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Abstract: Even though there are many photocurable compositions that are cured by cationic pho-
topolymerization mechanisms, UV curing generally consists of the formation of cross-linking covalent
bonds between a resin and monomers via a photoinitiated free radical polymerization reaction, ob-
taining a three-dimensional polymer network. One of its many applications is in the refinish coatings
market, where putties, primers and clear coats can be cured faster and more efficiently than with tradi-
tional curing. All these products contain the same essential components, which are resin, monomers
and photoinitiators, the latter being the source of free radicals. They may also include additives
used to achieve a certain consistency, but always taking into account the avoidance of damage to
the UV curing—for example, by removing light from the innermost layers. Surface curing also has
its challenges since it can be easily inhibited by oxygen, although this can be solved by adding
scavengers such as amines or thiols, able to react with the otherwise inactive peroxy radicals and
continue the propagation of the polymerization reaction. In this review article, we cover a broad
analysis from the organic point of view to the industrial applications of this line of research, with a
wide current and future range of uses.
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1. Introduction

Putties, primers and clear coats are products designed for the refinish coatings mar-
ket [1], with the purpose of protecting and decorating the bodywork (Figure 1), with special
interest in the automotive market [2]. Putties are applied over the metal surfaces with
the purpose of filling scratches. Primers protect the putty layer and promote adhesion
to the base coat, which contains the visual property of color. Clear coats are transparent
and provide surface properties including smoothness, gloss and weather [3] and light
resistance [4,5]. Once layers are applied, the drying is another physical phenomenon that
must be evaluated, and often involves two simultaneous processes, physical drying and
chemical curing [6]. Physical drying involves the evaporation of the solvents present in
the mixture.
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1. Introduction 
Putties, primers and clear coats are products designed for the refinish coatings mar-

ket [1], with the purpose of protecting and decorating the bodywork (Figure 1), with spe-
cial interest in the automotive market [2]. Putties are applied over the metal surfaces with 
the purpose of filling scratches. Primers protect the putty layer and promote adhesion to 
the base coat, which contains the visual property of color. Clear coats are transparent and 
provide surface properties including smoothness, gloss and weather [3] and light re-
sistance [4,5]. Once layers are applied, the drying is another physical phenomenon that 
must be evaluated, and often involves two simultaneous processes, physical drying and 
chemical curing [6]. Physical drying involves the evaporation of the solvents present in 
the mixture. 
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Chemical curing involves a chemical reaction that results in the formation of a three-
dimensional polymer matrix [7]. Traditionally, clear coats and primers cure through a
non-catalyzed but stoichiometric reaction, and putties through a free radical polymerization
reaction [8], all temperature-dependent processes.

In the field of polymer coating [9–11], there are different strategies that range from
vegetable oil-based, environmentally friendly coatings [12–14] and epoxy acrylate resins of
vegetable origin [15], or biodegradable lignin as a reactive raw material [16], to engineering
the bio-nano interface using multifunctional coordinating polymer coatings [17]. However,
a faster and greener alternative is ultraviolet (UV) curing, which consists of using UV light
to initiate photochemical reactions. The reaction that takes place during UV curing is a
free radical polymerization; the only difference between UV curing and the conventional
thermal curing is the species that initiate the chain reaction [18]. The main advantages
offered by UV curing are the possibility to define the start and end times of the initiation,
the rapidity of curing as it only requires irradiation, which ranges from seconds to several
minutes, and absence of a temperature requirement, translating into greater productivity
and energy efficiency [19]. However, the main limitations are related to the curing of thick
or pigmentated systems as they inhibit the penetration of light to the bottom [20]. This
technique has already been implemented in many applications, such as wood finishing [21],
biomedical engineering [22], dental materials [23,24] or adhesives [19,25–27], and more
recently in the automotive refinish coatings market [20,28,29]. The applications of the
coating are so extensive as to include even the keratin treatment of human hair, i.e., photo-
protective coating of human hair [30], using its aqueous mixtures on a natural halloysite
clay nanotube [31–33] that can be easily decorated [34–36].

