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ABSTRACT

Saccharomyces cerevisiae knockout collection TAG
microarrays are an emergent platform for rapid,
genome-wide functional characterization of yeast
genes. TAG arrays report abundance of unique oligo-
nucleotide ‘TAG’ sequences incorporated into each
deletion mutation of the yeast knockout collection,
allowing measurement of relative strain representa-
tion across experimental conditions for all knockout
mutants simultaneously. One application of TAG
arrays is to perform genome-wide synthetic lethality
screens, known as synthetic lethality analyzed by
microarray (SLAM). We designed a fully defined
spike-in pool to resemble typical SLAM experiments
and performed TAG microarray hybridizations. We
describe a method for analyzing two-color array
data to efficiently measure the differential knockout
strain representation across two experimental con-
ditions, and use the spike-in pool to show that the
sensitivity and specificity of this method exceed
typical current approaches.

INTRODUCTION

Introduction of the yeast knockout collections, containing
arrayed strains harboring deletion mutations for >95% of
predicted open reading frames (ORF), allows systematic
genome-wide screens for various phenotypes to be readily
accomplished (1–3). One aspect of the knockout collections
that facilitates rapid screens is the pair of unique 20mer TAGs
within each deletion mutation (4). A gene in each yeast knock-
out strain (YKO) is replaced with a selectable marker flanked
by two TAGs, termed UPTAG and DNTAG. All UPTAGS or

all DNTAGs in a sample can be amplified in a PCR using
universal primers. Individual YKO representation is sub-
sequently interrogated by hybridizing labeled TAGs to
microarrays and observing changes in signal intensity between
experimental conditions. This approach has been applied to
genome-wide screens for mutant phenotypes (3,5), synthetic
genetic interactions (6–10) and synthetic-chemical-genetic
interactions (10). TAG microarray approaches are rapid and
comprehensive, but systematic optimization of analysis
methods is lacking. We address this need here.

The most common application of TAG arrays is comparison
of YKO representation in two samples. Typically, samples are
co-hybridized on one array using complementary fluorescent
labels (Cy5 and Cy3). Various general approaches for
two-color arrays have been proposed for quality assessment,
background adjustment (11,12) and normalization (13–15).
However, in analysis of TAG arrays, each YKO has
UPTAG and DNTAG probes; four measurements correspond-
ing to each YKO are obtained. Finding the best way to sum-
marize this information in one quantity reflecting differential
YKO representation is not trivial (16). Here we demonstrate
the utility of a spike-in experiment by evaluating a simple
quality assessment procedure and a novel strategy for com-
bining the UPTAG and DNTAG information in a way that is
robust to problematic TAGs. Our results show that implement-
ing these two data procedures can greatly improve the utility of
TAG arrays.

MATERIALS AND METHODS

Preparation of spike-in pools. Heterozygous YKOs (Research
Genetics) were grown on solid media and combined, with the
exception of YKOs from plate 259 which were separately
mixed in subpools, as shown in Figure 1, before incorporation
into pool A or B at appropriate representation levels. Genomic
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DNA was extracted from samples of each spike-in pool using
the Masterpure Yeast DNA kit (Epicentre). Pool A and B
TAGs were labeled with Cy3 and Cy5, respectively, and
TAG microarrays were hybridized, washed and scanned as
described (17).

Analyses were performed using custom scripts written in R,
an open-source statistical language (18). GenePix local back-
ground intensities were not used for correction because, as
suggested by Yang et al. (12), subtracting these severely
increases noise (data not shown). Normalization was
performed using a procedure similar to the one previously
proposed (14). Alternate normalization methods did not
impact results (data not shown).

The GEO accession number for microarray data is
GSE2832. Data and code necessary to reproduce all the results
and figures are available upon request.

RESULTS

To evaluate statistical procedures for TAG microarray data,
we tailored defined spike-in pools to resemble expected results
in a typical synthetic lethality analyzed by microarray (SLAM)
experiment (6). Synthetic lethality is defined as inviability of
cells containing two mutations which are individually not
required for growth. In a SLAM experiment, viable YKOs
in pooled form are compared under two conditions: absence
versus presence of a specific second mutation (the ‘query’).

The average number of genetic interactions expected in a
genome-wide screen has been estimated to be �35, although
several query mutations with interactions exceeding 100 have
been analyzed (10,19). Therefore, we designed a pair of pools
(‘A’ and ‘B’) with 5758 YKOs at equivalent representation,
and a set of 94 YKOs with known differential representation
ranging from 1:2

1=3 to 1:25 and 1:infinity (Figure 1 and Sup-
plementary Table 1). Additionally, certain YKOs grow slowly,
and representation of these in the control SLAM sample is
expected to be lower than YKOs with wild-type growth rate.
To examine our ability to address these mutants, we designed
three representation levels in the control (B) pool: high (about
equal to all other strains), medium (8-fold dilute) and low
(64-fold dilute). TAGs from pools A and B were amplified
with Cy3- and Cy5-labeled primers, respectively. These sam-
ples were mixed at equal ratio, such that most TAGs should
exhibit equal hybridization, while Cy5:Cy3 ratios that deviate
from one are expected for the few differentially represented
TAGs. This design allows discovery of the best method to
produce a measure of differential representation from hybrid-
ization results.

