2H), 7.08 (d, J = 7.8 Hz, 2H), 7.00 (t, J = 7.8 Hz, 2H), 5.35 (s, 1H), 2.73 (q, J = 7.8 Hz, 2H),
1.28 (t, J = 7.8 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 151.5, 151.0, 149.0, 147.7, 129.7, 129.1,
128.5, 128.1, 123.8, 123.3, 123.2, 122.9, 118.0, 116.7, 44.2, 28.8, 15.4. HRMS (ESI) calcd for
C27H23N2O+ [M + H]+ 391.1805, found 391.1805.
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(E)-1-(4-(9H-Xanthen-9-yl)phenyl)-2-(4-isopropylphenyl)diazene (3d): Prepared following gen-
eral procedure and the reaction mixture was purified by flash column chromatography
with petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 3d (90.8 mg,
75% yield). Red solid; m.p.: 177.6~179.3 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.83–7.81 (m,
4H), 7.36–7.34 (m, 4H), 7.23 (t, J = 7.2 Hz, 2H), 7.16 (d, J = 7.8 Hz, 2H),7.08 (d, J = 7.2 Hz,
2H), 7.00 (t, J = 7.8 Hz, 2H), 5.35 (s, 1H), 3.01–2.96 (m, 1H), 1.30 (d, J = 6.6 Hz, 6H). 13C NMR
(151 MHz, CDCl3) δ 152.3, 151.5, 151.1, 151.0, 149.0, 129.7, 129.1, 128.1, 127.1, 123.8, 123.3,
123.2, 122.9, 116.7, 44.2, 34.1, 23.8. HRMS (ESI) calcd for C28H24N2O+ [M + H]+ 405.1961,
found 405.1964.
(E)-1-(4-(9H-Xanthen-9-yl)phenyl)-2-(4-(tert-butyl)phenyl)diazene (3e): Prepared following
general procedure and the reaction mixture was purified by flash column chromatography
with petroleum ether and ethylacetate (PE/EA = 100:1) to afford the product 3e (89.1 mg,
71% yield). Red solid; m.p.: 179.4~180.6 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.82 –7.81(m, 4H),
7.52 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 7.8 Hz, 2H), 7.23(t, J = 7.2 Hz, 2H), 7.16 (d, J = 7.8 Hz,
2H), 7.00 (d, J = 7.8 Hz, 2H), 6.91 (t, J = 7.2 Hz, 2H), 5.35 (s, 1H), 1.37 (s, 9H). 13C NMR
(151 MHz, CDCl3) δ 154.5, 151.6, 151.0, 150.6, 149.0, 129.7, 129.1, 128.1, 126.0, 123.8, 123.3,
123.2, 122.5, 116.7, 44.2, 35.0, 31.2. HRMS (ESI) calcd for C29H21N2O+ [M + H]+ 419.2118,
found 419.2119.