Before considering the mechanistic insights of free radical photopolymerization, the
advantages of the cationic UV curing process are enumerated: (a) in the polymerization,
there is an absence of oxygen inhibition [37], which is the main problem of the radical
photopolymerization, eliminating the need for an inert atmosphere [38,39]; (b) the absence
of toxicity of the monomers used in cationic UV curing; and (c) lower residual stresses in the
cured materials, which is translated into better adhesion properties on the substrates [40].

The structure of the review is outlined in Chart 1, and the interest in linking pho-
topolymerization with the term free radical is self-justified, beginning in the 1970s and
experiencing steady progression to the hundred annual publications in 2019, with a subse-
quent expansion by an additional 50% over the last 2 years.
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2. Free Radical Polymerization

During the cross-linked free radical polymerization reaction, oligomers and monomers
functionalized with carbon–carbon double bonds react, forming single covalent bonds,
resulting in a three-dimensional cross-linked polymer network (Figure 2). The sources of
free radicals are photoinitiators [20,41,42].
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Figure 2. Schematic representation of the cross-linked polymer network obtained during a free radical
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2.1. Mechanism

The four basic steps of a free radical polymerization reaction are initiation, propagation,
chain transfer and termination (Scheme 1) [43,44]. Initiation creates free radical active
centers, which then initiate the propagating chain; propagation adds consecutive monomer
units to the growing polymer structure, since not every addition results in a cross-link. For
instance, the addition of a monofunctional monomer leads only to the extension of the
polymer chain, which is not a cross-link. Next, chain transfer ends a growing polymer and
begins another (in Scheme 1, H-R is any hydrogen donor, including a monomer, polymer
or an additive), and termination destroys the active centers and ends polymer growth [43].
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2.1.1. Initiation

Initiation consists of two processes. During the first process, the initiator dissociates
into two free radical species. In UV curing, the initiator decays upon irradiation with UV
light [45], either by homolytic cleavage, hydrogen abstraction or electron transfer. Notably,
in the last two cases, the donor radical is the initiating species.

In thermal curing, the initiator, usually a peroxide, decomposes thermally by cleavage
of the oxygen–oxygen bond. This process can be accelerated by using a promoter; aside
from a tertiary amine, as in Scheme 2 [46], this can come from a range of different salts,
including alkoxypyridinium [47], iodonium [48–51] or organoborate salts [52].
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Scheme 2. Interaction of a peroxide initiator with an amine promoter [53].

During the second process, either one or both of the radical species initiate a propagat-
ing chain by attacking a nearby monomer (Scheme 3a), which can be part of an oligomer or
a free monomer, and is incorporated into the polymer matrix [43,54,55].
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2.1.2. Propagation

Propagation involves the addition of monomers to the growing polymer
(Scheme 3b) [56]. Radicals react to form a covalent bond while generating a new radi-
cal, resulting in the formation of cross-links between oligomers [43,46].

2.1.3. Chain Transfer

During chain transfer, an active center is transferred (Scheme 3c). Propagating chains
abstract a weakly bonded atom, usually a hydrogen or halogen, which cleaves homolytically.
In consequence, a dead polymer chain and a new radical are generated, which can in turn
continue propagating. The transfer can happen either inter- or intramolecularly [18].

2.1.4. Termination

There are two types of termination. Termination by recombination involves the direct
coupling of two propagating chains, which form one longer polymer. In termination, as
shown in Scheme 4, by disproportionation, one propagating chain abstracts a hydrogen
atom from another propagating chain, yielding two stabilized polymer chains, of which
one carries a double bond [18,43].
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2.2. Inhibition by Oxygen

