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Wheat is one of the most important food crops in the world, with development of the grains
directly determining yield and quality. Understanding grain development and the underlying
regulatory mechanisms is therefore essential in improving the yield and quality of wheat. In
this study, the developmental characteristics of the pericarp was examined in developing
wheat grains of the new variety Jimai 70. As a result, pericarp thickness was found to be
thinnest in grains at the top of the spike, followed by those in the middle and thickest at the
bottom. Moreover, this difference corresponded to the number of cell layers in the
pericarp, which decreased as a result of programmed cell death (PCD). A number of
autophagy-related genes (ATGs) are involved in the process of PCD in the pericarp, and in
this study, an increase in ATG8-PE expression was observed followed by the appearance
of autophagy structures. Meanwhile, following interference of the key autophagy gene
ATG8, PCD was inhibited and the thickness of the pericarp increased, resulting in small
premature grains. These findings suggest that autophagy and PCD coexist in the pericarp
during early development of wheat grains, with both processes increasing from the bottom
to the top of the spike. Moreover, PCD was also found to rely on ATG8-mediated
autophagy. The results of this study therefore provide a theoretical basis for in-depth
studies of the regulatory mechanisms of wheat grain development.
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INTRODUCTION

Wheat, one of the most important cereal crops worldwide, is characterized by its process of grain
development. Although grains in the middle spikelet are first to bloom, the upper grains mature first,
followed by the middle, and then the lower grains. The wheat grain is a type of caryopsis, whereby the
pericarp and episperm develop from the integument and are tightly integrated (Zhou et al., 2009).
Development of the pericarp is closely related to grain yield and overall wheat quality. Developing
from the ovary wall, it can be divided into the exocarp, mesocarp and endocarp (Xiong et al., 2013).
The pericarp covers the seed tegument, and endosperm and embryo tissues of the grain (Brinton
et al., 2017) and controls the water transport into the endosperm cavity (Wang and Fisher, 1994), the
synthesis of organic compounds (Fujita and Taira, 1998; Foxon et al., 1990), and the temporal storage
of starch (Yu et al., 2015).

It was previously suggested that development of the pericarp is a typical process of programmed
cell death (PCD) (Pennell and Lamb, 1997; Zhou et al., 2009), a genetically-regulated process of cell
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suicide that results in the remobilization of cellular contents,
nourishing new filial tissues, such as the embryo and endosperm,
and providing space for grain filling (Radchuk et al., 2011;
Dominguez and Cejudo, 2014). Meanwhile, autophagy is
responsible for the delivery of cellular components to the
lysosome/vacuole for subsequent degradation, especially under
nutrient limitations and other stress conditions, thereby
supporting cellular proteostasis and longevity (Ghosh et al.,
2015). Autophagic processes mainly serve survival functions
during cellular homeostasis, stress adaptation and immune
responses, but have also been found to possess cell death-
promoting activities (Bozhkov, 2018). Genetic suppression of
autophagy in plants is correlated with an overall decrease in
plant fitness, including reduced vegetative growth and fecundity,
accelerated senescence and enhanced susceptibility to diverse
types of stress (Bozhkov, 2018). However, the role of
autophagy in regulating PCD in plants remains unknown and
a subject of debate (Ustun et al., 2017).

In wheat, autophagy is involved in the regulation of various
biotic and abiotic stresses. Under hypoxia, wheat roots can
remove reactive oxygen species by autophagy, thus
maintaining cell survival (Lin et al., 2021). Under salt
stress, interfering of autophagy-related genes ATG2 or
ATG7 causes PCD in leaves (Yue et al., 2021). Inhibition of
autophagy can accelerate PCD of seedlings caused by drought
(Li et al., 2019). Short-term waterlogging and cold stress
promote autophagy of wheat root cells (Valitova et al.,
2019; Zhou et al., 2021). Autophagy-related genes ATG4,
ATG6, and ATG8 of wheat participate in the regulation of
basic resistance to powdery mildew (Pei et al., 2014). ATG8
contributes to wheat resistance to stripe rust fungus by
regulating cell death (Ma et al., 2012). However, it is
unclear whether autophagy is involved in the regulation of
wheat grain development.

In this study, we used the new wheat variety Jimai 70 to
examine the regulation of autophagy on grain development and
PCD in pericarp. Our data suggested that autophagy and PCD
coexist in the development of the pericarp; and both processes
increasing from the bottom to the top of the spike, which
determines the thickness of the pericarp at the corresponding
position.

MATERIALS AND METHODS

Plant Materials
Wheat cultivar Jimai 70 was developed by the Crop Research
Institute, Shandong Academy of Agricultural Sciences, China. It
possesses a number of elite traits, such as high and stable yield,
lodging resistance, strong wind resistance, and slow stripe rust
resistance.