(E)-1-(4-(9H-Xanthen-9-yl)phenyl)-2-(4-(trifluoromethoxy)phenyl)diazene (3f): Prepared follow-
ing general procedure and the reaction mixture was purified by flash column chromatog-
raphy with petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 3f
(84.3 mg, 63% yield). Orange solid; m.p.: 173.6~175.4 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.91
(d, J = 9.0 Hz, 2H), 7.83 (d, J = 9.0 Hz, 2H), 7.36 (d, J = 7.8 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H),
7.24 (d, J = 7.2 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 7.8 Hz, 2H), 7.00 (t, J = 7.8 Hz,
2H), 5.36 (s, 1H). 13C NMR (151 MHz, CDCl3) δ 151.2, 151.0, 150.8, 149.8, 129.7, 129.2,
128.2, 126.2 (q, J = 268.3 Hz),124.3, 123.7, 123.4, 123.3, 122.8 (q, J = 47.3 Hz), 121.3, 120.6 (q,
J = 147.2 Hz), 120.1, 116.7, 44.3. 19F NMR (565 MHz, CDCl3) δ -57.70. HRMS (ESI) calcd for
C26H18F3N2O2

+ [M + H]+ 447.1315, found 447.1319
(E)-1-(4-((4-(9H-xanthen-9-yl)phenyl)diazenyl)phenyl)ethan-1-one (3g): Prepared following
general procedure and the reaction mixture was purified by flash column chromatography
with petroleum ether and ethylacetate (PE/EA = 20:1) to afford the product 3g (72.6 mg,
60% yield). Orange solid; m.p.: 176.6~178.5 ◦C. 1H NMR (600 MHz, CDCl3) δ 8.09 (d,
J = 8.4 Hz, 2H), 7.92 (d, J = 8.4 Hz, 2H), 7.86 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 7.8 Hz, 2H),
7.24 (t, J = 7.2 Hz, 2H), 7.16 (d, J = 7.8 Hz, 2H), 7.08 (d, J = 7.2 Hz, 2H), 7.00 (t, J = 6.6 Hz,
2H), 5.37 (s, 1H), 2.65 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 197.4, 155.1, 151.3, 151.0, 150.2,
138.3, 129.6, 129.3, 129.2, 128.2, 123.7, 123.6, 123.4, 122.8, 116.7, 44.3, 26.8. HRMS (ESI) calcd
for C27H21N2O2

+ [M + H]+ 405.1598, found 405.1595.
(E)-4-((4-(9H-Xanthen-9-yl)phenyl)diazenyl)benzonitrile (3h): Prepared following general pro-
cedure and the reaction mixture was purified by flash column chromatography with
petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 3h (66.1 mg, 57%
yield). Red solid; m.p.: 175.3~177.0 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.93 (d, J = 9 Hz, 2H),
7.86 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 6.6 Hz,
2H), 7.17 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 7.2 Hz, 2H), 7.01 (t, J = 7.2 Hz, 2H), 5.37 (s, 1H).
13C NMR (151 MHz, CDCl3) δ 154.5, 151.1, 151.0, 150.7, 133.2, 129.6, 129.2, 128.3, 123.8,
123.5, 123.4, 123.3, 118.5, 116.8, 113.8, 44.3. HRMS (ESI) calcd for C26H18N3O+ [M + H]+

388.1444, found 388.1444.
(E)-1-(4-(9H-Xanthen-9-yl)phenyl)-2-(4-(trifluoromethyl)phenyl)diazene (3i): Prepared follow-
ing general procedure and the reaction mixture was purified by flash column chromatog-
raphy with petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 3i
(89.2 mg, 69% yield). Orange solid; m.p.: 175.5~176.9 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.94
(d, J = 8.4 Hz, 2H), 7.85 (d, J = 7.8 Hz, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H),
7.23 (t, J = 5.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 7.8 Hz, 2H), 6.99 (t, J = 7.2 Hz, 2H),
5.35 (s, 1H). 13C NMR (151 MHz, CDCl3) δ 154.4, 151.2, 151.0, 150.3, 132.1 (q, J = 31.9 Hz),
129.6, 129.2, 128.2, 126.2 (q, J = 3.9 Hz), 124.8 (q, J = 272.4 Hz), 123.7, 123.6, 123.4, 122.9,
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116.7, 44.3. 19F NMR (565 MHz, CDCl3) δ -62.5. HRMS (ESI) calcd for C26H18F3N2O+ [M +
H] + 431.1336, found 431.1335.
