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Understanding the neural mechanisms for sensing environmental information and controlling behavior in natural environments is
a principal aim in neuroscience. One approach towards this goal is rebuilding neural systems by simulation. Despite their relatively
simple brains compared with those of mammals, insects are capable of processing various sensory signals and generating adaptive
behavior. Nevertheless, our global understanding at network system level is limited by experimental constraints. Simulations are
very effective for investigating neural mechanisms when integrating both experimental data and hypotheses. However, it is still
very difficult to construct a computational model at the whole brain level owing to the enormous number and complexity of the
neurons. We focus on a unique behavior of the silkmoth to investigate neural mechanisms of sensory processing and behavioral
control. Standard brains are used to consolidate experimental results and generate new insights through integration. In this study,
we constructed a silkmoth standard brain and brain image, in which we registered segmented neuropil regions and neurons. Our
original software tools for segmentation of neurons from confocal images, KNEWRiTE, and the registration module for segmented
data, NeuroRegister, are shown to be very effective in neuronal registration for computational neuroscience studies.

1. Introduction

Insect brains are important model systems for analyzing
neural function. This is due to their comparatively simple
structure incorporating important brain functions such as
sensory information processing, learning, and behavioral
control mechanisms [1–3]. Analysis based on the mor-
phologies of neurons and neuropils has greatly promoted
the understanding of neural function. In particular, the
existence of numerous identified neurons has consolidated
the application of insect brains as model neural networks in
the field of neuroethology [4, 5]. The detailed morphology
of neurons can be captured more readily using recent
fluorescence techniques and various genetic technologies in
insects [6–9]. These methodological advances have resulted
in new insights into brain mechanisms through the use of
small and tractable insect brains.

A well-known simple insect behavior is the unique
orientation to pheromone stimuli displayed by the male silk-
moth, Bombyx mori. This programmed behavior triggered
by sensing pheromone consists of surge, zigzag, and looping
locomotor components [10]. Sensory signal pathways for
pheromone have already been identified and characterized by
intra- and extracellular experiments. However, these results
are still insufficient to obtain a global understanding from
sensory processing to behavioral control mainly owing to
experimental limitations.

For example, the lateral accessory lobe (LAL) and the
ventral protocerebrum (VPC) are considered to be key
regions for generating command signals to control moth
behavior [10]. In these regions, unique flip-flop neural
responses thought to be related to the zigzag behavior were
recorded, and their neural substrates were analyzed in detail
morphologically [11]. By modeling a neural network based
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on experimental data and simulating it under natural envi-
ronmental conditions in real time, precise hypotheses can be
tested to gain crucial insights into the neural mechanisms
generating behavior. Using a supercomputer, we are develop-
ing a simulation model for the whole neural pathway based
on the real neural structure, properties, and connections.
Even using the fastest computer currently available, an insect
brain of ca. 100,000–1,000,000 neurons simulated using
detailed neuronal properties will test available computational
power to the limit.

In brain science, standard brain maps are used to inte-
grate and compare morphological data taken from different
subjects at different times. Standard brains have already been
developed for various insect species, such as Drosophila [12–
14], the honeybee [15, 16], two moth species [17, 18], and the
locust [19, 20]. These standard brains have been employed
for various morphological analyses of neurons and brain
regions. For example, possible synaptic connections between
identified neurons have been analyzed using the honeybee
standard brain [21], while morphological development of
the optic lobes has been studied in a moth brain [22].

Brain functions are generally thought to be generated
by the dynamics of neuronal responses. These dynamics
are controlled by various factors, such as ion channels,
intracellular signaling, and neuronal morphology. In order
to analyze the dynamical properties of neurons and their
networks in the silkmoth, we have been integrating our
experimental data into a database [23], which contains
more than 1,200 single-neuron records of morphological and
physiological experimental data. To take advantage of the
registered information to build a computational model for
investigating neural mechanisms, we developed a method
and tools for constructing and utilizing the standard brain.