Quantitative Real-Time Reverse
Transcription-PCR
Total RNA was extracted from the pericarp using RNAprep Pure
Plant Kit (DP432, TIANGEN, Beijing, China) according to the

manufacturer’s instructions. After determining RNA quality by
electrophoresis on 1% agarose gel, 2 μg of RNA was reverse
transcribed into cDNA using EasyScript One-Step gRNA
Removal and cDNA Synthesis Super Mix (L20602, Transgen,
Beijing, China). The resulting cDNA was then used as a template
in the PCR reactions. qRT-PCR was performed using TransStart
Tip Green qPCR SuperMix (L20803, Transgen) according to the
manufacturer’s instructions in a real-time thermal cycler
(LightCycler R 480 II, Roche, Basel, Switzerland). α-Tubulin
was amplified for internal standardization. The experiments
were repeated three times and the experimental data were
statistically analyzed using the Student’s t-test. Relative
expression data from the qRT-PCR experiments were obtained
using the 2−ΔΔCT method (Ustun et al., 2017). Relevant primers
were listed in Table 1.

TABLE 1 | Primers used in this study. ATG (4, 6, 7, 8, 12) QRT primers were
used for quantitative real-time reverse transcription-PCR (qRT-PCR) of
autophagy-related genes (ATGs). RNAi primers of ATG8 were used to amplify the
interference sequence of autophagy-related ATG8.

Primer name Sequence (59 - 39)

ATG4QRTf GAAAGCCCGCACAGAGTC
ATG4QRTr ACCCGAGACCACATAGAGC
ATG6QRTf TTTCCGTCTCGGTCGTCT
ATG6QRTr CAAACTTATGGCAAACTCG
ATG7QRTf TGCCTCACTGGTGCTTAG
ATG7QRTr CAATCCTTGAGTTGCCTTA
ATG8QRTf AGGCTGATAAGTCTGATGTCC
ATG8QRTr CGTCCTCGTCCTTGTTTT
ATG12QRTf ACAAGTTCAGGATTTCAGGACGAG
ATG12QRTr TGCCGACAAAGCATAGTTTACCAC
ATG8RNAiF ATGGCGAAGAGCTCGTTCAAG
ATG8RNAiR TGGCAGACATCAGGGCAGC
DsGFPF ATGGTGAGCAAGGGCGAGG
DsGFPR GGACGTAGCCTTCGGGCATGG
ɑ-TubulinF AACTTCGCCCGTGGTCAT
ɑ-TubulinR CAGCGTTGAATACAAGGAATC

FIGURE 1 | Phenotypes of grains taken from the top (T), middle (M)
and bottom (B) of the spike 25 days after flowering.
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Preparation of Polyclonal Antibodies of
ATG8 and α-Tubulin
Synthetic peptide (5 mg) samples obtained from the ATG8
protein sequence were first coupled to Keyhole Limpet
Hemocyanin. The coupling polypeptide was then used as an
antigen to produce rabbit polyclonal antibodies (anti-ATG8
antibodies) as described previously (Liu et al., 2014). A partial
cDNA sequence containing 90 - 750 bp of α-tubulin was then
amplified with the selected primers α-tubulin F/R (Table 1), and
inserted into the pGEX4T-AB1 plasmid. The recombinant
plasmid was then transformed into competent Escherichia coli
(BL21-DE3). The expressed α-tubulin was then obtained as a
supernatant and purified before using the target protein as an
antigen to produce rabbit polyclonal antibodies (anti-α-tubulin
antibodies) as with the ATG8 antibodies.

Western Blot (Immunoblotting)
Total proteins from the pericarp were extracted using Plant Total
Protein Lysis Buffer (P1258, Applygen Technologies Inc., Beijing,
China). The protein concentration was then measured according
to the Bradford method (Bradford, 1976), and equal amounts
(30 μg) of each sample were subjected to SDS-PAGE. Proteins

were then electrophoretically transferred onto a nitrocellulose
membrane and incubated with blocking buffer [2% skim milk
powder dissolved in TBS (8.8 g NaCl, 5 ml of 2 M Tris-HCl, pH
7.6, and 995 ml of H2O)] at room temperature for 1 h. Rabbit
source polyclonal antibody ATG8 or α-tubulin was then diluted
to 1:500 in blocking buffer in TBS and incubated with the
membrane at 4°C overnight. After washing, the membrane was
incubated with secondary antibody (alkaline phosphatase
conjugated goat anti-rabbit IgG diluted 1:10,000 in blocking
buffer) (ZB2308, Zhong Shan Jin Qiao, Beijing, China) at
room temperature for 2.5 h then the protein signal was
visualized using an Alkaline Phosphatase Color Development
Kit (C3206, Beyotime, Shanghai, China). Protein bands on the
membrane were then analyzed using Image J software.

