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Abstract: Inelastic light scattering spectra of organic–inorganic halide perovskite MAPbCl3 single
crystals were investigated by using Brillouin spectroscopy. Sound velocities and acoustic absorption
coefficients of longitudinal and transverse acoustic modes propagating along the cubic [100] direction
were determined in a wide temperature range. The sound velocities exhibited softening upon cooling
in the cubic phase, which was accompanied by the increasing acoustic damping. The obtained
relaxation time showed a critical slowing-down behavior, revealing the order–disorder nature of the
phase transition, which is consistent with the growth of strong central peaks upon cooling toward
the phase transition point. The temperature dependences of the two elastic constants C11 and C44

were obtained in the cubic phase for the first time. The comparison of C11 and C44 with those of
other halide perovskites showed that C11 of MAPbCl3 is larger and C44 is slightly smaller compared
to the values of MAPbBr3 and MAPbI3. It suggests that MAPbCl3 has a more compact structure
(smaller lattice constant) along with stronger binding forces, causing larger C11 and bulk modulus in
this compound, and that the shear rigidity is exceedingly small similar to other halide perovskites.
The reported elastic constants in this study may serve as a testbed for theoretical and calculational
approaches for MAPbCl3.

Keywords: halide perovskite; Brillouin scattering; elastic constant; sound velocity

1. Introduction

Perovskites with a generic ABX3 structure are being employed in several research
fields [1,2]. Hybrid organic–inorganic halide perovskites (HOPs) have arisen as key materi-
als for application in optoelectronic and photovoltaic devices [3,4], such as light-emitting
diodes [5], photodetectors [6] and, especially, solar cells [7], which have shown a drastic
increase in the solar power conversion efficiency from 3.9% to 25.7% in a few years [8].
Various experimental and theoretical approaches have been adopted to understand the
structural properties, phase transition behaviors, and device performances of HOPs [9].
However, a deeper understanding of the fundamental intrinsic properties and phase transi-
tion behaviors of these materials are prerequisites to further improvements of the devices
based on HOPs. In this context, single crystals may be ideal for deeper investigation
from a fundamental point of view due to the lack of any effects from grain boundaries,
morphologies, and defects. Single crystals can be made using a variety of techniques, in-
cluding solvent evaporation, temperature lowering, inverse crystallization, and antisolvent
vapor-assisted methods [10]. We chose the solvent evaporation method among these to
synthesize single crystals of high optical quality.

One of the fundamental properties of solids is their elastic properties, including vari-
ous elastic moduli and acoustic absorption coefficients [11,12]. Elastic constants are directly
related to the interatomic forces in the crystal and provide an experimental platform for
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testing theoretical/calculational models. There are several experimental methods for prob-
ing these properties, such as low-frequency indentation and ultrasonic methods [13], etc.
Among them, Brillouin light scattering is a nondestructive, noncontact method that is a
powerful tool in the determination of the elastic constants, sound velocities, and acous-
tic attenuation coefficients of acoustic waves propagating in condensed matters [14–20].
Despite extensive studies on HOPs in terms of various experimental techniques, there are
only a few acoustic studies on these materials [13,21–27]. Various acoustic properties of
CH3NH3PbX3 (MAPbX3 with X = Cl, Br, I) and CH(NH2)2PbX3 (FAPbX3 with X = Cl, Br, I)
have been reported at room temperature or as a function of temperature. In addition, there
are a few calculation studies on the mechanical properties of these compounds [12,28].

Ferreira et al. used coherent inelastic neutron scattering and Brillouin scattering
techniques to probe the elastic properties of several lead-based halide perovskites [24].
They found a very low shear modulus and softness in these compounds. Significant elastic
anisotropy was confirmed in MAPbBr3 measured by the laser ultrasonic technique [13].
Harwell et al. used resonant ultrasound spectroscopy to investigate the temperature
dependence of acoustic resonant frequencies and the acoustic losses of methylammonium
lead halide perovskites [25]. They found that acoustic losses are substantially large in the
tetragonal phase of MAPbBr3 and MAPbI3, which was attributed to the mobility of the
ferroelastic twin walls. The overall changes in the elastic properties were explained in terms
of the MA order and disorder in each phase [25]. Zhevstovskikh et al. used the ultrasonic
technique to study the changes in the sound velocity and the attenuation coefficient of
both the longitudinal and transverse acoustic waves of MAPbI3 single crystals in the
MHz range [27]. This study revealed a step-like change in the sound velocity and a sharp
attenuation peak near the tetragonal–orthorhombic phase transition point. These anomalies
were interpreted based on the phenomenological theory of the order parameter–strain
coupling and the fluctuations of the order parameter.