The outline of the silkmoth standard brain was con-
structed by averaging brain images followed by binarization.
Brain images, segmented regions, and neurons can be
registered in it by a nonrigid transform. Our original
tools for segmentation of neurons from confocal images,
KNEWRiTE, and a registration module for Fiji and ImageJ
for neuron morphological data, NeuroRegister, were effective
in conducting this registration process. Neural simulations
linked to the standard brain are started by registering
neurons in the standard brain and estimating connections
between them. The standardization scheme presented here
could be combined with other schemes, such as VIB [24],
and applied in launching modeling studies of various insect
brains.

2. Materials and Methods

2.1. Histology. Male silkmoths (Bombyx mori L., Kinshu and
Showa strain hybrids) were used 2–7 d after eclosion. The
brains were fixated in 1-2% formaldehyde for 20 h at 4◦C.
After fixation, they were rinsed in TRIS buffer, dehydrated in
an ascending ethanol series with 10 min/step, degreased in
methyl salicylate/ethanol to promote antibody penetration
for 30 min and rehydrated. After rinsing in TRIS buffer,
they were incubated with agitation for 3–7 d at 4◦C in TRIS

buffer containing 0.5% Triton-X 100 and 1% bovine serum
albumin (TRIST-blk) as well as mouse monoclonal anti-
Drosophila melanogaster synaptotagmin antibody (3H2 2D7
contributed by K. Zinn and obtained from the Developmen-
tal Studies Hybridoma Bank developed under the auspices
of the NICHD and maintained by the University of Iowa,
Department of Biology, Iowa City, IA 52242, USA, at a
dilution of 1 : 15–1 : 50 of the concentrate).

After incubation in the primary antibody, the samples
were rinsed in TRIST-blk (5 × 15–60 min) and transferred
to the secondary antibody (Molecular Probes Alexa Fluor
488 anti-mouse, 1 : 200–1 : 250 in TRIST-blk) for 2 d at 4◦C.
Finally, samples were rinsed again in TRIST-blk and plain
TRIS buffer (5 × 15–60 min), dehydrated, and cleared in
methyl salicylate.

Imaging was done in methyl salicylate with a Zeiss
LSM510 confocal laser scanning microscope (LSM) and 10×/
0.45 or 40×/1.0 oil apochromat objectives. Image data were
registered in our database system, BoND [14], for sharing
among collaborators.

2.2. Method for Constructing a Standard Brain. We developed
an original method for constructing a standard brain
using confocal LSM brain image data (Figure 1(a)). In our
database, there are six whole brain image datasets scanned
from both anterior and posterior. Most of these were scanned
at low magnification, and are unsuitable for detailed segmen-
tation of brain regions. In our method, we averaged these
LSM images aligned by adjusting centers and orientation
through translation and rotation to calculate an outline of
the average shape (Figure 1(b)). After binarization of the
images, the outline of the standard brain was obtained and a
polygon model in Wavefront OBJ format was also generated
by the image processing software Fiji (Figure 1(c)) [25].
Since we assumed that moth brains are strictly bilaterally
symmetrical, 12 brain datasets from six individuals were used
to construct the average brain shape.

A high-resolution image dataset of the brain was reg-
istered using the thin-plate spline transform of Fiji in
the standard brain (Figure 1(d)). The standard brain with
internal image was applied for registration of brain regions
and neurons. Landmarks, which are reference points in the
transform, were assigned to characteristic points with direct
correspondence in the two brain image stacks. The thin-plate
spline transform based on the landmarks was also used for
registration of regions and neurons (Figure 1(e)). In order to
apply the transform, it was necessary to assign at least four
landmarks. Moreover, it was important that the landmarks
were selected evenly in the horizontal and vertical directions
to avoid directional biases.