(E)-1-(4-(9H-Xanthen-9-yl)phenyl)-2-(m-tolyl)diazene (3k); (E)-1-(3-Methyl-4-(9H-xanthen-9-
yl)phenyl)-2-phenyldiazene (3k’): Prepared following general procedure and the reaction
mixture was purified by flash column chromatography with petroleum ether and ethylac-
etate (PE/EA = 100:1) to afford the product 3k and 3k’ (81.2 mg, 72% yield). Red solid; m.p.:
176.6~178.9 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.89 (d, J = 7.2 Hz, 1.6H), 7.82 (d, J = 8.4 Hz,
2H), 7.74 (s, 0.8H), 7.72 (d, J = 7.8 Hz, 0.8H), 7.68 (d, J = 5.4 Hz, 1.6H), 7.52 (t, J = 7.2 Hz,
1.8H), 7.47 (t, J = 7.2 Hz, 0.8H), 7.39 (t, J = 7.8 Hz, 1H), 7.35 (d, J = 8.4 Hz, 2H), 7.33 (d,
J = 7.8 Hz, 0.8H), 7.28 (d, J = 8.4 Hz, 1H), 7.23 (q, J = 8.4 Hz, 4H), 7.16 (d, J = 7.8 Hz, 2H),
7.12 (d, J = 7.8 Hz, 1.6H), 7.08 (d, J = 7.8 Hz, 2H), 7.00 (t, J = 7.8 Hz, 2H), 6.95 (t, J = 7.8 Hz,
1.6H), 6.89 (d, J = 7.8 Hz, 1.6H), 5.65 (s, 0.8H), 5.35 (s, 1H), 2.45 (s, 3H), 2.33 (s, 2.4H).
13C NMR (151 MHz, CDCl3) δ 152.8, 151.5, 151.5, 151.0, 150.9, 149.3, 146.6, 139.0, 137.1,
131.9, 131.7, 130.9, 129.7, 129.2, 129.2, 129.1, 128.9, 128.2, 128.1, 125.4, 123.8, 123.5, 123.3,
123.3, 123.2, 122.9, 122.8, 121.1, 120.4, 116.7, 116.5, 44.3, 41.2, 21.4, 20.2. HRMS (ESI) calcd
for C26H21N2O+ [M + H]+ 377.1648, found 377.1648.
(E)-1-(4-(9H-Xanthen-9-yl)phenyl)-2-(2,3-dimethylphenyl)diazene (3l): Prepared following gen-
eral procedure and the reaction mixture was purified by flash column chromatography with
petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 3l (92.3 mg, 79%
yield). Red solid; m.p.: 178.6~180.2 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.84 (d, J = 8.4 Hz,
2H), 7.44 (d, J = 8.4 Hz, 1H), 7.35 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 6.6 Hz, 3H), 7.16 (d,
J = 8.4 Hz, 3H), 7.10 (d, J = 7.8 Hz, 2H), 7.01 (t, J = 6.6 Hz, 2H), 5.36 (s, 1H), 2.61 (s, 3H), 2.37
(s, 3H). 13C NMR (151 MHz, CDCl3) δ 151.8, 151.0, 151.0, 149.1, 138.2, 136.8, 132.1, 129.7,
129.0, 128.1, 125.7, 123.9, 123.4, 123.3, 116.7, 113.1, 44.2, 19.9, 13.2. HRMS (ESI) calcd for
C27H23N2O+ [M + H]+ 391.1805, found 391.1806.
(E)-1-(4-(9H-Xanthen-9-yl)phenyl)-2-(2,4-dimethy phenyl)diazene (3m): Prepared following
general procedure and the reaction mixture was purified by flash column chromatography
with petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 3m (87.5 mg,
75% yield). Red solid; m.p.: 178.6~180.3 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.82 (d, J = 8.4 Hz,
2H), 7.54 (d, J = 8.4 Hz, 1H), 7.35 (d, J = 8.4 Hz, 2H), 7.24 (t, J = 7.2 Hz, 2H), 7.17 (d, J = 8.4 Hz,
2H), 7.14 (s, 1H), 7.09 (d, J = 7.2 Hz, 2H), 7.06 (d, J = 7.8 Hz, 1H), 7.01 (t, J = 7.8 Hz, 2H), 5.35
(s, 1H), 2.66 (s, 3H), 2.38 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 151.8, 151.0, 148.8, 148.8,
141.3, 138.2, 131.8, 129.7, 129.0, 128.1, 128.1, 127.3, 123.9, 123.3, 116.7, 115.2, 44.2, 21.4, 17.4.
HRMS (ESI) calcd for C27H23N2O+ [M + H]+ 391.1805, found 391.1809.