Another interesting study on the high-frequency dynamics of MAPbX3 was reported
by Anusca et al. [23]. They showed that a fast relaxation process appears in the GHz
range probed by broadband dielectric spectroscopy, the relaxation time of which exhibited
a critical slowing-down behavior near the phase transition point, indicating the order–
disorder nature of the phase transition. They also reported significant changes in the
sound velocity and the attenuation coefficient at both phase transitions of the cubic-to-
tetragonal and tetragonal-to-orthorhombic phases. Since the GHz relaxation process is
exactly overlapped with the frequency window of the Brillouin spectroscopy, it would be
interesting to find out the correlation between the dielectric relaxation process and the
Brillouin scattering results.

The information on the elastic properties of halide perovskites is important for the
investigation of their stability in device applications or material preparation. The purpose
of this study is to investigate the temperature dependence of the acoustic properties of
MAPbCl3 single crystals in the hypersonic range by using Brillouin spectroscopy. Especially,
the temperature dependence of some elastic constants will be reported for the first time
and their correlation with the phase transition will be discussed in detail. MAPbCl3 is the
most stable halide perovskite, with a bandgap energy of ~2.9 eV [29]. It has been studied in
terms of various experimental methods [30–32], but the acoustic study is very rare [23,25].
The obtained results will be compared to previous studies, especially the high-frequency
dielectric properties reported by Anusca et al. [23].

2. Materials and Methods

Lead chloride (PbCl2, 99.999%), methylamine (CH3NH2, 40% in water), hydrochloric
acid (HCl, 37%, ACS reagent), dimethyl sulfoxide (DMSO, anhydrous ≥ 99.9%), diethyl
ether (HPLC grade, ≥99.9%), and ethanol (anhydrous 99.5%) were purchased from Sigma
Aldrich (St. Louis, MO, USA). Methylammonium chloride (MACl) was synthesized by
dropwise addition of HCl into ice-bath-cooled methylamine in the 1.2:1 molar ratio followed
by stirring until complete dissolution. The obtained solution was then dried into a rotary
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evaporator at 60 ◦C under a vacuum. After 3 h, the solution had completely dried, and a
white shiny MACl powder was obtained. MACl powder was then purified by dissolving it
in ethanol (200 mL) at 40 ◦C. Next, diethyl ether (200 mL) was added to achieve precipitation
in this solution. The purification step was repeated twice. Finally, the obtained powder
was dried overnight in a vacuum oven at 60 ◦C.

Equimolar solutions of the obtained white MACl powder (0.01 M) and PbCl2 (0.01 M)
were dissolved in DMSO (10 mL) by stirring at 60 ◦C. After complete dissolution, the
solution was filtered through a 0.22 µm syringe filter into a crystallization dish. The
dish was covered with aluminum foil and left undisturbed for 1–2 days at a constant
temperature of 100 ◦C. After 1–2 days, transparent MAPbCl3 crystals with a typical size
of 5 × 5 × 2 mm3 were obtained. Afterward, the crystals were washed with acetone and
dried overnight in a vacuum oven at 60 ◦C. Figure 1a shows the photo of the grown single
crystal which was used for the Brillouin measurement.
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Figure 1. (Color online) (a) A picture of the grown single crystal. (b) The X-ray diffraction pattern of
the powder MAPbCl3.