Virus Induced Gene Silencing of ATG8
The barley stripe mosaic virus (BSMV)-based VIGS method was
used to create gene knockdown plants (Ma et al., 2012; Dong
et al., 2019). Briefly, a 283-bp fragment of wheat ATG8 from the
conserved coding sequence was amplified and purified, with a
same-sized fragment of GFP used as a control. The γ strand of
BSMV was then digested in XmacI and fused with the ATG8 or
GFP fragment to form the vectors BSMVγ-ATG8 and BSMVγ-

FIGURE 2 | Cross-sections of grains from the top (T), middle (M) and bottom (B) of the spike 3, 5, 7 and 9 days after flowering. (A). Scale bars: 500 µm. (B).
Statistical analysis of pericarp thickness at each position on the spike. Bars represent the mean ± SD of three independent experiments. Asterisks indicate a significant
difference as determined by ANOVA, and different letters represent a significant difference between positions on the spike.
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GFP, respectively. BSMV-α was then linearized with MIuI,
BSMV-β was linearized with SpeI, and BSMVγ-ATG8 and
BSMVγ-GFP were linearized with BssHII then the linearized
vectors were transcribed in vitro to produce 5ʹ-capped infectious
BSMV RNA molecules using the RiboMAX Large-Scale RNA
Production-T7 Kit (Promega, Madison, WI, United States), with
a cap analog added to the transcription mixture. They were then
mechanically infected with a 1:1:1 mixture of RNAα, RNAβ and
RNAγ-ATG6, or RNAγ- GFP in 1 × GKP buffer (50 mM Gly,
30 mM K2HPO3, 1% bentonite and 1% kieselguhr). In the field,
inoculation of BSMV was performed at the heading stage by
inoculating 50 spikes with 20 µL of BSMV-ATG8 or BSMV-GFP
transcript mixture, respectively.

Immunohistochemistry
Wheat seeds were removed from the spike then treated with 4%
paraformaldehyde at 4°C overnight and gradient-dehydrated.
The prepared grain tissues were then embedded in paraffin, cut
into 7-µm sections, adhered to gelatin-coated glass slides, and
dried at 37°C overnight. The slides were then dewaxed, gradient-
dehydrated, and digested with 20 µM proteinase K at 37°C for
10 min before blocking in 2% BSA at 37°C for 30 min. Rabbit
anti-ATG8 antibody was then added before incubating the
slides at 47°C overnight. They were then washed three times
with PBS before adding 1 µL secondary antibody (goat anti-
rabbit-Alexa Fluor 555 antibody in 10 ml blocking buffer), and

incubating at 37°C for 1 h. The nuclei were then stained with 4′,
6-diamidino-2-phenylindole (DAPI) (AnaSpec Inc., San Jose,
CA, United States) at room temperature for 10 min.
Fluorescence was observed with a fluorescence microscope
(HT7700, Hitachi, Tokyo, Japan).

TUNEL Assay
Wheat seeds were removed from the spike then treated with 4%
paraformaldehyde at 4°C overnight. A TUNEL assay was then
carried out as described previously (Li et al., 2019).

Periodic Acid-Schiff Staining
The paraffin-embedded seeds were transected down the
middle, placed in xylene for 20 min, anhydrous ethanol for
5 min, and 75% alcohol for 5 min, and then washed with tap
water three times for 30 s each time. The sections were then
dyed in periodate dye solution for 10 min, rinsed with tap water
then distilled water, and dyed in Schaeffer dye solution for
20 min before a final rinse in running water for 5 min. They
were then stained in Hematoxylin solution for 3–5 min, rinsed
with tap water, and differentiated in 1% HCl alcohol solution
for 30 s. Following a final rinse in tap water, they were then
placed in blue-back solution for 5 min before rinsing with
running water. The prepared slices were examined under a
microscope, and images were collected for analysis of cell
structure.

FIGURE3 | (A). PAS staining showing grainmorphology and structure. PE: pericarp, AL: aleurone layer, EN: endosperm. Scale bars: 50 µm. (B). Statistical analysis
of cell layers in the pericarp of grains taken from the top (T), middle (M) and bottom (B) of the spike. Bars represent the mean ± SD of three independent experiments.
Asterisks indicate a significant difference as determined by ANOVA., and different letters represent a significant difference between positions on the spike.
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RESULTS

The Thickness of the Pericarp in the
Developing Grains Differs According to the
Position on the Spike and the
Developmental Stage
It is well known that differences in light, temperature and nutrient
supply cause wheat grains to mature at different rates in different
positions on the spike. In this study, grains at the top of the spike
were premature and small, while those in the middle matured faster
and were big and full, and those on the bottom matured late and
were also relatively small (Figure 1). The thickness of the pericarp
was then examined in grains obtained from the top, middle and
bottom of the spike at different development stages. Cross-sections
revealed that the thickness was smallest at the top of the spike,
followed by the middle, then the bottom, with a gradual decrease in
thickness with increasing development (Figures 2A,B). These results
indicate that pericarp thickness significantly differs at different
positions on the spike and at different developmental stages.