Before addressing differential representation, we document
the utility of two filtering steps in data pre-processing. First,
we noted TAG-specific hybridization artifacts evident in self-
self hybridizations performed to examine the noise distribu-
tion. Pool A DNA served as template for preparation of labeled
TAGs with both Cy5 and Cy3. Thus, all TAGs were present at
equal amounts between channels. Figure 2a shows a scatter-
plot of normalized log2 Cy5:Cy3 ratios for corresponding
UPTAG and DNTAG probes. Because all these values should
be zero plus measurement error, we expect these to be uncor-
related and centered at zero. Figure 2a confirms this except for
a few YKOs with extreme values for one TAG. These outliers
may have a negative impact on specificity. They are likely
to be due to individual tag templates that enter the labeling
PCR as contaminants, which are detectable even at very low
levels (17).

We determined that these artifacts are consistent across
experiments performed with a single batch of labeled primer,
but not between different primer batches (Supplementary
Figure 1). To create a useful filter, we assumed that the
data follow a bivariate normal distribution and defined outliers
as TAGs with log ratios three SDs away from zero, using a
robust estimate of the SD. If the log ratio data follow a normal
distribution, excluding outliers, we expect to inappropriately
remove only �0.5% of the data (32 TAGs). We applied
this filter (Figure 2a, red lines) independently to UP- and
DNTAGs. Fortunately, the YKOs were designed with two
TAGs per gene (except for 192 strains lacking DNTAGs),
greatly improving chances that at least one TAG performs
adequately. Because non-outlier UP/DNTAGs appear to pro-
vide independent measurements, the chance of inappropriately
removing both TAGs for the same YKO is less than 0.00001.
Using this procedure we defined 193 DNTAGs (purple circles)
and 244 UPTAGs (blue circles) as primer-batch specific out-
liers. Six YKOs had both UP and DN ratios filtered (orange
circles).

Next, we considered the effect of TAG-specific hybridiza-
tion behavior resulting from the presence of nucleotide muta-
tions found in some of the TAGs and universal priming sites
(20). This is important because sensitivity will be markedly

Figure 1. Design of spike-in pools. Two pools were created (‘A’ and ‘B’) such
that 94 strains were differentially represented between the two pools. The 94
differentially represented strains were diluted 1:1, 1:8 or 1:64 (High, Medium or
Low representation), then added to Pool B. Each strain was then diluted again
from 1:2

1=3 to 1:25 and added to Pool A. One set of strains from each representa-
tion group was not added to Pool A (dilution 1:21).

e140 Nucleic Acids Research, 2005, Vol. 33, No. 16 PAGE 2 OF 5



affected when TAGs fail to provide a meaningful measure of
strain representation. Histograms of log2 signal intensity dis-
play a bimodal distribution (Figure 2b and data not shown) for
UP- and DNTAGs whether Cy3 or Cy5 labeling is used. The

lower peak is close to background intensities and contains non-
functional TAGs with absent or inefficient hybridization.
While TAG sequence discrepancies have been characterized
(20), knowledge of the presence and nature of mutations was
insufficient to fully predict hybridization behavior (17,20).

The naı̈ve approach to summarizing UP- and DNTAG
information is to average their observed log ratios. This solu-
tion will yield suboptimal measures when one of the TAGs is
non-functional. We propose a procedure exploiting the bimo-
dal distribution of TAG intensities to improve on simple aver-
aging. To determine if a TAG is non-functional we fit a
mixture model, as in Irizarry et al. (16), to the log intensity
data for the control sample. The model fits two normal dis-
tributions to the Cy5 data, one for the lower mode and one for
the upper mode. The ‘blank’ (YQL) features (17) define the
location and width (mean and SD) of the lower distribution.
With this fitted model in place, we can predict the probability
that each TAG is ‘present’ (Figure 2b). We consider a DN/
UPTAG non-functional when it is predicted absent while the
complementary UP/DNTAG is present. We define a weighted
average ¼ w * UP + (1 � w) * DN, where w ¼ 0.5 + [P(UP
present) � P(DN present)]/2. Thus, when UP is present
(PUP ¼ 1) and DN is absent (PDN ¼ 0), w ¼ 1 and only
UPTAG is used (Figure 2c). We describe a less complex
procedure in Supplementary Note 1 that uses binary absent
or present values (P ¼ 0 or 1) and performs similarly (data not
shown). Researchers using unsophisticated analysis soft-
ware such as spreadsheet applications may prefer the simple
procedure.