Photoinduced processes have gained attention and have led to the implementation
of technological developments towards new polymeric products [57,58]. Despite the
applications of polymerization photoinitiating systems in migration polymerization [59],
one of the major disadvantages of free radical photopolymerization is its susceptibility
to oxygen inhibition. Since oxygen is a biradical in its electronic ground state, it has the
capacity to interact with a growing chain with a free radical active center, leading to a
much less reactive peroxy radical. The latter is unable to break a C-H bond to undergo
chain transfer (Scheme 5). Consequently, this means that oxygen effectively acts as a chain
terminator, reducing the rate of polymerization. In addition, in the vicinity of the surface, it
is difficult to consume the oxygen faster than its diffusion, which can result in incomplete
curing or tackiness on the surface layers [43].
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Several methods can be used to minimize oxygen inhibition, such as using an inert gas,
increasing the photoinitiator concentration or the light intensity to produce a larger number
of active centers or adding oxygen scavengers to the mixture, such as amines or thiols. The
peroxy radical can undergo chain transfer to thiols or amines since sulfur–hydrogen and
N-H bonds are weaker, generating an active thiyl or alkylamino radical able to continue
propagating (Scheme 6) [43,60,61].
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3. Constituents of a Free Radical UV Curing System

The essential constituents of a UV curing system are a resin [62], which is an oligomer
whose backbone confers the properties to the final polymer; a monomer, which acts as
a cross-linking agent and adjusts the viscosity of the mixture to an acceptable level for
application; and a photoinitiator [63], which is responsible for the light absorbance and
governs the curing depth and rate [20,41]. All of them participate in the cross-linked free
radical polymerization reaction and are incorporated into the final polymer.

3.1. Resins

A resin is an oligomer, which is a chain formed by the union of monomer units, that
will constitute the framework of the cured polymer network [55,64]. It cannot be considered
a polymer because the latter is a macromolecule with a much larger number of monomer
units [65], whereas these oligomers usually contain from 1 to 12 repetitive units [66]. They
are usually formed through step-growth polymerization, a type of polymerization mecha-
nism in which bifunctional or multifunctional monomers react to form first dimers, then
trimers and, eventually, long-chain oligomers [67]. The type of monomer and their length,
together with the cure extension, will determine the properties of the final polymer [38,68].
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The main classes of UV-curable resins that can be polymerized by a radical mecha-
nism are unsaturated and acrylate resins [20]. The most common backbone structure for
unsaturated resins is polyesters, and for acrylate resins, they are polyurethanes, although
other structures, such as polyesters, can also be used [69,70].

3.1.1. Unsaturated Resins

Unsaturated resins periodically contain monomers with double bonds in their back-
bone, which will react during the free radical polymerization. They are generally polyesters,
which means that they have ester linkages in their backbone chain, generated through
condensation reactions between diols and unsaturated dicarboxylic acids, also called es-
terification reactions (Scheme 7) [71]. More than one type of each reagent could be used,
obtaining then an oligomer with over three different monomers. In any case, the unsatura-
tions come from the structure of the diacid.
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Scheme 7. Generic synthesis of an unsaturated polyester oligomer.

The Fischer esterification specifically refers to the acid-catalyzed reaction of carboxylic
acids and alcohols. It is one of the methods that can be employed to synthesize polyester
oligomers [72,73]. The alcohol from the diol nucleophilically attacks a protonated dicar-
boxylic acid, and after proton transfer, a water molecule is lost from the structure of the
diacid. The resulting product is in an ester, which, since both reactants are difunctionalized,
still contains an alcohol and a carboxylic acid group, able to further condensate and create
a chain of esters (Scheme 8).
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3.1.2. Acrylate Resins

