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Organoids well recapitulate organ-specific functions from their tissue of origin and remain
fundamental aspects of organogenesis. Organoids are widely applied in biomedical
research, drug discovery, and regenerative medicine. There are various cultivated
organoid systems induced by adult stem cells and pluripotent stem cells, or directly
derived from primary tissues. Researchers have drawn inspiration by combination of
organoid technology and tissue engineering to produce organoids with more physiological
relevance and suitable for translational medicine. This review describes the value of
applying organoids for tumorigenesis modeling and tumor vaccination. We summarize the
application of organoids in tumor precision medicine. Extant challenges that need to be
conquered to make this technology be more feasible and precise are discussed.
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INTRODUCTION

Organoids are three-dimensional cell complexes with a particular spatial structure cultured in vitro
(1, 2). It is amplified and maintains certain structural and functional features of their source tissue
(3). Organoids develop from stem-like cells or initiating cells including embryonic stem cells (ESCs)
(4, 5), adult stem cells (ASCs) (6), induced pluripotent stem cells (iPSCs), and progenitor cells (7–9).
ESCs are cells selected from the intraembryonic cell mass or obtained by inhibiting primordial germ
cells in vitro, which has the ability of multidirectional differentiation (10, 11). ASCs are
undifferentiated cells existing in various differentiated tissues that are responsible for repair and
regeneration after tissue injury (5). Progenitor cells can repair and regenerate following tissue
damage (12). In this review, we demonstrate organoid platforms derived from primary tissues, ASCs
or iPSCs, summarize the organoid bioengineering advancement, and describe the possibility of
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applying organoids for carcinogenesis modeling (Figure 1).
Current challenges about the broad application of organoids
are also discussed.
ORGANOID CULTURE FROM
PRIMARY TISSUES

Organoid Culture From Stem Cells
Organoid culture became a major technological advance in 2009.
Hans Clevers reconstructed a suitable niche better for
maintaining intestinal stem cells in vitro (13). This system
contains a key conditioned medium supplemented with
multiple growth factors including Wnt agonists R-spondin-1
or -3, Wnt3a, epidermal growth factor (EGF), and noggin.
Mouse primary intestine cells were embedded into hydrogel
[i.e., extracellular matrix (ECM)] followed by gut organoid
formation with villus structure owing to the self-renewal
capacity of intestinal stem cells, which has pioneered the field
of organoid cancer biology (13). The system guaranteed
continuous proliferation of organoids, not only ensured
stability and purification of mouse genome but also had an
advantage of amplification (14). Research fellows have cultivated
diverse organoid systems derived from tissues with epithelial
origination, such as bladder, colon, rectum, endometrium,
fallopian tube, kidney, liver, lung, esophagus, oral mucosa,
pancreas, prostate, salivary gland, skin epidermis, stomach, and
Frontiers in Oncology | www.frontiersin.org 2
taste buds (15–25). Researchers have also generated organoids
from normal cells in the urinary tract and bronchial lavage, rather
than parenchymatous organs (26, 27). Organoids derived from
ASCs maintain phenotypic and genetic stability, better reflecting
their primary tissue genome (28, 29). Genomic mutation in
organoids can be investigated by immunohistochemistry
staining, whole-exome sequencing (WES), and RNA sequencing
(30). Organoid is driven by the inherent ability of stem cells
themselves (13). Their self-assembly ability allows organoids to
produce functional mature “organs” by precise spatial and
temporal order (31, 32). Similarly, organoids run self-assembly
processes in vitro by changing cytokine constituents of culture
media, simulating organoid differentiation and maturation (14, 33,
34). Gabriel et al. (35) observed that brain organoids assembled
optic vesicles, including primitive corneal epithelial and lens-like
cells. This study confirmed that the self-assembly process
was carried out via a multistep process in the early stage of
organoid genesis.

Organoid culture varies from different tissues of origin;
several organs require more efforts to establish a stable
condition (i.e., heart and immune organs) (36–38). It has been
studied to generate complex and highly structured cardiac organs
by embedding human iPSCs into matrix glue, regulating small
molecule directional cardiac differentiation through the biphasic
Wnt pathway (39). The lacrimal secretion of neurotransmitters
by lacrimal gland organoids was verified by orthotopic
transplantation in mice (40).