2.3. Software for Segmentation and Registration. Several soft-
ware tools were evaluated and applied in our segmentation
and registration scheme. In the first step, neural morpholo-
gies were segmented using the ITK-based segmentation soft-
ware, ITK-SNAP [26] and our own program, KNEWRiTE.
ITK-SNAP was most useful as it runs on a number of
operating systems (Windows, Linux, and MacOS X) and has
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Figure 1: Scheme for constructing the standard brain. (a) Brain LSM image data consisting of multi-page image stacks. (b) Averaged brain
image data (section 90 of the set of 154 optical sections of 2 µm thick optical sections is shown). (c) Average shape of the silkmoth brain
obtained by binarization and surface modeling. (d) High-resolution brain image was registered by fitting to the standard brain shape using
a nonrigid transform. (e) Segmented regions and neurons were registered in the standard brain by a nonrigid transform with defined
landmarks.

many useful functions for extracting objects from multi-
layered image data. In particular, automatic segmentation
based on the snake algorithm is quite effective for extracting
dendritic branching structures.

KNEWRiTE (http://invbrain.neuroinf.jp/modules/
htmldocs/IVBPF/IOSSIM/index.html) was also applied to
extract the neuron structure from LSM image data
(Figure 2). The software, using Qt (http://qt.nokia.com/)
and OpenGL (http://www.opengl.org/) for the GUI, runs
on Linux and Windows. It has a function for tracing the
branching patterns of 3D dendritic structures based on a
region growing approach [27] and also manual tracing. The
automatic tracing method is very effective for high-contrast
image data without noise, whereas manual segmentation
is quite useful for extracting dark and thin objects. A
combination of these methods, semiautomatic extraction,
was most suitable for our segmentation work.

Our aim in registering neurons in the standard brain is
the construction and approximation of the neuron network
in a realistic structure preserving morphological relation-
ships. Neuronal morphologies extracted by KNEWRiTE
or ITK-SNAP are stored in SWC file format, which can
be used to generate morphological descriptions for vari-
ous neuronal simulators, such as NEURON [28]. In the

registration process of neurons in the standard brain,
brain image stacks including neurons can be registered
by a thin-plate spline transform in the same way as
registering brain regions. However, as no software existed
to apply this transform to an SWC file, we developed
a new SWC registration plugin module, NeuroRegister
(http://invbrain.neuroinf.jp/modules/htmldocs/IVBPF/IOS-
SIM/index.html) for ImageJ and Fiji. The module was
developed based on the “Name Landmarks and Register”
plugin module for Fiji. We can apply rigid, affine, and thin-
plate spline transforms to objects described in SWC format
using almost the same operation as in the original module
(Figure 3).

3. Results

We obtained the average outline of the moth brain as
the basic framework for registration. Then, the neuron
morphological models extracted from LSM image data were
registered in the standard brain.

3.1. Average Outline of the Brain. The average outline of
the brain is very important as a foundation for registering
segmented objects in the brain. In this study, the right and
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Figure 2: KNEWRiTE, our new software for segmentation of single neuron morphology. (a) Screenshot of the software. The software can
trace dendritic and axonal trees automatically, and allows manual editing and addition of segments that are difficult to detect automatically.
(b) Structure of KNEWRiTE. The “Stack Image Loader” and “Cell Generator” load LSM image data and separate neurons from background
by binarization. The neuron structure is extracted by “Extraction Tools,” an automatic extractor and data editor. The results are exported as
image data and a morphological model in SWC format.
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Figure 3: Registration process of SWC data in the standard brain. The neuron morphological model file is obtained by tracing using
KNEWRiTE. The LSM image of the brain including the stained neuron is registered by image registration using a nonrigid transform to
the standard brain. Our newly developed ImageJ plugin, NeuroRegister, generates a registered SWC file by applying the same transform as
for image registration to the data in the SWC file.
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Figure 4: Outline of a base brain and evaluation of variability using the average distance between corresponding landmark points in chosen
base brains and all other brain images. (a). Three-dimensional model of the average brain. (b). Euclidean distance is used to measure
positional differences of landmarks. The standard brain (SB) was assumed to be bilaterally symmetric, so 15 landmarks in each of the
individual samples (n = 12 from 6 moths assuming bilateral symmetry, L is the left and R the right hemisphere) and the standard brain were
used for analysis. When assigning the standard brain as the base brain image, the average positional error for landmarks was minimized,
resulting in an error of 38.4 ± 10.7 µm. There was no significant difference among groups according to the Tukey multiple comparison test.