Acrylate resins contain acrylate or methacrylate groups at their ends that will react
during the free radical polymerization [74]. They are more efficient than unsaturated resins
for UV curing. Urethane acrylates, which contain a polyurethane backbone, are the most
common, but polyester or polyether backbones are also used (Scheme 9) [43]. Given that
all acrylates are derived from oil, which is a scarce material and also highly polluting,
environmental pressure from climate change forces us to reduce the use of oil and/or
look for alternative solutions, such as the conversion of renewable biomass into materials,
polymers and composites [75]. The development and application of bio-based materials
is therefore aimed at replacing commercial UV-curable acrylate resins. In detail, they
are mainly epoxy, polyurethane and polyether acrylate oligomers. Resins have different
functions depending on the chain structure. The evolution of the polymer chain structure
has made polyester acrylate oligomers increasingly functional. Commercially, this has been
replicated in the growing UV curing market. However, there are also drawbacks, caused
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by the fact that products of relatively low intensity are needed. Despite the disadvantage
of high viscosity, polyester acrylates (PEA) lead to UV-curable resins with good hardness,
high tear resistance and wear resistance, ozone resistance and polarity [76]. Looking
for ways to reduce viscosity, and being part of the spectrum of non-petroleum-derived
biodegradable polymers [77,78], poly(lactic acid) (PLA) and the use of biocurable UV
coatings offer green advantages to the industry [79,80], PLA still has weaknesses although
it is applied prematurely, and is far from the market. In particular, its resistance needs
to be improved, especially at high temperatures. In order to influence improvements, in
contrast to the linear polymers [81–83], the networking of PLA and the incorporation of
star-shaped chains have been described, as well as modification by copolymerization with
poly(ε-caprolactone) (PCL) to improve its hardness, also favoring the positive reduction of
viscosity [84]. Notably, recently, maleimides have appeared to be competitors of acrylates
in photopolymerization because they can operate without a photoinitiator and also because
their polymerization rate is directly competitive with that of acrylates [85,86]. Nonetheless,
polyurethanes are synthesized similarly to polyesters; however, the polyol reacts with a
di- or triisocyanate instead of a diacid [87,88]. The polyol does not necessarily have to be a
polyether; for instance, polyesters could also be used [89]. The synthesis is catalyzed by a
tertiary amine, which, according to Farka’s mechanism, interacts with a proton source to
form a complex that subsequently reacts with the isocyanate (Scheme 10) [90].

In another type of curing, urethane cross-links are formed by the reaction of aliphatic
polyisocyanate monomers with hydroxy-functionalized resins instead of monomers, ob-
taining a polyurethane polymer network [91], this process being not catalyzed but stoi-
chiometric. Once synthesized, both polyester and polyurethane oligomers can react with a
hydroxyl acrylate or methacrylate to form the acrylate terminations [92,93].

The urethane acrylate oligomer can be divided into soft and hard sections. The soft
segments are produced from the polyols, and the longer they are, the more flexible is
the resin. The hard segments are produced from isocyanate and are immobile and stiff;
moreover, they can form intermolecular hydrogen bonds between the hydrogen attached
to the nitrogen and the carbonyl oxygen [89,95]. If a triisocyanate is employed instead of
a diisocyanate, the resulting oligomer would have acrylates in the backbone too, which
would be able to form cross-links during the free radical polymerization.
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3.2. Monomers

Monofunctional monomers are used to lower the viscosity of the mixture and to add
flexibility to the final polymer thanks to their cross-linking ability. In order to incorporate
into the polymer, they must contain carbon–carbon double bonds [43]. Amongst the
most common monofunctional monomers are unsaturated monomers, often used with
unsaturated polyester resins, acrylate monomers [96], and usually paired with acrylate
resins and thiol monomers, which can be added as curing accelerators [97,98].

The ratio of monomer will affect the rigidity of the final polymer, as the higher the
concentration of monomer, the more probable the formation of consecutive bonds between
monomers. In consequence, the cross-link chains will be longer and the polymer more
flexible, which will help to reduce the stiffness and thus the risk of cracking in the case of a
small collision. However, too much monomer could slow down the curing, since this means
that more bonds would have to be created to form the polymer. In the following sections,
the monomers are further detailed, divided into unsaturated, acrylate and thiol monomers.

3.2.1. Unsaturated Monomers

The unsaturated monomer per excellence is styrene, a small molecule with little steric
hindrance in comparison to the resin. Scheme 11 depicts how styrene forms cross-linked
chains between unsaturated oligomers.