Organoid Bioengineering
The inherent self-organizing of stem cells does not signify that
organoid might form fine tissue under any condition (41). This
process emphasizes that fate guides organoid to develop into
mimic-tissues in a highly environment-dependent manner (42).
Those established organoid-forming approaches have
considerable defects: when cultured for too long, stem cells
would uncontrollably develop into a circular cystic closed
structure, with a short life span and non-physiological shape,
resulting in inconsistency between organoid and organs in
anatomy and physiology (43, 44). To solve this issue,
bioengineering cultivated organoids into a variety of
biomaterials that can promote their better proliferation, precise
differentiation, and exact function (43, 45, 46). Tissue
bioengineering uses bioactive substances to regenerate or repair
tissues through in vitro construction (Figure 2) (47). It is
accomplished by controlling the process of organoids and
establishing the next generation with high physiological
correlation (48). Researchers at the EPFL Institute have
constructed an intestinal geometric scaffold with hydrogel,
providing an appropriate place to guide organoid to form a
true intestinal organ (49). In this method, stem cells were
cultured in scaffolds simulating the surface of natural tissue
and then combined into microfluidic chips. Due to their
inherent self-organization, organoids grew on tubular scaffolds
and self-organized to form intestines (47). Organoids would
gradually form continuous cell layers with recess structure and
villous-like domain and form “mini-intestines” in vitro, which
maintain the same functional features as primary organs in vivo
FIGURE 1 | Schematic diagram of organoid application. The center of the
diagram shows that both normal and cancer organoids share the five
application fields indicated by the peripheral parts. [Note: e.g., Ref. 4 refers
to reference (4)]. Images are adapted from Servier Medical Art (https://smart.
servier.com).
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(48, 50, 51). Improved methods have been used for organoid
generation (i.e., stomach, liver, kidney, etc.) (52–55).

Microfluidic approach and organoid chip integrate
mechanical and physiological parameters, expanding the usage
of organoids for recapitulating the physiological function of their
source organs (Figure 2) (37). Using organ setting on a chip, a
single gastric organoid has been successfully established (56).
Not singly but in pairs, the use of lumen flow and pressure
circulation to induce peristaltic movement showed the feasibility
of integrating engineering in organoid culture (57).
Coincidentally, kidney organoids on chips were exposed to
shear stress by applying fluid flow, thereby mimicking the
kidney environment in vivo (58). The existence of fluid flow
not only promoted maturation of renal organoids but also was
conducive to formation of vascular network with perfusion
lumen. Creative combination of organoids and tissue
engineering allows organoid growth, which may overcome
space constraints and promote shape-guided morphogenesis
and physiology. Furthermore, researchers used micro
fabricated cell rejection microporous (an apparatus for
culturing organoids using tissue engineering) to culture and
monitor homogeneous liver organoids from dissociated human
iPSCs (54). Organoid bioengineering improves experimental
replication, optimizes model quality, and realizes clinical
transformation. Decembrini et al. (59) have proven that
production of retinal organoids was accelerated and
standardized in the best physicochemical microenvironment. A
biomimetic hydrogel composed of circular bottom microwell
arrays and optimized media formulation not only facilitated
mouse ESC formation but also aggregated retinal organoids in
a stereotypical manner, leading to an unlimited source of retinal
neurons (59). Combining organoid culture with tissue
Frontiers in Oncology | www.frontiersin.org 3
engineering, organ devices accurately control organoid growth,
while organoids simulate real physiology more in line with the
situation in vivo (60–62).
ORGANOID AS A MODEL
FOR TUMORIGENESIS