A high-resolution powder X-ray diffractometer (PANalytical X’pert Pro MPD, Malvern,
UK) was used to record X-ray diffraction (XRD) patterns at room temperature, with Cu Kβ

radiations with λ = 1.5406 Å as an excitation source to probe the crystal at a scan rate of 3◦

per minute in a scan range of 10◦ < 2θ < 60◦.
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Brillouin spectra were measured by using a typical tandem multi-pass Fabry–Perot
interferometer (TFP-2, JRS Co., Zürich, Switzerland). The free spectral range was 50 GHz,
and the scan range was ±35.7 GHz. The typical finesse of the interferometer was around
100. A modified microscope (BH-2, Olympus, Tokyo, Japan) including a small prism
for redirecting the laser beam, was used for the backscattering experiment. A diode-
pumped solid-state single-mode laser (Excelsior 532−300, Spectra Physics, Santa Clara, CA,
USA) at a wavelength of 532 nm was used as an excitation light source. A conventional
photon-counting system combined with a multichannel analyzer (1024 channels) was used
to detect and average the signal. The sample was put in a cryostat stage (THMS 600,
Linkam, Tadworth, UK) for temperature control. All the measurements were taken in the
temperature range from −196 ◦C to 40 ◦C.

3. Results and Discussion

The powder X-ray diffraction for the obtained single crystal, which is shown in
Figure 1b, was consistent with previous reports [33]. Figure 2a shows a temperature depen-
dence of the Brillouin spectrum of the MAPbCl3 single crystal. In the high-temperature
cubic phase, the spectrum consists of two Brillouin doublets appearing at ~25 GHz and
~8 GHz. The high- and the low-frequency peaks correspond to the longitudinal acoustic
(LA) and the transverse acoustic (TA) modes, respectively. As temperature decreases, a
quasi-elastic central peak begins to appear at approximately −80 ◦C and grows upon
further cooling. This is evident from the intensity color plot, as shown in Figure 2b. The
LA mode is split at about −116 ◦C, which corresponds to the tetragonal-to-orthorhombic
phase transition point. The TA mode is split as well at the same temperature, which is,
however, not clearly seen in Figure 2a.

For quantitative analysis, the measured spectrum was curve-fitted by using a Voigt
function. It is a convolution function of the Lorentzian function (an approximate response
function of the damped harmonic oscillator) and the Gaussian instrumental function.
The acoustic-mode frequency (νB) and the full width at half maximum (FWHM, ΓB) was
derived as a function of temperature. Figure 3a,b show the temperature dependences of
the νB and the ΓB of the LA mode, respectively, for the cooling process. The temperature
dependence of the νB, as well as its splitting at −116 ◦C, was reproducible by subsequent
measurements. MAPbCl3 has been known to undergo two structural phase transitions,
from the cubic-to-tetragonal phase at approximately −95 ◦C (=TC-T), and then from the
tetragonal-to-orthorhombic phase at about −116 ◦C (=TT-O). The LA mode shows gradual
softening and then a slight upward hardening upon cooling in the cubic phase. The νB
exhibits a small cusp, while the ΓB displays a clear maximum near TC-T. Figure S1a,b in the
Supplementary Materials show the comparison of the Brillouin data and the real part of
the dielectric permittivity reported in [34]. the TC-T is characterized by the maxima of both
the permittivity and the ΓB, while the permittivity and the νB drop precipitously at TT-O.
These comparisons indicate that the acoustic anomalies are strongly correlated with the
changes in the dielectric properties.

The Brillouin spectra were recorded upon heating as well. The comparison between
cooling and heating processes is shown in Figure S2 in the Supplementary Materials. The
splitting of the LA mode at low temperatures and the softening of the LA mode in addition
to a significant damping factor in the cubic phase were confirmed in the heating process.
However, the data are a little bit scattered, which may be probably due to the sample
degradation caused by the long exposure to the ambient condition.

Both LA- and TA-mode frequencies are split at TT-O, as described above. Especially,
the ΓB of the LA mode exhibits a sharp damping peak at TT-O. The half-widths are small
in the orthorhombic phase, while the mode frequencies show slight hardening upon
further cooling below TT-O. There are small but noticeable anomalies near −140 ◦C, the
origin of which is not clear. However, previous acoustic studies by resonant ultrasound
spectroscopy revealed a clear acoustic damping peak in the same temperature range,
which was tentatively attributed to some freezing process of the MA rotation and/or the
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hopping of Cl ions between vacancies [25]. However, this small anomaly does not appear
during the heating process (Figure S2), indicating that the relevant structural change may
be metastable.
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Figure 2. (Color online) (a) Temperature dependence of the Brillouin spectrum and (b) the intensity
color plot of the measured spectra.