(E)-1-(4-(9H-xanthen-9-yl)phenyl)-2-(3,4-dimethylphenyl)diazene (3n): Prepared following gen-
eral procedure and the reaction mixture was purified by flash column chromatography with
petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 3n (83.1 mg, 71%
yield). Red solid; m.p.: 180.1~181.5 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.81 (d, J = 8.4 Hz,
2H), 7.67 (s, 1H), 7.64 (d, J = 8.4 Hz, 1H), 7.35 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.4 Hz, 1H),
7.24 (t, J = 8.4 Hz, 2H), 7.16 (d, J = 7.8 Hz, 2H), 7.08 (d, J = 7.2 Hz, 2H), 7.00 (t, J = 7.2 Hz,
2H), 5.35 (s, 1H), 2.35 (s, 3H), 2.33 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 151.6, 151.3, 151.0,
149.0, 140.3, 137.4, 130.3, 129.7, 129.2, 128.1, 123.9, 123.5, 123.3, 123.2, 120.8, 116.7, 44.2, 19.9.
HRMS (ESI) calcd for C27H23N2O+ [M + H]+ 391.1805, found 391.1807.
(E)-1-(4-(9H-xanthen-9-yl)phenyl)-2-(3,5-dimethylphenyl)diazene (3o): Prepared following gen-
eral procedure and the reaction mixture was purified by flash column chromatography with
petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 3o (85.3 mg, 73%
yield). Red solid; m.p.: 179.9~181.7 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.83 (d, J = 8.4 Hz,
2H), 7.51 (s, 2H), 7.36 (d, J = 8.4 Hz, 2H), 7.24 (t, J = 7.2 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 7.12
(s, 1H), 7.09 (d, J = 7.2 Hz, 2H), 7.01 (t, J = 7.8 Hz, 2H), 5.36 (s, 1H), 2.42 (s, 6H). 13C NMR
(151 MHz, CDCl3) δ 152.9, 151.5, 151.0, 149.2, 138.8, 132.7, 129.7, 129.2, 128.2, 123.9, 123.4,
123.3, 120.6, 116.7, 44.3, 21.3. HRMS (ESI) calcd for C27H23N2O+ [M + H]+ 391.1805, found
391.1810.
(E)-1-(3-Methyl-4-(9H-xanthen-9-yl)phenyl)-2-(m-tolyl)diazene (3p): Prepared following gen-
eral procedure and the reaction mixture was purified by flash column chromatography
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with petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 3p (60.7 mg,
52% yield). Orange solid; m.p.: 175.6~177.5 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.73–7.70
(m, 4H), 7.40 (t, J = 8.4 Hz, 1H), 7.32 (d, J = 7.8 Hz, 1H), 7.29 (d, J = 7.2 Hz, 1H), 7.22 (t,
J = 8.4 Hz, 2H), 7.12 (d, J = 7.2 Hz, 2H), 6.95 (t, J = 7.8 Hz, 2H), 6.89 (d, J = 7.8 Hz, 2H), 5.64
(s, 1H), 2.46 (s, 3H), 2.33 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 152.8, 151.5, 150.8, 1465,
139.0, 137.0, 131.9, 131.7, 129.2, 128.9, 128.0, 125.3, 123.5, 123.2, 122.8, 121.0, 120.4, 116.4, 41.2,
21.4, 20.1. HRMS (ESI) calcd for C27H23N2O+ [M + H]+ 391.1805, found 391.1805.
(E)-1-(2-Isopropyl-4-(9H-xanthen-9-yl)phenyl)-2-(2-isopropylphenyl)diazene (3q): Prepared fol-
lowing general procedure and the reaction mixture was purified by flash column chro-
matography with petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product
3q (85.6 mg, 64% yield). Red solid; m.p.: 177.9~179.1 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.47
(d, J = 7.8 Hz, 1H), 7.42 (d, J = 7.8 Hz, 1H), 7.35–7.31 (m, 2H), 7.28 (s, 1H), 7.17–7.16 (m, 1H),
7.13 (t, J = 6.6 Hz, 2H), 7.06 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 7.8 Hz, 2H), 6.93–6.90 (m, 3H),
5.24 (s, 1H), 4.07–4.02 (m, 1H), 4.02–3.96 (m, 1H), 1.26 (d, J = 7.2 Hz, 6H), 1.22 (d, J = 6.6 Hz,
6H). 13C NMR (151 MHz, CDCl3) δ 151.1, 150.0, 149.1, 148.7, 148.3, 147.1, 130.9, 129.6, 128.0,
126.5, 126.3, 126.2, 126.1, 124.0, 123.3, 116.6, 116.3, 115.4, 44.5, 27.9, 27.7, 23.8, 23.8. HRMS
(ESI) calcd for C31H31N2O+ [M + H]+ 447.2431, found 447.2428.