Polymers 2022, 14, 2856 9 of 20

Polymers 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

3.2. Monomers 
Monofunctional monomers are used to lower the viscosity of the mixture and to add 

flexibility to the final polymer thanks to their cross-linking ability. In order to incorporate 
into the polymer, they must contain carbon–carbon double bonds [43]. Amongst the most 
common monofunctional monomers are unsaturated monomers, often used with unsatu-
rated polyester resins, acrylate monomers [96], and usually paired with acrylate resins 
and thiol monomers, which can be added as curing accelerators [97,98]. 

The ratio of monomer will affect the rigidity of the final polymer, as the higher the 
concentration of monomer, the more probable the formation of consecutive bonds be-
tween monomers. In consequence, the cross-link chains will be longer and the polymer 
more flexible, which will help to reduce the stiffness and thus the risk of cracking in the 
case of a small collision. However, too much monomer could slow down the curing, since 
this means that more bonds would have to be created to form the polymer. In the follow-
ing sections, the monomers are further detailed, divided into unsaturated, acrylate and 
thiol monomers. 

3.2.1. Unsaturated Monomers 
The unsaturated monomer per excellence is styrene, a small molecule with little steric 

hindrance in comparison to the resin. Scheme 11 depicts how styrene forms cross-linked 
chains between unsaturated oligomers. 

 
Scheme 11. Formation of cross-links by the reaction of styrene with an unsaturated polyester oligo-
mer. 

3.2.2. Acrylate Monomers 
A great variety of acrylate monomers are available, so that the ideal monomer or 

combination of monomers can be chosen in order to adjust the flexibility of the final pol-
ymer (Scheme 12). 

 
Scheme 12. Chemical structures of mono-, di- and triacrylate monomers [97]. 

The number of unsaturated groups will affect the flexibility of the final polymer. A 
higher number of unsaturations will form a higher number of cross-links and will cause 
the polymer to be more rigid. On the other hand, flexibility can be increased by using 
either long-chain linear monomers such as 1,6-hexanediol diacrylate, which will link oli-
gomers while still allowing them to move, or bulky monomers with high steric effects, 
such as isobornyl acrylate, which will hinder the formation of cross-links near them [97]. 

A special type of acrylate monomer is phosphates (Scheme 13a). They act as adher-
ence promotors to metal surfaces, making them useful in certain applications [99]. Phos-
phate anions can replace hydroxy anions on metal oxide surfaces, so that the phosphate 
is adsorbed into the metal surface, making its removal difficult since chemical bonds have 
been formed [100]. 

Scheme 11. Formation of cross-links by the reaction of styrene with an unsaturated polyester oligomer.

3.2.2. Acrylate Monomers

A great variety of acrylate monomers are available, so that the ideal monomer or
combination of monomers can be chosen in order to adjust the flexibility of the final
polymer (Scheme 12).
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Scheme 12. Chemical structures of mono-, di- and triacrylate monomers [97].

The number of unsaturated groups will affect the flexibility of the final polymer. A
higher number of unsaturations will form a higher number of cross-links and will cause the
polymer to be more rigid. On the other hand, flexibility can be increased by using either
long-chain linear monomers such as 1,6-hexanediol diacrylate, which will link oligomers
while still allowing them to move, or bulky monomers with high steric effects, such as
isobornyl acrylate, which will hinder the formation of cross-links near them [97].

A special type of acrylate monomer is phosphates (Scheme 13a). They act as adherence
promotors to metal surfaces, making them useful in certain applications [99]. Phosphate
anions can replace hydroxy anions on metal oxide surfaces, so that the phosphate is
adsorbed into the metal surface, making its removal difficult since chemical bonds have
been formed [100].
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3.2.3. Thiol Monomers

Thiol monomers combined with ene monomers can form thiol-ene systems, which
are suitable UV-curable resins (Scheme 13b). However, monomers are more volatile than
oligomers. Hence, thiols are rarely used as monomers due to their unpleasant odor, but can
be used as oligomers, which are less volatile [43].