left sides of brain images were considered as independent
brains by assuming bilateral symmetry. To obtain the
standard brain shape, 12 images from six brain samples
were used. We defined the center of the esophagus in the
slice with the largest brain outline (MS: middle slice) as
the origin of the brain coordinate system Five landmark
points, namely, the center of the central body (CCB), the
centers of the left and right mushroom body calyces (RMC,
LMC), and the centers of the left and right antennal lobes,
were assigned to apply the transform. A rigid transform
was applied to compensate for the difference in position
and rotation among the brain image data. Transformed
images were averaged and brain regions were extracted as the
standard brain shape by separating light and dark areas. The
binary image and outline of the standard brain were stored in
multi page TIFF format. A polygon based surface model was
also generated and stored in Wavefront OBJ format using the
“Create Surface” plugin for Fiji (Figure 4(a)).

It is appropriate to use the average shape as the standard
brain because morphological data of regions and neurons
from different individual brains will be registered in it. To
evaluate our standard brain shape, characteristic landmark
points from various image slices, which were not used in
the rigid transform process, were assigned on the standard
brain and each brain image data. In our evaluation, one set
of image data including the standard brain was selected as the
base brain image. To evaluate the difference in outline shapes,
we assigned 15 points, that is, three points on each of the
dorsal and ventral outlines in the posterior #50 and middle
#80 image slices and two dorsal and one ventral point from
posterior image slice #123. These landmarks were selected
edges or points clearly seen and identified in every sample.
The differences in the coordinates between the base and
another image data were measured by Euclidian distance.

It was shown that the average distance was minimized
with the standard brain image as the base image. Standard
deviation was also minimized in this case (Figure 4(b)). It
was also shown that based on a Tukey multiple-comparison
test, there was no significant difference between the groups.
Moreover, the shapes of sample brains were very similar,
with the standard brain having the most general size and
shape of moth brain of the sample brain images under
consideration.

3.2. Comparison of Segmentation Methods. Using the KNE-
WRiTE software, automatic, manual and semiautomatic
methods were selected for efficient and high quality segmen-
tation. To evaluate the performance thereof, we applied these
to extract more than three computer-generated arborized
objects. Extractions of objects were executed under four
different conditions, namely, without other objects or noise
denoted by “Raw” (Figure 5(a)), a mixture of large objects
denoted by “Biased Background” (Figure 5(b)), with white
noise denoted by “Noise” (Figure 5(c)), and with a cylinder
object denoted by “Object” (Figure 5(d)).

Results of the extractions were evaluated according to
the success rates of segmentation, denoted by “Consistency,”
which is the mean of two consistency measurements, one
corresponding to missing existing branches and another
related to detecting nonexistent branches falsely [29]. It was
shown that more than 80% of the structure was extracted
correctly using manual and semiautomatic extraction meth-
ods (Figure 5(e)). However, the success rate was smaller in
the case of automatic extraction for every condition. More-
over, the standard deviation for semiautomatic extraction
was fairly small compared with the other methods, which
means that the semiautomatic method is not susceptible to
the object shape and background noise.
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Figure 5: Evaluation of the three extraction methods (auto, semiauto, manual) of KNEWRiTE using four types of artificial 3D neuron
images generated by connection of cylinders. (a) Raw: neuron without other objects or noise. (b) Biased background: a large object covers
the neuron. (c) Noise: addition of white noise. (d) Object: neuron and overlapping cylindrical object. (e) Mutual consistency: missing existing
branches and detecting nonexistent branches. (f) Discrepancy of diameters: discrepancy of diameters between neuron and extracted model.
(g) Error of simulation: difference between neuron and extracted model in passive model simulation. (h) Extraction time: time required for
extraction. Automatic extraction, which took less than 1 min for each case using conventional PC hardware, is not shown in this graph. The
Tukey multiple-comparison test examined differences among groups.
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The three extraction methods were also evaluated “Dis-
crepancy,” which is the discrepancy in the diameter between
the model and segmentation results (Figure 5(f)). The
accuracy of manual extraction was the best, while that of
automatic extraction was the worst in most cases. However,
the results of manual extraction were strongly dependent on
image conditions. In the case of semiautomatic extraction,
accuracy was quite high and stable, irrespective of the object
shape and image conditions. We also tested our results by
applying a passive membrane model to the extracted neuron
morphological models. The error in the electrical response
was minimized in the case of semiautomatic extraction
(Figure 5(g)).