We compared the performance of these two strategies and
use of UP- or DNTAGs alone with Receiver Operating Char-
acteristic (ROC) curves based on the spike-in experiment. For
this analysis, nominal ratios below 2-fold were excluded from
the list of True Positives. This choice is appropriate because
2-fold representation difference corresponds to a subtle growth
defect at the margin of detection in colony measurement (1.25-
fold colony diameter difference is predicted by hemispherical
colony volume ¼ 2 pr3/3). Supplementary Figures 2–3 pre-
sent ROC curves with varying stringencies for inclusion as
‘True Positive’, including every spiked-in YKO (1.26-fold or
higher). ROC curves in the range of false positives likely to be
acceptable (Figure 3a and Supplementary Figure 2) demon-
strate that the artifact filtering process has a significant effect
on specificity (Supplementary Figure 4 shows the full ROC
curves). Additional filtering of non-functional TAGs by the
weighted average improves results further (Figure 3b and
Supplementary Figure 3).

Figure 2. Development of TAG filters. (a) Self-self hybridizations. Pool A
gDNA was used as template for TAG labeling reactions with each primer set
(UP/DNTAG Cy5/Cy3). Median values across three experiments were dis-
played. Each point represents a single YKO. Red dotted lines are three SDs.
Blue circles, artifacts specific to UP ratio; purple circles, artifacts specific to DN
ratio; orange circles, artifacts in both TAGs. (b) Histogram of log2 UPTAG Cy5
signal values from pool A versus B hybridization. Results from DNTAG and
Cy3 are similar. Red line, probability each feature belongs to the upper (right-
hand) distribution. (c) UPTAG Cy5 versus DNTAG Cy5. Each point represents
a single YKO. Therefore, for each point the numbers of UP- and DNTAGs in the
sample are identical. Red lines, values at which absent/present probabilities
equal 0.5. In the weighted average method, DN ratio was weighted higher for
YKOs in the upper left quadrant, and UP ratio was weighted higher for YKOs in
the lower right quadrant.
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The effect of two filters, one which removes the systematic
artifacts and a second which removes non-hybridizing TAGs,
is demonstrated by ratio-intensity plots. A naı̈ve approach to
analysis would average UP and DN log ratio to produce a
measure M for relative strain representation. By filtering sys-
tematic artifacts, noise is significantly reduced (Figure 3c and
d, open circles and Supplementary Figure 5). Additionally,
combining UP and DN selectively provides increased sensit-
ivity for a number of spiked-in strains (filled shapes).

DISCUSSION

In summary, we present a spike-in pool design that allows
evaluation of various methods for generating measures of

differential strain representation. Using this experiment, we
determined that the largest factor affecting specificity is the
presence of primer batch-specific artifacts, evident in control
self-self hybridizations. These artifacts may result from
extremely low levels of contaminating TAG sequence tem-
plate introduced before the labeling PCR. Accidental intro-
duction of contaminants may occur at multiple steps, including
the high-performance liquid chromatography (HPLC) column
purification of Cy5- and Cy3-labeled primers at their manu-
facture as well as laboratory manipulation of primer batches
during initial stock and aliquot preparation. Because the arti-
facts are consistent only within batches of primer sets, con-
tamination must occur at initial preparation or during
manufacture. Yuan et al. (17) discuss the unusually large
dilutions required to prevent contamination in TAG labeling

Figure 3. Measures of sensitivity/specificity. (a and b) ROC for several methods of calculating relative YKO representation. True Positive is defined as any YKO
with known pool B:A ratio > 2. False Positive is defined as any YKO with known B:A ratio of 1. ROC curves for UP ratio alone (purple line), DN ratio (blue line),
Average ratio (green line), Filtered average ratio (red line) and weighted average ratio (black line). (c and d) Ratio-intensity plots using simple averaging of UP and
DN ratios or weighted average ratios. Black open circles, YKOs with known B:A ratio of 1; filled circles, high representation YKOs; squares, medium representation
YKOs; diamonds, low representation YKOs. Point size is related to known B:A ratio: from small to large, 2

1=3, 2
2=3, 2, 22, 23, 24, 25 and 21. Black dotted lines are 0.1, 1,

99 and 99.9 percentiles for YKOs with known B:A ratio ¼ 1.
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reactions. While the source of these artifacts is uncertain, there
are several options for minimizing their effect. The approach
we present uses a control hybridization of one DNA sample
labeled with both primer sets, such that every TAG is present
at equal amounts in the two labeling reactions. Deviations
from expected 1:1 ratio can be recognized and filtering is
applied.

The methods we describe improve detection of true signal
difference between samples; however, they are not perfect.
Once primer-batch specific artifacts are removed, noise is
increased slightly with the weighted average method com-
pared to averaging (see Supplementary Figure 5d and e).
Additionally, the weighted average could cause decreased
sensitivity when cross-hybridization occurs for one TAG
from a low represented strain. The TAG that accurately
reflects the low representation of the YKO may be discounted
while the cross-hybridizing TAG is emphasized. These prob-
lems could be minimized by improving the criteria for select-
ing a TAG as non-hybridizing, perhaps by examining behavior
across many microarrays. The advantage of this method is that
it requires as few as two microarray hybridizations (self-self
and experiment) to perform well. We have tested these meth-
ods to provide optimal results from SLAM experiments, where
YKOs that decrease in representation from control to experi-
mental samples are sought. However, appropriately applied,
other TAG microarray experiments should benefit from the
procedures we describe.

SUPPLEMENTARY DATA

Supplementary Data is available at NAR Online.
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