Compared with traditional two-dimensional culture of tumor
cells, tumor organoids maintain better cell heterogeneity, retain
tumor characteristics, show less loss of tumor niche components,
and provide a more authentic environment for clinical treatment
(63, 64). In contrast to patient-derived tumor xenografts (PDXs),
the success rate of tumor organoid construction is way higher
(50%–90% vs. 10%–30%), organoids are maintained for a longer
time with lower cost, so it is easy to gene editing and large-scale
drug screening (65–68). There are two kinds of organoid
construction techniques, one is derived from differentiation of
iPSCs (16) and the other is directly derived from tumor tissues
(69). Constructing tumor organoids from iPSCs largely depends
on tumor types, and the culture operation is more complex (70).
Tumor organoids obtained by iPSC differentiation lose the
complexity of the tumor microenvironment (TME) (71). The
more common organoid culture method is to directly use
primary tissues, supplemented by cytokines, tumor matrix, and
other components (70, 72). Tumor organoids such as colorectal,
breast, pancreatic, prostate, liver, and gastric cancers have been
successfully constructed (73–77). Researchers have obtained a
diverse collection of tumor organoids with different
characteristics through in vitro culture to constitute a living
organoid biobank (78). Through histochemical observation of
the morphology of tumor organoids, their internal structure was
FIGURE 2 | Advanced organoid technology in cancer research. (A) Coculture system of tumor organoids with components of the tumor microenvironment (TME).
(B) Patient-derived organoid xenograft (PDOX) model. The PDOX model indicates tumor heterogeneity and molecular diversity and predicts clinical treatment in vivo.
(C) Tumor organoids better reflect tumor heterogeneity. (D) Organoids-on-Chips system. This system combines organoid and tissue engineering to highly replicate
physiological function in vitro and to facilitate regenerative medical development. Images are adapted from Servier Medical Art (https://smart.servier.com).
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like that of primary tissue (1, 4, 6). Simultaneously, genome and
single-cell sequencing was carried out to explore the variation
between organoids and primary tumors in the gene mutation
spectrum (79).

Organoids maintain tumor heterogeneity within and among
tumors (80). Patient-derived organoids (PDOs) maintains the
diversity and complexity of tumor origin in terms of cell
hetereogeniety, histology, gene mutation, transcription
spectrum, and even metabolism (39, 81, 82). Organoids not
only reflect characteristics of primary tumors, but also exert
advantages for explorat ions of tumorigenesis , ce l l
communication, epigenetics, and invasion (34, 77).

Due to various sources of tumor samples and slightly
discrepant culture system among laboratories, it is not easy to
duplicate the experimental findings, and this hinders further
verification and reference of obtained data. A study conducted by
Dr. Manel Esteller, director of the Josep Carreras leukemia
Institute (IJC), used epigenetic Infinium MethylationEPIC
BeadChip (EPIC), a microarray chip from Illumina that
interrogates more than 850,000 CpG sites to analyze DNA
methylation status of 25 human cancer organoids (83). This
data indicated that tumor organoids highly sustain biological
properties and heterogeneity of tumor tissue in situ.

Tumorigenesis in Organoids
Tumor originates from accumulation of gene mutation in
normal somatic cells; while not all mutations have access to
induce tumorigenesis, tolerance of different tissues to the same
mutation is widely divergent. Numerous cell and animal
experiments have clarified key factors and decisive mechanisms
initiated from gene mutation to tumorigenesis, fully
understanding that such process is artificial due to the failure
of monitoring and intervening the earliest process of tumor
development. Innovative organoid system makes it possible to
understand the transformation process from normal tissue to
tumor (84). The Clustered Regularly Interspaced Short
Palindromic Repeats (CRISPR)/Cas9 system has revolutionized
genetic engineering, allowing gene editing of normal organoids
by inducing oncogenes to obtain tumor organoids and track the
carcinogenic process from initial to advanced stage (85–87).
Mutated tumor-related genes KRAS, CDKN2A, TP53, and
SMAD4 in normal pancreatic organoids eventually developed
to a state recapitulating pancreatic ductal adenocarcinoma (80,
88, 89). Lannagan et al. (90) found that mutated intestinal
organoids could grow and reproduce without relying on any
exogenous cytokines. When transplanting organoids with four
mutations into mice, these organoids induced by colorectal
cancer were invasive (90). This approach can amplify the
effects of driving mutations in the same genetic background.
Organoids from normal tissues mimic tumor pathogenesis by
continuously introducing cancer-driven mutations (91, 92).
Combination of organoid system and CRISPR/Cas9 strategy is
powerful to study the origin of tumor (93, 94).

It is generally believed that cancer is a progressive disease
caused by accumulation of abnormal gene mutation. These
genetic anomalies include tumor suppressor/oncogene
Frontiers in Oncology | www.frontiersin.org 4
mutations and chromosome abnormalities (95). It is
increasingly clear that tumors can be induced by epigenetic
changes. Epigenetics refers to heritable change of gene function
without a change of genetic material, eventually leading to
different phenotypes (96). It mainly includes DNA
methylation, histone modification, non-coding RNA
regulation, and chromatin structure reconstruction. Potential
tumor suppressor genes are inhibited or silenced at the
transcriptional level by DNA methylation, promoting
malignant transformation from normal cells (97, 98). It has
begun to dig influence and underlying mechanisms that
modulate methylation and chromatin states of tumor
suppressor gene or tumor oncogene during tumor formation
(96, 99). Epigenetic changes bring abundant precancerous cell
expansion. They first occur in precancerous cells, determining
subsequent genetic changes that promote malignant
transformation and tumor cell clonal expansion (98, 99). Aloia
et al. (100) have demonstrated that bile duct cells underwent
epigenetic modification of genome-wide DNA methylation
during tissue damage and subsequent organoid construction.
This work that was inspired by those epigenetic changes of
organoids from normal to malignant cell transition was able to
determine subsequent uncontrollable modification of genetic
machinery, eventually leading to malignant occurrence and
development (95, 98, 100).