The results show that extraction of neuronal morphology
based on automatic extraction with manual adjustment is the
best for segmenting neurons for simulation of their dynami-
cal properties. Finally, the elapsed time of extraction was less
than 1 min for automatic extraction, but more than 1 h for
the semiautomatic method (Figure 5(h)). Nevertheless, it is
clear that this is a very efficient way of segmenting neurons
compared with the manual method.

3.3. Registration of Brain Regions and Neurons. As an attempt
to utilize various kinds of brain image data taken for different
purposes and individuals in our database, we applied a
nonrigid transform to register these in the standard brain.
We used a thin-plate spline transform to register high-
resolution image data fitted onto the standard brain shape.
The standard brain with brain regions can be used for
registration of extracted regions and neurons.

To evaluate the accuracy of our method, we measured
the differences in coordinate values of distinct points in the
moth brain, namely, the center of the CCB and the centers
the calyces (RMC, LMC) and the peduncles of the mushroom
bodies (RMP, LMP) between the moth brain were measured
between the standard brain and brain images before and
after registration. Twelve landmarks were assigned from the
edges of clearly segmented regions, such as central body
and the mushroom body calyces (Figure 6(a)). The Euclidian
distance of distinct points on the standard brain and original
brain images was greater than 40 µm, but our registration
moved these significantly closer except for LMP by one-
way ANOVA. The results show that the average registration
errors of the points surrounded by landmarks, RMC,
LMC, and CCB, were 7.85, 10.04, and 6.74 µm, respectively
(Figure 6(b)). However, the errors of points distant from
landmarks, RMP and LMP, remained greater than 15 µm. It
is obvious that the accuracy of registration depends on the
selection of landmarks, and thus, it is important to assign
landmarks close to the regions or objects of interest. In this
study, the LAL-VPC regions were manually segmented in
the high-resolution image data. By applying the registration
process to the segmented regions, these were registered in
the standard brain (Figure 7). Segmentation of regions and
neurons was a time-consuming process, but computation
time for registration using the thin-plate spline transform
was less than 10 min for each object using conventional
computers. Other regions can be registered in the same way.

The average shape and position of regions will be statistically
calculated by collecting a larger number of samples.

A great deal of effort was expended in extracting the
three-dimensional dendritic structure of neurons from LSM
stack images. Our original software, KNEWRiTE, can extract
a neural structure from LSM image data by combining
automatic and manual processes. We applied this to extract
neurons arborized in LAL-VPC regions. Several preprocess-
ing steps were applied to the LSM image data, such as
adjusting contrast, using Fiji and ITK-SNAP. After binarizing
the image data, neuron morphology was extracted and a
morphological model was generated semiautomatically in
SWC format using KNEWRiTE. The percentage of extraction
using either automatic or manual processes was dependent
on various conditions, such as neuron morphology, contrast
in neuron images, and other factors related to image quality.
In the case of neurons with a simple structure, this was
extracted finely without any manual operation. However,
more than 10% of the fine dendrites were extracted and
connected manually in the case of neurons with thick
arborizations. The extracted neuron image data were stored
in a TIFF formatted file, and then a polygon model was
generated in Wavefront OBJ format.

Segmented neurons were registered in the standard brain
by the thin-plate spline transform of Fiji. To apply this
registration, more than four of the landmark points had to
be assigned on the brain image involving segmented neurons
and on the standard brain. Our original plugin software,
NeuroRegister, was applied to transform and register the
neuron morphologies in SWC format. It was confirmed that
registration was adequate for analyzing the projection area
and the overlap of neuronal projections of different neurons
(Figure 8).