(E)-1-(4-(9H-xanthen-9-yl)phenyl)-2-(3-methyl-4-(9H-xanthen-9-yl)phenyl)diazene (4a): Prepared
following general procedure and the reaction mixture was purified by flash column chro-
matography with petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product
4a (113.4 mg, 68% yield). Orange solid; m.p.: 238.4~240.2 ◦C. 1H NMR (600 MHz, CDCl3) δ
7.80 (d, J = 9.0 Hz, 2H), 7.68 (s, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.34 (d, J = 8.4 Hz, 2H), 7.30 (d,
J = 7.8 Hz, 1H), 7.25–7.20 (m, 4H), 7.16 (d, J = 7.8 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 7.08 (d,
J = 7.2 Hz, 2H), 7.00 (t, J = 7.8 Hz, 2H), 6.93 (t, J = 7.8 Hz, 2H), 6.88 (d, J = 7.2 Hz, 2H), 5.63
(s, 1H), 5.35 (s, 1H), 2.31 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 151.5, 151.0, 150.8, 149.3,
146.5, 137.0, 131.9, 129.7, 129.2, 129.1, 128.1, 128.0, 125.3, 123.8, 123.4, 123.3, 123.2, 123.1,
120.9, 116.7, 116.4, 44.2, 41.1, 20.1. HRMS (ESI) calcd for C39H29N2O2

+ [M + H]+ 557.2224,
found 557.2224.
(E)-1-(4-(9H-xanthen-9-yl)phenyl)-2-(2-isopropyl-4-(9H-xanthen-9-yl)phenyl)diazene (4b): Pre-
pared following general procedure and the reaction mixture was purified by flash column
chromatography with petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the
product 4b (110.3 mg, 63% yield). Red solid; m.p.: 237.4~238.9 ◦C. 1H NMR (600 MHz,
CDCl3) δ 7.79 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz, 1H), 7.33 (d, J = 8.4 Hz, 2H), 7.31 (s, 1H),
7.22 (q, J = 6.6 Hz, 4H), 7.15 (t, J = 7.2 Hz, 4H), 7.09 (d, J = 7.8 Hz, 2H), 7.06 (d, J = 7.2 Hz,
2H), 6.99 (q, J = 7.8 Hz, 5H), 5.34 (s, 1H), 5.31 (s, 1H), 4.01–3.94 (m, 1H), 1.28 (d, J = 7.2 Hz,
6H). 13C NMR (151 MHz, CDCl3) δ 151.7, 151.0, 151.0, 149.2, 149.1, 148.5, 148.1, 129.6, 129.6,
129.0, 128.1, 128.0, 126.6, 126.3, 124.0, 123.8, 123.4, 123.3, 123.2, 116.7, 116.6, 115.9, 44.4, 44.3,
28.0, 23.8. HRMS (ESI) calcd for C41H33N2O2

+ [M + H]+ 585.2537, found 585.2538.