Their main advantage is that little to no photoinitiator is required in order to polymer-
ize since thiols can function both as monomers and photoinitiators [101]. When exposed to
UV light, they produce a thiyl and a hydrogen radical pair through sulfur–hydrogen bond
cleavage [43]. However, this process is not as efficient as with an initiator; for this reason,
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the initiating species is often generated from the hydrogen abstraction reaction between
a photoinitiator and the thiol (Scheme 14) [102,103]. The resulting thiyl radical adds to a
double bond of a monomer and, from here, the rest of the mechanism proceeds in the same
way as in Scheme 1. Given that most of the thiols used are polyfunctionalized, they act as
powerful cross-linking agents [56,104].
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Another advantage offered by thiols is that they are less sensitive to oxygen inhibition
than acrylates [98]. For these reasons, thiols can be used as comonomers to accelerate the
initiation of the free radical polymerization and to achieve better curing on the surface, but
do not necessarily substitute the respective unsaturated or acrylate monomers [43].

3.3. Photoinitiators

Photoinitiators are able to convert light energy into chemical energy in the form of a
reactive species, which can be radicals or cations, leading to the initiation of the polymer-
ization chain. In the case of free radical polymerization reactions, radical photoinitiators
are used. They are considered essential components of UV curing systems because most of
the commonly used monomers are not able to generate free radicals upon exposure to UV
light [20].

Many free radical photoinitiators are based on the benzoyl chromophore and can
therefore undergo Norrish-type reactions. Norrish Type I photoinitiators generate the free
radicals via an α-cleavage. On the other hand, Norrish Type II photoinitiators form free
radicals through hydrogen abstraction, which can be either intramolecular or from a co-
initiator. However, other mechanisms can be followed to generate the radical active species
depending on whether the photoinitiator system is unimolecular or bimolecular [43].
It should be stated also that the original Norrish Type II cleavage reaction worked by
intramolecular hydrogen abstraction followed by a C-C bond cleavage that did not lead to
any radical species capable of the initiation of free radical polymerization.

3.3.1. Unimolecular Photoinitiators

Photoinitiator systems termed unimolecular involve only one molecular species to
generate the radical active species through homolytic cleavage. These photoinitiators are
typically acetophenone derivatives, benzoin ethers, amino ketones or phosphine oxide
derivatives. In most cases, the cleavage may occur in the α-position to the carbonyl group
(Norrish Type I), but it can occur at the α-position in the presence weak bonds such as
carbon–halogen, carbon–nitrogen, carbon–oxygen or carbon–sulfur next to the carbonyl
moiety (Scheme 15). One of the products of α-cleavage is always a benzoyl radical, while
in β-cleavage, it is always a phenacyl radical. The other radical formed will depend on the
structure of the initial photoinitiator, and it will not always be active—it could often be
disproportionate or recombine [43].
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Other types of unimolecular photoinitiators are those that can form biradicals through
intramolecular hydrogen abstraction (Norrish Type II). This occurs in molecules with a
hydrogen atom in the α-position, able to undergo an intramolecular [1,5]-hydrogen shift.
The resulting ketyl radical will most likely terminate by coupling with another free radical
species, while the other radical will initiate polymerization [43,46].

Upon the absorption of light with a specific frequency, photoinitiators are promoted
from the ground electronic state to an excited singlet state, from where they can undergo
inter-system crossing to a triplet state of comparable energy (Figure 3). It is from the
triplet state that the molecule will cleave, generating the radical species [20,107]. However,
Figure 3, supplemented with the cleavage reaction of triplets only, could be somewhat in-
complete since the unimolecular photoinitiators may cleave either from the singlet or triplet
state, depending on the photoinitiator structure, but the cleavage of singlets is more likely
due to their higher energy. Bimolecular photoinitiators work usually from the triplet state,
because the lifetime of most of singlet states is too short to enable bimolecular reactions.
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3.3.2. Bimolecular Photoinitiators