Figure 4 shows the temperature dependence of the νB of the TA mode for the cooling
process. It displays a gradual softening upon cooling in the cubic phase, a broad minimum
at TC-T, and a sudden increase along with splitting at TT-O. The ΓB of the TA mode, which is
shown in Figure S3b in the Supplementary Materials, is rather scattered but shows a small
peak near TT-O. Splitting of the TA mode at and below TT-O is seen and is very similar to
the case of the LA mode. The splitting of the acoustic-mode frequencies was confirmed in
MAPbBr3 as well and ascribed to the presence of multiply-strained domains [22]. In this
case, there may exist several multiply-strained domains in the focal point of the probe laser
beam, where differently strained areas with different refractive indices would give rise
to split Brillouin doublets. Therefore, a quantitative analysis for the orthorhombic phase
was difficult to carry out. This result, combined with [22], indicates that the formation



Materials 2022, 15, 3692 6 of 17

of multiply-strained domains in the low-temperature orthorhombic phase seems to be a
common phenomenon in MA-based halide perovskite single crystals.
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The data of νB and ΓB were transformed into the sound velocity V and the acoustic
absorption coefficient α via the following equations valid for the backscattering geometry;

V =
νBλ

2n
, (1)

α =
πΓB

V
. (2)
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In these equations, λ is the laser wavelength (=532 nm) and n is the refractive index.
Figure 5a,b show the temperature dependence of the sound velocity and the absorption
coefficient of the LA mode, respectively. The refractive index of n = 1.9 at 532 nm, reported
in the previous study [35], was used for the calculation. The temperature dependence
of n was not considered. The longitudinal sound velocity is approximately 3599 m/s at
room temperature and shows a mild softening upon cooling. This elastic softening is
accompanied by a drastic increase in the absorption coefficient, a more than five times
increase upon the change of T from room temperature to TC-T. It indicates that the lon-
gitudinal sound wave is strongly coupled to other degrees of freedom associated with
the cubic-to-tetragonal phase transition and that the dissipative energy exchange between
them becomes very active near TC-T. There are two reports on the longitudinal sound
velocities of MAPbCl3 [23,26]. The longitudinal sound velocity of ceramic MAPbCl3 is ap-
proximately 3450 m/s at 0 ◦C [23], which is comparable to the result of this study. However,
the other result on the single-crystal MAPbCl3 shows that the sound velocity is 4000 m/s
at room temperature [26], which is much larger than the other two results, including the
present study. The sound velocity of the TA mode is shown in Figure 6. It decreases from
~1098 m/s to ~967 m/s at TC-T and then increases in the tetragonal phase drastically. The
sound velocity exhibits two branches in the orthorhombic phase corresponding to the
two acoustic modes (split TA mode) shown in Figure 4. The transverse sound velocity of
this study is much smaller compared to the previous report of 1770 m/s [26]. Since the
phonon propagation direction was not completely determined and the laser wavelength
was different in the previous work [26], it is not clear whether the difference in the sound
velocities is due to the dispersion effect or the difference in the phonon direction.
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coefficient of the LA mode. Phase boundaries are shown as vertical dotted lines along with the
phase transition temperatures. The two symbols at low temperatures indicate the data from the split
LA mode.