(E)-1,2-Bis(2-isopropyl-4-(9H-xanthen-9-yl)phenyl)diazene (4c): Prepared following general
procedure and the reaction mixture was purified by flash column chromatography with
petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 4c (107.1 mg, 57%
yield). White solid; m.p.: 242.4~246.1 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.46 (d, J = 8.4 Hz,
2H), 7.34 (s, 2H), 7.22 (t, J = 7.8 Hz, 4H), 7.15 (d, J = 7.8 Hz, 4H), 7.09 (d, J = 7.2 Hz, 4H),
7.00 (t, J = 7.8 Hz, 6H), 5.31 (s, 2H), 4.08–4.01 (m, 2H), 1.29 (d, J = 7.2 Hz, 12H). 13C NMR
(151 MHz, CDCl3) δ 151.1, 149.0, 148.6, 148.2, 129.6, 128.0, 126.4, 126.1, 124.0, 123.3, 44.5,
27.9, 23.8. HRMS (ESI) calcd for C44H39N2O2

+ [M + H]+ 627.3006, found 627.3004.
(E)-1-(4-(2-Methyl-9H-xanthen-9-yl)phenyl)-2-phenyldiazene (5a): Prepared following general
procedure and the reaction mixture was purified by flash column chromatography with
petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 5a (66.4 mg, 59%
yield). Orange solid; m.p.: 178.6~179.9 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.87 (d, J = 7.2 Hz,
2H), 7.83 (d, J = 8.4 Hz, 2H), 7.50 (t, J = 7.2 Hz, 2H), 7.46 (t, J = 7.2 Hz, 1H), 7.35 (d, J = 8.4 Hz,
2H), 7.22 (t, J = 7.2 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 7.07–7.02 (m, 3H), 6.98 (t, J = 7.2 Hz,
1H), 6.86 (s, 1H), 5.30 (s, 1H), 2.23 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 152.7, 151.4, 151.1,
149.6, 148.9, 132.7, 130.9, 129.8, 129.7, 129.1, 129.0, 128.8, 128.1, 123.8, 123.3, 123.3, 123.1,
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122.8, 116.6, 116.4, 44.3, 20.7. HRMS (ESI) calcd for C26H21N2O+ [M + H]+ 377.1648, found
377.1647.
(E)-1-(4-(4-Methoxy-9H-xanthen-9-yl)phenyl)-2-phenyldiazene (5b): Prepared following gen-
eral procedure and the reaction mixture was purified by flash column chromatography
with petroleum ether and ethyl acetate (PE/EA = 20:1) to afford the product 5b (70.3 mg,
60% yield). Orange solid; m.p.: 180.5~182.2 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.87 (d,
J = 7.2 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 7.2 Hz, 2H), 7.45 (t, J = 7.2 Hz, 1H), 7.36
(d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz, 1H), 7.24 (t, J = 8.4 Hz, 1H), 7.09 (d, J = 7.2 Hz, 1H),
7.01 (t, J = 6.6 Hz, 1H), 6.94 (t, J = 7.8 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 6.69 (d, J = 7.8, 1H),
5.35 (s, 1H), 3.98 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 152.7, 151.4, 150.8, 149.4, 148.1,
140.7, 130.9, 129.6, 129.1, 129.0, 128.1, 124.7, 123.6, 123.6, 123.3, 122.9, 1228, 121.3, 117.1,
110.2, 56.2, 44.3. HRMS (ESI) calcd for C26H21N2O+ [M + H]+ 393.1598, found 393.1600.
(E)-1-Phenyl-2-(4-(4-phenyl-9H-xanthen-9-yl)phenyl)diazene (5c): Prepared following general
procedure and the reaction mixture was purified by flash column chromatography with
petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 5c (70.7 mg, 54%
yield). Orange solid; m.p.: 182.6~183.8 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.88 (d, J = 7.2 Hz,
2H), 7.85 (d, J = 8.4 Hz, 2H), 7.68 (d, J = 7.2 Hz, 2H), 7.51 (t, J = 7.2 Hz, 4H), 7.47, (d,
J = 7.2 Hz, 1H), 7.42, (d, J = 7.2 Hz, 1H),7.40 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 7.2 Hz, 1H),
7.21 (t, J = 8.4 Hz, 1H), 7.13–7.07 (m, 4H), 7.02 (t, J = 7.2 Hz, 1H), 5.41 (s, 1H). 13C NMR
(151 MHz, CDCl3) δ 152.7, 151.5, 151.1, 149.1, 148.0, 137.7, 130.9, 130.1, 129.7, 129.7, 129.6,
129.3, 129.0, 128.9, 128.1, 128.0, 127.2, 124.7, 124.1, 123.5, 123.3, 123.2, 122.8, 120.4, 116.8,
114.1, 44.8. HRMS (ESI) calcd for C31H23N2O+ [M + H]+ 439.1805, found 439.1803.