Photoinitiator systems termed bimolecular involve a photoinitiator that absorbs light,
and a co-initiator that serves as a hydrogen or electron donor. In both cases, the for-
mation of radicals takes place when the photoinitiator is either in the singlet or triplet
excited states. These photoinitiators are typically benzophenone derivatives, thioxanthones,
camphorquinones, benzyls or ketocoumarins [43].
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In initiation by hydrogen abstraction, the co-initiator is usually an ether or an alcohol
with an α-hydrogen. The resulting ether or alcohol radical will be the only initiating species.
On the other hand, in photoinitiation by electron transfer, the co-initiator is typically an
amine, and it forms an excited-state complex with the photoinitiator, from where electron
transfer occurs. It is immediately followed by the proton transfer of an α-hydrogen from
the amine, resulting in an active amine radical capable of initiating polymerization. The fact
that an amine is present in the system helps to neutralize oxygen inhibition. In both cases,
a ketyl radical is formed, which only participates in termination (Scheme 16) [43,46,108].
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In addition, there are other bimolecular photoinitiators, not described here, which are
among the most common components used in photoinitiating systems in the last decade,
including, among others, polymethine dyes [52,109], squaric acid derivatives [110–112] or
BODIPY dyes [112,113].

3.4. UV Light

UV light could be considered the fourth essential component of UV curing. In physics,
the term ‘light’ refers to electromagnetic radiation of any wavelength. The spectrum of
electromagnetic radiation can be organized by decreasing wavelength and thus increasing
energy into radio waves, microwaves, IR radiation, visible light, UV radiation, X-rays
and gamma rays (Figure 4). Radiation within the UV spectrum can be further divided by
wavelength into UVA (315–400 nm), UVB (280–315 nm) and UVC (100–280 nm) [114]. The
sun emits mainly visible light and infrared radiation, but it also emits some UV radiation.
Of the UV light that reaches the Earth’s surface, more than 95% is UVA, with a small
remainder of UVB and almost no UVC [115].
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Figure 4. Electromagnetic radiation spectrum.

Each type of radiation will interact differently with matter depending on how energetic
it is. Microwaves only cause changes in the rotational states of atoms and molecules, IR
radiation can also trigger vibrational transitions [116], visible and UV light are energetic
enough to modify the electronic structure by exciting outer-shell electrons, and X-rays can
excite inner-shell electrons (Figure 5).
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Figure 5. Schematic representation of electronic (Eel), vibrational (E(v)) and rotational (E(J)) ground
and excited states of a diatomic molecule.

The fact that UV and visible light can excite valence shell electrons means that it can
trigger chemical reactions such as free radical photopolymerization. In organic molecules
containing σ, π and n electrons, the absorption of UV–vis radiation is restricted to those
molecules that contain chromophore functional groups with valence electrons of low
excitation energy, such as photoinitiators. The electronic transitions that may occur in these
systems are depicted in Figure 6. However, among the outlined transitions, only n → π*
and π→ π*, the two lowest in energy, are available in the UV–vis spectrum [117,118].
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For the UV curing to be viable, the absorption spectrum of the photoinitiator must
overlap with the emission spectrum of the light source [43]. The most common types of UV
lamps are mercury and Light Emitting Diode (LED) lamps. The irradiation wavelength for
mercury lamps ranges from 185 to 650 nm; however, they are being substituted by the less
hazardous LED lamps, which irradiate at a much narrower range of 390–400 nm, the least
energetic UV radiation. However, the recent developments in LED technology, emitting at
365–370 nm, have allowed the design of novel, powerful and efficient light sources that
lead to the free radical and cationic photopolymerization of monomers [119], up to the
synthesis of interpenetrating polymer networks (IPNs) [120]. Since it emits at the edge
between UV and visible light, systems that can cure with LED lamps might also cure with
natural light, although slowly, as the irradiance, a determining factor in the curing rate,
will be lower. The use of LED lamps limits the number of available photoinitiators.