The coupling between the strain caused by the LA mode and the other degrees of
freedom relevant to the phase transition is more clearly seen from the elastic constant data.
MAPbCl3 maintains a cubic symmetry at high temperatures down to ~ TC-T, at which the
cubic phase changes into a tetragonal one. There are three independent elastic constants
in the cubic phase, namely C11, C12, and C44 [14]. Since the phonon propagation direction
of the present experiment is the [100] direction, the LA and TA modes shown in Figure 2
correspond to the C11 and C44, respectively. The reported density of ρ = 3171 kg/m3 [36]
was used to obtain the two elastic constants as ρV2 in the cubic phase. Table 1 shows
the comparison of the sound velocities and the two elastic constants of the MA-based
halide perovskites at room temperature. There is no experimental result for the elastic
constant of MAPbCl3. Only theoretical calculations provided the estimations for the elastic
constants [12,28]. The reported values for C11 from these theoretical studies are 39.5 and
42.1 GPa, which are very similar to the present result of 41.0 GPa. C44 has been theoretically
estimated to be 2.9 or 6.5 GPa, and our result of 3.74 GPa is located in this range. These
consistent results suggest both theoretical studies are reliable, although the difference in
predicted C44 values is rather large, and that our experimental results provide a reliable
testbed for further theoretical works.
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Table 1. Comparison of sound velocities and elastic constants of several halide perovskites.

Parameters MAPbCl3
(This Work)

MAPbCl3
(Other Works)

MAPbBr3
(Other Works)

MAPbI3
(Other Works)

VLA (m/s) 3599 4000 [26] 3075 [22] 2300 [24]
VTA(m/s) 1086 1770 [26] 1010 [22] 1330 [24]
C11 (GPa) 41.0 39.5 [12] 35.9 [22] 32.3 [28]
C44 (GPa) 3.74 2.9 [12] 3.9 [22] 4.8 [28]

Figure 7 shows the change in the elastic constants as a function of the lattice constant
(and, thus, X in MAPbX3) in lead-based halide perovskites. Since the elastic bulk modulus
cannot be obtained from the present result due to the lack of C12, theoretical values of [28]
were included for comparison. The C11 and the bulk modulus increase with the decreasing
lattice constant, while C44 values are relatively similar and very small. A more compact
structure at a smaller lattice constant is responsible for the larger strength of the binding
interactions, which was attributed to the more symmetric MA cations and the resulting
steric effect [24]. On the other hand, the exceedingly small C44 values of the three com-
pounds indicate their very unstable structure against the shear forces, resulting in large
elastic anisotropy and an exceptionally low shear modulus.

The temperature dependences of the obtained elastic constants in the cubic phase
are shown in Figure 8. Both elastic constants display softening upon cooling toward TC-T.
C11 shows a maximum near ~0 ◦C and begins to be softened below this temperature,
which indicates that the coupling of the LA mode and other degrees of freedom begins
near this temperature. C11 changes from ~41.2 GPa at about 0 ◦C to ~40.4 GPa at −90 ◦C.
In the case of C44, it continuously decreases from ~3.82 GPa at 40 ◦C to ~2.96 GPa at
TC-T. The surprisingly small C44 was also observed from other halide perovskites, such
as MAPbBr3 [13,22]. The C44 of MAPbBr3 is around 3.5 GPa at room temperature and
shows the smallest value along the [100] direction in the slowness curve [13]. The C44 of
MAPbI3 is reported to be approximately 7.3 GPa [24] or 4.8 GPa [28]. On the other hand, the
FA-based halide perovskites exhibit even smaller C44 values than MA-based materials [24].
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It indicates that the extremely low shear rigidity may be a common characteristic in MA-
and FA-based halide perovskites, with the latter being softer to the shear stress.
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The above results clearly showed that the acoustic mode is coupled to other degrees
of freedom, which are associated with the cubic-to-tetragonal phase transition, in the cubic
phase. Létoublon et al. suggested that the disordered reorientational motions of the MA
cations are responsible for the translation–rotation coupling, which induces the elastic
softening [22]. They revealed that the low-frequency Brillouin spectra of MAPbBr3 are
characterized by the central peak coupled to the LA mode, which is another indication of the
order–disorder characteristic of the cubic-to-tetragonal phase transition. In another work,
the rotations and tilts of the corner-sharing oxygen octahedra were suggested to be the
origin of the acoustic softening [13]. Especially, the rotational motions may be responsible
for the extremely low shear modulus. We assume that the translation–rotation coupling
between the strains caused by the acoustic modes and the relevant degrees of freedom can
be explained in terms of the phenomenological approach based on the Ginzburg–Landau
free energy expansion [37]. In this model, which can be applied to both cases of linear
and quadratic couplings, the relaxation process coupled to the strain is dynamic and has
frequency-dependent properties. The relaxation time of the relevant process that couples
to the acoustic waves can quantitatively be analyzed based on an assumption of a single
relaxation process. This assumption may be justified in the high-temperature range, where
the distribution of relaxation times is expected to be narrow. This narrow distribution
is supported by the previous results from broadband dielectric spectroscopy [23]. The
relaxation time τLA is expressed by the following equation [38], which was derived from a
simple acoustic dispersion relationship;