(E)-1-(4-(12H-benzo[a]xanthen-12-yl)phenyl)-2-phenyldiazene (5d): Prepared following general
procedure and the reaction mixture was purified by flash column chromatography with
petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 5d (70.5 mg, 57%
yield). Orange solid; m.p.: 179.7~181.4 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.94 (d, J = 8.4 Hz,
1H), 7.84–7.82 (m, 4H), 7.76 (d, J = 8.4 Hz, 2H), 7.49–7.43 (m, 7H), 7.41 (d, J = 7.2 Hz, 1H),
7.37 (t, J = 7.2 Hz, 1H), 7.24–7.21 (m, 2H), 7.07 (t, J = 7.9 Hz, 1H), 5.92 (s, 1H). 13C NMR
(151 MHz, CDCl3) δ 152.7, 151.3, 150.1, 149.4, 149.3, 131.6, 130.8, 130.8, 129.3, 129.3, 129.0,
128.6, 128.1, 127.9, 126.9, 124.2, 124.1, 123.7, 123.4, 123.0, 122.7, 118.0, 116.8, 115.2, 41.9.
HRMS (ESI) calcd for C29H21N2O+ [M + H]+ 413.1648, found 413.1652.
(E)-1-(4-(7H-benzo[c]xanthen-7-yl)phenyl)-2-phenyldiazene (5e): Prepared following general
procedure and the reaction mixture was purified by flash column chromatography with
petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 5e (77.6 mg, 63%
yield). Orange solid; m.p.: 179.8~181.6 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.94 (d, J = 8.4 Hz,
1H), 7.84–7.82 (m, 4H), 7.76 (d, J = 8.4 Hz, 2H), 7.49–7.43 (m, 7H), 7.40 (d, J = 7.8 Hz, 1H),
7.37 (t, J = 7.8 Hz, 1H), 7.25–7.21 (m, 2H), 7.07 (t, J = 7.2 Hz, 1H), 5.92 (s, 1H). 13C NMR
(151 MHz, CDCl3) δ 152.7, 151.3, 150.1, 149.4, 149.3, 131.6, 130.8, 130.8, 129.3, 129.3, 129.0,
128.6, 128.1, 127.9, 126.9, 124.2, 124.1, 123.7, 123.4, 123.0, 122.7, 118.0, 116.8, 115.1, 41.9.
HRMS (ESI) calcd for C29H21N2O+ [M + H]+ 413.1648, found 413.1653.
(E)-1-(4-(10-Methyl-12H-benzo[a]xanthen-12-yl)phenyl)-2-phenyldiazene (5f): Prepared follow-
ing general procedure and the reaction mixture was purified by flash column chromatog-
raphy with petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 5f
(70.2 mg, 55% yield). Orange solid; m.p.: 181.4~183.2 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.93
(d, J = 8.4 Hz, 1H), 7.81 (d, J = 9.6 Hz, 4H), 7.75 (d, J = 9.0 Hz, 2H), 7.48–7.42 (m, 7H), 7.36 (t,
J = 7.2 Hz, 1H), 7.18 (s, 1H), 7.10 (d, J = 8.4 Hz, 1H), 7.03 (d, J = 9.6 Hz, 1H), 5.86 (s, 1H), 2.29
(s, 3H). 13C NMR (151 MHz, CDCl3) δ 152.7, 149.5, 149.5, 148.0, 133.1, 131.7, 130.8, 130.8,
129.5, 129.3, 129.0, 128.7, 128.6, 128.2, 126.8, 124.1, 123.7, 123.4, 122.9, 122.7, 118.1, 116.5,
115.1, 41.9, 20.8. HRMS (ESI) calcd for C30H23N2O+ [M + H]+ 427.1805, found 427.1805.