Figure 7 depicts the absorption spectrum of some unimolecular and bimolecular
photoinitiators [121]. It can be seen how photoinitiators A and C absorb at the UV LED
wavelength range, while photoinitiators B and C would not be activated with an LED lamp.
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The overlap between the initiator and light source must preferably not coincide
with the absorption peaks of other components in the photopolymerization [122], such
as monomers or pigments. In systems where there is overlap, higher light intensities
and photoinitiator concentrations are often used. Even so, achieving a fast, deep and
thorough cure in thick, pigmented coatings by UV radiation remains one of the greatest
challenges in photocuring [123–125]. Light scattering by the pigment particles will prevent
the penetration of photons in the deep-lying layers. A possible solution would be the use
of photosensitizers, molecules able to absorb at longer wavelengths and to transfer their
excitation to a photoinitiator [20].

In a clear formulation, UV radiation is absorbed mainly by the photoinitiator, so that
the cure depth is directly controlled by the photoinitiator. Photoinitiated curing follows a
surface to depth gradient because of the limited penetration of light; for this reason, there is
an optimum initiator concentration for the efficient curing of thick samples. As the initiator
concentration is increased, the initiation rate at the top of the film is increased, but at the
same time, the initiation rate at the bottom is decreased because the photoinitiator molecules
at the top absorb most of the UV light, impeding its penetration to the bottom [20].

4. Additives

Apart from the essential constituents of a UV curing system [126], other ingredients
are added to the formulations to enhance their properties. However, these additives do
not participate in the polymerization reaction and therefore are not covalently linked to
the final polymer [127]. The type and quantity of additives will determine whether the
resulting formulation will be a putty, a primer or a clear coat.

4.1. Mineral Fillers

Several mineral fillers can be used for each putty or primer in the form of white
powders. They are called fillers because, traditionally, they have been used to reduce the
cost of the formulation. The most important mineral filler is talc, a hydrated magnesium
silicate with chemical formula Mg3Si4O10(OH)2 [128]. Since talc is the softest filler, it allows
for a smooth sanding down; however, the main drawback of talcum powders is their
high cost, which needs to be compensated with other fillers such as carbonates or sulfates.
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Among the most used are calcium carbonate (CaCO3), calcium sulfate (CaSO4) and barium
sulphate or baryte (BaSO4).

4.2. Thinners/Thickeners

Several thickening agents can be used to increase the viscosity of the product without
changing any other properties. The most common one is aerosil, also known as pyro-
genic silica. Aerosils are agglomerates of silica particles that have extremely low bulk
density [129]. On the other hand, thinners are also used to lower the viscosity—for instance,
by means of reactive diluents/small monomers of low viscosity [130].

4.3. Microspheres

Microspheres are microscopic spheres made of glass, which are empty on the inside,
and they are available with different diameter sizes [131]. They are exclusively used for
putties since their purpose is to increase the volume of the final mixture in order to obtain a
dough texture.

4.4. Pigments

The purpose of pigments is to provide good coverage to the putty or primer so
that, when they are applied, light does not pass through [132]. This allows them to
disguise where the reparation has been made once the paint coat is applied. They are
mostly inorganic; the white ones provide very good coverage and can be used in large
amounts as fillers, while the black ones can give different tones of gray to the product.
On the other hand, organic pigments give a stronger color tone while not increasing the
coverage significantly.

4.5. Solvents

Solvents are present in primers and clear coats to lower their viscosity for a smooth
application with the spray gun, but not in putties, which do not undergo physical drying.

5. Conclusions

The aim of this review is to develop interest in new ranges of UV curing products for
the refinish coatings market, especially for the automotive market, aside from the known
cationic photopolymerization, as an alternative mode of curing. UV curing may include
putties, primers, putty–primers and/or clear coats. The objective of developing UV curing
products is to drastically reduce curing times, which translates into greater productivity but
also higher energy efficiency, as this type of curing does not require an external source of
temperature to proceed faster. Although there are still unresolved challenges, particularly
the penetration of light to the bottom of the material, the future will be characterized by
industrial applications that require UV curing, rather than by what is developed in basic
research; in fact, to a greater or lesser extent, the field will be required to adapt to the market
demands—in particular, the automotive market.
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