Tumor Microenvironment in
Organoid System
TME is an internal condition for the production and survival of
tumor cells, including immune and inflammatory cells,
fibroblasts, vascular endothelial cells (101). Bidirectional
communication between tumor cells and TME possesses an
indispensable position in tumor promotion (36). Tumor-
infiltrating lymphocytes (TILs) are heterogeneously composed
of different lymphocytes; their phenotypic and functional
characteristics largely correlate with interaction with tumor
cells (102). Researchers cultured tumor organoids through air–
liquid interface to reproduce TME in vitro. Air-PDOs
successfully retained inherent fibrous matrix and a variety of
immune cell components of primary tumor tissue (103).
Through integrated culture, the in situ tumor essence and
matrix were reserved, including functional TILs. By
continuously coculturing cancer organoids and peripheral
blood monocytes (PBMCs) in the presence of T cell-
stimulating growth factors, antigen-specific cytotoxic T cells
were selected and amplified in about half of total samples
(Figure 2). T cells expanded from adjacent healthy epithelial
tissues resulted in undisturbed organoid expansion without a
significant level of organoid cytotoxicity (104).

Cancer-associated fibroblasts (CAFs) secrete miscellaneous
cytokines, chemokines, and growth factors to create a conducive
microenvironment for tumor progression (105). The prominent
role of CAFs is considered to shape stem cell niche to cultivate
cancer stem cells (CSCs), while two-dimensional culture of cell
lines is far from satisfactory in summarizing general
characteristics of CSCs (106). The first coculture model of
March 2022 | Volume 12 | Article 855996
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CAFs and organoids was established in pancreatic cancer,
followed by in liver, colorectal, prostate, esophageal, and breast
cancers (107–110). Recently, it is reported that organoids and
CAFs from diethylnitrosamine (DEN)-induced mouse liver
tumors can be cultured together; CAFs promoted organoid
growth through paracrine signals. Cotransplantation of CAFs
with liver tumor organoids promoted tumor growth in
xenotransplantation models; CAFs may not regulate the
efficiency of organoid initiation but accelerated its growth (111).

The deficiency of blood vessels in the organoid system brings
challenges (112). One study emphasized that endothelial cells
can be replaced by adaptable angiogenic cells to form a perfusion
plastic vascular plexus for restrictive synthetic semipermeable
membrane by organ chip system, and this provided a
physiological platform for tumor organoid vascularization
(113). This minimized hypoxia in tumor organoids provided a
ponder over influence and mechanism of vascular endothelial
cells on tumor occurrence and development (Figure 2)
(112, 114).
APPLICATION OF ORGANOIDS IN
PRECISION TUMOR ONCOTHERAPY

Tumors are generally heterogeneous, and there is no fixed
treatment for all types of tumors, which makes precision
medicine a new direction for tumor therapy, that is, patients
with different stages of tumor are entitled to discrepant treatment
schemes (115, 116). Tumor organoids replicate complex
signaling pathways and cell-to-cell relationship and more
accurately reflect tumor genetic features (79). Organoids
become a personalized treatment channel with its unique
experimental advantages—high level of physiological relevance
and convenience of in vitro operation (4, 65, 117).

Application of Organoids
in Tumor Medication
Organoid technology for precision medicine refers to drug
screening in vitro in PDOs and formulation of individual
medication (32, 85). Tumor organoids largely maintain
heterogeneity between source tumors and different patients,
individual morphology and scale of organoids remain such
uniform (3, 38, 118). These organoids not only remove
confusing variables that may be introduced from animal
models but also provide greater complexity than homogenized
cell cultures (1, 44, 66). The valuable tumor model established by
patients’ iPSCs is able to understand tumor pathogenesis and
disease progression (3, 9). The established living biobank of
tumor organoids has infinite predictive value for determining the
distinct drug response of patients. In turn, it gives access to large-
scale drug screening (63, 119). Tumor organoids swiftly select the
optimal therapeutic schedule for patients, accompanied by
reducing side effects and tumor recurrence (24, 70, 120). They
significantly shorten the preclinical test period, working as a key
slot in drug discovery, providing a large amount of biological
data and a high-quality platform (6, 33). With the progress and
Frontiers in Oncology | www.frontiersin.org 5
standardization of organoid culture, the accessibility of tumor
organs will be more widely realized (25, 30, 121).