(E)-1-(4-(9H-Thioxanthen-9-yl)phenyl)-2-phenyldiazene (5g): Prepared following general pro-
cedure and the reaction mixture was purified by flash column chromatography with
petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 5g (74.7 mg, 66%
yield). White solid; m.p.: 176.1~177.9 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.85 (d, J = 7.8 Hz,
2H), 7.74 (d, J = 8.4 Hz, 2H), 7.50–7.44 (m, 7H), 7.30 (d, J = 7.2 Hz, 2H), 7.27 (d, J = 8.4 Hz,
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2H), 7.16 (d, J = 8.4 Hz, 2H), 5.41 (s, 1H). 13C NMR (151 MHz, CDCl3) δ 152.7, 151.3, 144.1,
136.9, 133.3, 130.8, 129.6, 129.0, 128.6, 127.3, 127.1, 126.7, 122.7, 122.7, 53.0. HRMS (ESI) calcd
for C25H19N2S+ [M + H]+ 379.1263, found 379.1264.
(E)-1-(4-(2-Methyl-9H-thioxanthen-9-yl)phenyl)-2-phenyldiazene (5h): Prepared following gen-
eral procedure and the reaction mixture was purified by flash column chromatography
with petroleum ether and ethylacetate (PE/EA = 100:1) to afford the product 5h (69.4 mg,
59% yield). Orange solid; m.p.: 174.4~176.4 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.85 (d,
J = 7.2 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.49 (t, J = 7.2 Hz, 2H), 7.46–7.43 (m, 3H), 7.36 (d,
J = 7.8 Hz, 1H), 7.30–7.27 (m, 3H), 7.18 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 7.8 Hz, 1H), 5.36 (s,
1H), 2.39 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 152.7, 151.3, 144.3, 137.1, 136.8, 136.6, 133.6,
130.8, 130.3, 129.8, 129.5, 129.0, 128.5, 127.9, 127.3, 127.1, 127.0, 126.6, 122.7, 122.7, 53.1, 21.1.
HRMS (ESI) calcd for C26H21N2S+ [M + H]+ 393.1420, found 393.1419.
(E)-1-(4-(2-Chloro-9H-thioxanthen-9-yl)phenyl)-2-phenyldiazene (5i): Prepared following gen-
eral procedure and the reaction mixture was purified by flash column chromatography
with petroleum ether and ethyl acetate (PE/EA = 100:1) to afford the product 5i (71.7 mg,
58% yield). Orange solid; m.p.: 178.6~179.8 ◦C. 1H NMR (600 MHz, CDCl3) δ 7.86 (d,
J = 7.2 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.49 (t, J = 7.2 Hz, 2H), 7.47–7.43 (m, 4H), 7.39 (d,
J = 8.4 Hz, 1H), 7.31 (t, J = 7.8 Hz, 1H), 7.29 (d, J = 7.2 Hz, 1H), 7.25 (d, J = 8.4 Hz, 1H), 7.16
(d, J = 8.4 Hz, 2H), 5.35 (s, 1H). 13C NMR (151 MHz, CDCl3) δ 152.7, 151.4, 143.2, 138.7,
136.3, 132.9, 132.5, 131.9, 130.9, 129.6, 129.4, 129.0, 128.5, 128.4, 127.3, 127.2, 127.0, 122.8,
120.8, 120.3, 52.8. HRMS (ESI) calcd for C25H18ClN2S+ [M + H]+ 413.0874, found 413.0873.

4. Conclusions

In summary, we have established a mild protocol to access azobenzene derivatives
through the electrochemical alkylation of simple azobenzenes with (thio)xanthenes. This
electrochemical transformation proceeds well in the absence of any catalyst or external
oxidant, and provides an atom-economic approach for the site-selective functionalization
of azobenzenes. We postulate that this strategy can be extended to more challenging
organic molecules akin to azobenzene for the development of sustainable electrochemi-
cal transformations.
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the products; Crystallographic data for 3d; Determination of faradaic efficiency.
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