τLA =
ΓB − Γ∞

2π
(
ν2

∞ − ν2
B
) (3)
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Here, ν∞ and Γ∞ are an unrelaxed Brillouin shift at the high-frequency limit and the
high-frequency background damping, respectively. Both represent the quantities that are
not related to the softening of the LA mode and the local or macroscopic phase transition.
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The widest measurement temperature range covered by this study makes it possible
for us to carry out a quantitative analysis for the LA modes. The ν∞ and Γ∞ were derived
from the high-temperature values of the νB and the ΓB. The calculated relaxation times
are shown in Figure 9. The τLA increases from ~16 ps to ~24 ps when the temperature
decreases from −60 ◦C to −100 ◦C. The orders of magnitude of τLA are consistent with
the value of 28 ps derived from the central peak reported in the previous work [19]. The
breakpoint of approximately −100 ◦C is nearly the same as, but slightly lower than, TC-T.
We could observe the central peak as well, but the quantitative analysis was difficult to
carry out due to the strong Rayleigh line, as described below.
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If the relevant degrees of freedom coupled to the acoustic modes are relaxation
processes, they can be probed in terms of broadband dielectric spectroscopy as well.
Anusca et al. reported broadband dielectric data where they could observe strong dielectric
relaxation in the GHz range [23]. The obtained relaxation time exhibited a critical slowing-
down behavior, which was attributed to the rotational motions of the MA cations [23].
Figure 9 includes the dielectric relaxation time reported in this reference. Both acoustic
and dielectric relaxation times exhibit quite similar temperature dependences near TC-T,
i.e., both values increase (slow-down) toward this transition temperature upon cooling in
the cubic phase. This result clearly shows that the microscopic origin of both relaxation
processes, acoustic and dielectric, is the same, i.e., the correlated MA motions [23], which ac-
company both dipole changes under an oscillating electric field and polarization fluctuations.

The linear temperature dependence of the relaxation time is a typical characteristic of
the critical slowing-down behavior. The two linear parts in Figure 9 were fitted in terms of
the following equation [39]:

1
τLA

=
1
τ0

(
T − T0

T0

)
(4)

The obtained fitting parameters are summarized in Table 2. This kind of critical
slowing-down behavior indicates that the nature of the phase transition is of an order–
disorder type; thus, the relaxation time increases upon approaching the phase transition
point due to the growing volume (or correlation length) of the correlated MA cations.

Table 2. Fitting parameters for the relaxation time estimated by using Equation (4).

Fitting Parameter T < −100 ◦C T > −100 ◦C

τ0 (ps) 8.07 5.92
T0 (◦C) −74.2 (199 K) −133.0 (140 K)

Yamamuro et al. discussed the nature of the cubic-to-tetragonal phase transition from
their calorimetric, infrared, and dielectric measurements [40,41], according to which the
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MA ions are suggested to be located in equivalent states in the high-temperature prototype
phase. The phase transition is accompanied by a partial ordering of the disordered MA
configurations in the cubic phase. The estimated entropy indicates that the phase transition
is of the order–disorder type, which is consistent with the critical slowing-down behavior
observed in this study and the dielectric study [23]. Similar behaviors were observed from
other systems, such as ferroelectric BaTiO3 [36] and relaxors [42], etc., where nanoscale
precursor polar clusters or polar nanoregions grow upon cooling toward the transition
temperature or freezing temperature.