4. Discussion and Conclusions

Standard morphological atlases have come a long way since
compilations of serial sections for reference and identifi-
cation of brain areas. In the form of a standard brain
atlas, they permit the accumulation of experimental data
while preserving morphological relationships and simplify
comparative analyses between species. Besides its use as a
database-like tool, we aim to use our silkmoth standard brain
as a platform for large-scale neural network simulations.

When starting to construct a standard brain, care must
be taken to calculate the average outline shape as precisely
as possible. In our scheme, we assigned the center of the
esophageal foramen in the middle slice in the anteroposterior
direction as the coordinate origin of the brain, since the edge
of the esophageal foramen was clearly seen and its center
was easily obtained. Then, we adjusted each brain image
stack using translation and rotation. The size and shape were
unchanged in this process. The average image stack of the
brain was calculated by averaging the grey scale value in
each pixel for all 12 LSM brain image stacks. This protocol
is presented to construct an average brain outline that can
serve as a measure for the differences in shape and size among
individual brains. We evaluated the shape of the standard
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Figure 6: Differences in coordinate values of distinct points before and after registration. (a) Twelve landmarks for registration in the
standard brain (cross) were assigned from the edges of three clearly delineated regions, the central body and themushroom body calyces.
Six distinct points (circles), the center of the central body (CCB), the centers of the calyces (RMC and LMC), and the peduncles (RMP and
LMP) of mushroom bodies were selected to calculate the registration error. (b) Euclidian distances were measured between distinct points in
the standard brain and each sample brain before and after registration. The average and standard deviation are plotted for each point. With
the exception of LMP, there were significant differences based on the one-way ANOVA before and after registration.
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Figure 7: Registered LAL-VPC regions and neurons in the standard
brain. LAL-VPC consists of five subregions, labeled in red, green,
yellow, blue, and magenta. A neuron (ID 0986 in our database,
BoND) arborizing in the LAL-VPC was segmented and registered
in the standard brain.

brain by calculating the distance of corresponding landmarks
for all individual samples. The average landmark distance

between single samples and the standard brain was less than
40 µm, which corresponds to the difference in shape among
individuals (Figure 5).

Any brain image data set can be registered by setting
landmarks on the outline of the brain. We have various
high-resolution LSM images of the brain, and these images
are registered in each slice of the standard brain in a way
comparable to texture mapping. Extracted objects such as
neurons, neuropils, and tracts can be registered by applying
a transform to the standard brain from sample brain image
data containing these labels. Through this approach, we can
obtain and integrate the registration results of neuropils. A
further goal is to implement semiautomatic or automatic
segmentation and registration procedures for neuropils,
possibly applying various transform and deform techniques
already in use in medical image processing.

In our scheme, morphological models of neurons
are reconstructed from confocal image data of neurons.
Extracted neuron images are registered into the standard
brain by applying a nonrigid transform. Morphological
neuron models in SWC format are also registered using our
ImageJ plugin module (Figure 6). Morphological properties
of neurons are modeled and registered by our proposed
scheme, and then geometrical properties of groups of
neurons, such as the overlap of axonal and dendritic trees,
provide estimated information concerning the position and
strength of synaptic connections. Further information, such
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Figure 8: Registration of neurons in the standard brain and applications thereof. It is possible to estimate the strength of synaptic connections
by the volume of overlap of two neuronal branches registered in the standard brain. Network model simulation of the silkmoth brain with
neuronal morphologies based on experimental data, electrical properties, and synaptic connections are implemented and executed on the
supercomputer.

as the types of ion channels, their dynamics and distributions
along neurites, will be very helpful for model simulation of
neuronal properties.

We are currently implementing our standard brain
protocol and software environment using a supercomputer.
We are constructing a platform to integrate morphological
and physiological properties measured in a large number
of individual experiments. High-performance computing for
neuronal modeling and simulations in conjunction with
experiments based on the standard brain could become very
powerful tools for a new era of integrative computational
neuroscience research.
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