Tumor organoid-based drug screening integrated with next-
generation sequencing (NGS) is conducive to oncotherapy,
which is combined with clinical treatment to form
complementarity (122–124). NGS detects genetic mutations of
patients at source and provides drug treatment options, but it
alone does not guarantee clinical efficacy (125–128). As a distinct
supplement, organoid is advantageous to well investigate this
uncertainty (6, 65, 117). Patients with epidermal growth factor
receptor amplification were usually treated with cetuximab
guided by NGS, yet this consequence was overturned by the
organoid system, which was consistent with actual clinical
situation (129). Organoid drug screening further picks more
effective approaches on the basis of sequencing to give conclusive
recommendations and practical biology evidence for patients
(20). This technology clarifies particular therapeutics for
precision medicine and determines whether a particular group
of patients is not suitable for a therapeutic (3, 70).

Application of Organoids
in Tumor Vaccination
Organoid culture along with NGS and single-cell sequencing
(scRNA-seq) is good to hunt for therapeutic targets and discover
mutation-associated neoantigens (MANAs) for fresh targeted
remedy or tumor vaccination (Figure 3) (130–134). With
continuous innovation and improvement of benchwork for
appraising tumor MANAs, such as the recently emerging
NeoScreen technology, more previously hidden tumor antigen
epitopes have been identified (135–138). Based on bioinformatics
data analysis, MANAs reflecting individual disease are unearthed
by a machine learning algorithm (138, 139). Using an organoid
system, Demmers et al. (140) recently considered that human
leukocyte antigen (HLA) class I peptide expression among
different clonal cells from the same colorectal cancer patient
was variability and its widespread difference in cloning specificity
was generally common. By linking organoid proteomics and
HLA peptide ligandomics, they discovered that tumor-specific
ligands derived from DNA damage and tumor suppressor
proteins were remarkably presented in tumor cells, which
might be consistent with defunction of their cytoprotective
effect. In general, their data demonstrated heterogeneous HLA
peptide expression in an individual patient and presumed that a
promising multipeptide tumor vaccine may be a feasible option
to minimize immune escape risk.

Taking certain mRNAs encoding MANAs as available
templates, individualized tumor vaccines against MANAs are
artificially synthesized, stimulating tumor-specific T-cell
production for the sake of diminishing tumor cells (141–147).
These tumor vaccines are theoretically proven to be potential
therapeutics for accurate oncotherapy (146, 148, 149). Organoids
have been implanted during the development and testing process
of vaccines against pathogenic microorganisms including
bacteria and viruses (141, 150–152). Researchers developed
mini tonsils in vitro from surgery tissues and added
coronavirus disease 2019 (COVID-19) candidate vaccines into
March 2022 | Volume 12 | Article 855996
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the culture system, a predominant tool to verify vaccine efficacy,
to observe whether tonsil organoids incite immune responses,
specific immunocytes, and antibodies against viral surface spike
proteins (153). It is believed that in the near future, organoids
might be exploited in research and development of tumor
vaccines (140, 142, 147, 149). PDOs with target gene mutations
and autologous or non-autologous immune cells are cocultured.
The constructed tumor vaccine candidates are subjected to the
coculture system to detect tumor-specific T-cell production and
tumor vaccine (145, 148, 154, 155). This emerging platform
would be applied to the development of tumor vaccines on a
large scale (Figure 3) (3, 36, 37, 65). Tumor organoids provide
attractive options for tumor vaccine and are expected to be a
unique utensil for tumor precision medicine (146, 153, 156).