The fast relaxation process is in many cases responsible for the formation of quasi-
elastic central peaks in the inelastic light scattering spectrum. A low-frequency Raman study
on MAPbBr3 revealed the existence of the central peak centered at a zero frequency [22]. Bril-
louin spectra also exhibit a low-frequency quasi-elastic central peak, as shown in Figure 10a,
which was measured in a wide-frequency range of ±546.86 GHz (±18.26 cm−1). The central
peak grows significantly as temperature decreases but becomes very small below TT-O, as
is revealed in Figure 10b. The central peak was curve-fitted by using the convolution of the
Lorentzian function centered at a zero frequency (which represents a relaxation process of
a Debye type) and the Gaussian instrumental function. The temperature dependences of
the intensity and the FWHM of the central peak are plotted in Figure 10b. The intensity is
large in the cubic phase, decreases significantly in the tetragonal phase, and then becomes
very small in the orthorhombic phase. The drastic change in the intensity indicates that the
relaxation process is very active in the cubic phase. The quantitative analysis of the relax-
ation time was difficult due to the strong Rayleigh peak, which distorts the low-frequency
central peak. However, an approximate relaxation time τCP can be estimated from the
FWHM via τCP = 1/πΓCP, where ΓCP is the FWHM of the central peak. Figure 10b shows
that τCP decreases from ~1 ps to 3.2 ps upon cooling in the cubic phase. The general
behavior mimicking the slowing-down behavior is similar to that calculated from the LA
mode, but the absolute values are one order of magnitude smaller, which may be due to
the insufficient spectral range, especially the low-frequency spectral features, which were
distorted by the strong Rayleigh peak.
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Figure 10. (Color online). (a) The central-peak spectra at several temperatures and (b) the temperature
dependence of the central-peak intensity and its half-width.

The present results show clear evidence for the existence of precursor dynamics of
MAPbCl3 in the prototype cubic phase. The correlated MA regions couple to the acoustic
waves, interact with them, and induce acoustic softening as well as the formation of a
strong central peak near the phase transition point. The estimated relaxation time from
the LA-mode anomalies follows the critical slowing-down behavior, which demonstrates
the order–disorder nature of the corresponding phase transition. The first and detailed
elastic constant data can be served as an experimental testbed for checking the reliability of
theoretical approaches to this important class of materials.

4. Conclusions

The acoustic properties of MAPbCl3 single crystals were investigated in a wide tem-
perature range from 40 ◦C to −196 ◦C by using Brillouin spectroscopy. The sound velocities
and the absorption coefficients of both the longitudinal and transverse acoustic modes
propagating along the cubic [100] direction were obtained as a function of temperature, and
the temperature dependences of the two elastic constants, C11 and C44, could be obtained
in the cubic phase for the first time. The two-phase transition points were clearly identi-
fied from the anomalous changes in the sound velocities and absorption coefficients. The
low-temperature orthorhombic phase was characterized by split acoustic modes, which
were attributed to the presence of multiply-strained domains. The C11 (=41.0 GPa) of
MAPbCl3 was larger than those of MAPbBr3 and MAPbI3, indicating a more compact
crystal structure and stronger binding interactions, while the C44 (=3.74 GPa) value was
exceedingly small, similar to other MA- and FA-based halide compounds. The anomalous
changes in the acoustic properties indicated the coupling of the acoustic waves to the
dynamic MA cations and their collective rotational motions in the prototype cubic phase.
The obtained relaxation time followed the critical slowing-down behavior consistent with
previous dielectric studies demonstrating that the cubic-to-tetragonal phase transition is of
an order–disorder type. This is consistent with the observation of strong central peaks near
the phase transition point, reflecting the existence of an active relaxation process, which
can be probed by dielectric spectroscopy and coupled to the acoustic waves.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15103692/s1, Figure S1: Comparison of (a) the Brillouin
frequency shift and (b) the FWHM with the real part of the dielectric permittivity reported in [31];
Figure S2: Temperature dependences of (a) the mode frequency and (b) the FWHM of the TA mode
propagating along the [100] direction measured upon cooling and heating; Figure S3: Temperature
dependences of (a) the mode frequency and (b) the FWHM of the TA mode propagating along the
[100] direction measured upon cooling and heating.
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