Application of Organoids in Tumor
Chemoprevention and Nanomedicine
Tumor chemoprevention generally refers to inhibition of tumor
and vascular cell proliferation, which is expected to maintain its
efficacy through the whole stage of chemotherapy for patients
(157). It is required to develop advanced approaches for better
tumor chemoprevention. The organoid model, a three-
dimensional culture platform for primary cells, paves the way
of evolution for tumor chemoprevention and provides a practical
tool for tumor treatment. A study demonstrated that an A
Disintegrin and Metalloprotease 10 inhibitor prevented glioma
stem cells from integrating into brain organoids, similar to the
mouse xenotransplantation outcome. Temozolomide and
Adriamycin treatment reduced the size of tumor organoids by
about 30% and 80%, respectively, but had no effect on normal
nerve cell organoids. It is worth evaluating the reactivity of
glioblastoma multiforme tumor and healthy brain cells when
exposed to therapeutics by using the organoid system.
Frontiers in Oncology | www.frontiersin.org 6
They confirmed the biological correlation between organoids
and clinical data, providing a basis for high-throughput drug
screening and determining the most effective drug timely (158).
One additional study indicated that the combination of
extracellular signal-regulated kinase 1/2 (ERK1/2) inhibition
and autophagy process reduced liver metastases in mice with
pancreatic ductal adenocarcinoma PDO transplantation. Over
the past decade, vitamin D3 has aroused great interest as a
chemoprophylactic agent, especially for treating neoplasms
from the digestive system (159). A recent comparative study
reported that PDOs revealed the homeostatic effect of vitamin D3

on human intestinal mucosa (160). The organoid technique
offers a promising preclinical model for evaluating
chemotherapeutic efficacy, a more in-depth mechanistic insight
into tumor biology and an organoid biobank system for
exploring optimal tumor chemoprevention (161).

Current challenges of organoid application in the clinics include
low reproducibility andpresence ofmixed cell populations, limiting
strict experimental examination(38, 42, 77).Wehavedescribed that
the combination of biomaterials and organoids may address the
abovementioned deficiencies. Astrocytes and neurons were
generated in depart, and they were combined with microplates in
the desired proportion and size. This approach accelerated
maturation of astrocytes and allowed chemical or genetic
manipulation of any cell type before coculture (162, 163).
However, how to select certain types of cells as targets for
transgenic or epigenetic manipulation, drug delivery, or local
extracellular modification is still a bench-side issue (158, 159).
Nanoparticles generated from polymer or liposomes are utilized
as encapsulation carriers for astrocytes and other cells (164). In
another innovative application of nanomedicine, iPSC-derived
neural cells and the astrocyte neuron coculture system have been
applied as a screeningplatform to evaluateneurotoxicity.Toxicity is
FIGURE 3 | Application and investigation of organoid-based tumor vaccination. The workflow with blue arrows represents the patient-derived organoid xenograft
(PDOX) model, and processes with red arrows indicate how tumor vaccine is generated. The entire steps are to verify the efficacy of tumor vaccination by using the
PDOX model. Images are adapted from Servier Medical Art (https://smart.servier.com).
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amajor risk for nanomedicine; the safety of anynanoparticlesneeds
to be tested prior to application in vivo (165). An alternative way to
reduce toxicity is to use exosomes as a source of nanocarriers, which
can increase cell type-specific targeting and enhance their
functionality by engineering surface antibodies. Verification of
the toxicity of nanomaterials in organoids requires much further
attention (158, 159, 164).
CHALLENGES AND PROSPECTS
OF ORGANOIDS

Organoid technology has made breakthroughs in regenerative
medicine and tumor biology. Organoids have a wide range of
potential applications, while they still face technical drawbacks
(117, 118). Most of the existing organoids are derived from
epithelial cells; non-epithelial-originated organoids are hard to be
established and maintained for a long purpose (i.e., primary
glioblastoma) (121). Coculture of tumor organoids with immune
cells is a predictable model for cell therapy, but the culture condition
requires further optimization. Different tumor types and individual
patients maintain heterogeneity; it is difficult to accurately simulate
about its dynamic adaptation (81). The classical organoid culture
system contains non-human animal products, such as ECM and
hydrogel (Matrigel or BME); these may bring undiscovered effects
to the organoid biology. Further organoid-bioengineering strategy
Frontiers in Oncology | www.frontiersin.org 7
and conditioned medium developed with artificial substrates may
solve the abovementioned limitations (166, 167). The organoid
technology potentiates more accurate tumor recapitulation than
cell lines and thePDXmodel (20, 168).The organoid culture system
is good to predict drug sensitivity, tumor promotion, and tumor
vaccination (119, 169). Having the in vivo modeling accessibility
and developing application, organoid technology is expected to
have a profound impact on both bench and bedside for precision
medicine (84, 120).
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