The Loss of Cell Layers Caused by PCD
Results in a Decrease in Pericarp Thickness
To further explore the differences in pericarp thickness, PAS
staining was carried out. The results showed that pericarp

samples obtained from the top of the spike had the least
number of cell layers, followed by those in the middle, with
most numerous layers in those from the bottom (Figure 3A). The
number of cell layers also decreased gradually with increasing
development (Figure 3B). TUNEL staining is often used to
determine PCD in the pericarp (Dominguez et al., 2001), with
green fluorescence indicating TUNEL-positive signals in the
nuclei indicative of PCD (Zhou et al., 2009). Here, TUNEL
signals were extremely intense in pericarp samples from the
top of the spike, followed by those in the middle, with weakest
signals in those from the bottom, and this trend was consistent for
3 – 9 days after flowering (Figure 4). These data suggest that the
reduction in pericarp thickness was the result of a loss in cell
layers induced by PCD.

Autophagy Is Involved in PCD in the
Pericarp
In order to determine the regulatory mechanism underlying
PCD, we examined autophagy in the pericarp of developing
grains obtained from different positions of the spike and
different development stages. QRT-PCR showed that key
autophagy-related genes (ATG4, ATG6, ATG7, ATG8, and
ATG12) were highly expressed in samples from the top of the
spike, followed by those in the middle, with weakest expression in
those from the bottom (Figure 5). Moreover, highest peaks

FIGURE 4 | The process of programmed cell death (PCD) in the pericarp during early grain development as detected by TUNEL staining. (A). Images of grains
sampled from the top (T), middle (M) and bottom (B) of the spike 3 days after flowering. PE: pericarp, AL: aleurone layer, EN: endosperm. TUNEL images indicate
nuclei following PCD, while DAPI images indicate all nuclei. Scale bars: 200 µm. (B). Grains taken from the middle of the spike 3, 5, 7 and 9 days after flowering. Scale
bars: 200 µm.
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appeared 5 and 7 days after flowering (Figure 5). Western
blotting also showed that the band of ATG8-PE was greatest
in the top grains followed by those in the middle, with weakest
signal in the bottom grains (Figures 6A–D). Moreover,
expression of ATG8-PE was increasing for 3 - 7 days after
flowering (Figures 6E,F). In addition, immunohistochemistry
showed that most autophagy structures were observed in samples
obtained from the top of the spike, followed by those in the
middle, with least structures in those from the bottom (Figure 7).
These results indicate that autophagy increases from the bottom
to the top of the spoke, and is involved in the regulation of PCD in
the pericarp during early stages of grain development.

Inhibition of Autophagy Increases Pericarp
Thickness
In order to determine the effect of autophagy on PCD, we carried
out knockdown of the key autophagy gene (ATG8). The results
showed that interference of ATG8 (Figures 8C,D) resulted in a
significant increase in the thickness of the pericarp (Figures

8A,B) and the number of cell layers (Figures 8E,F), with an
obvious delay in the process of PCD (Figure 8G). These findings
indicate that PCD in the pericarp cells of developing wheat grains
is dependent on ATG8-mediated autophagy.

Analysis of Wheat Phenotypes After
Inhibition of Autophagy
To further examine the effect of autophagy, changes in the wheat
phenotype were also examined following knockdown of ATG8.
The results showed that interference resulted in earlier
maturation by 4 days (Figures 9A,B), with smaller, less full
grains (Figure 9C).

DISCUSSION

PCD is central to the development, homeostasis, and integrity of
multi-cellular organisms (Ameisen, 2002). In plant cells,
extensive chromatin condensation and degradation of nuclear

FIGURE 5 | The relative expression of autophagy-related genes in the pericarp of grains taken from the top (T), middle (M) and bottom (B) of the spike 3, 5, 7 and
9 days after flowering. α-Tubulin was used as an internal reference, and the relative expression was calculated using the 2−ΔΔT method. Asterisks indicate significant
differences as determined by ANOVA, and different letters represent significant differences between columns.
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DNA is one of the most conspicuous features of cells undergoing
PCD (Latrasse et al., 2016). For example, during the early
development of barley grains, PCD in the pericarp cells
provides space and nutrients for subsequent grain filling
(Radchuk et al., 2018). Meanwhile, autophagy is responsible
for degrading unnecessary components and redistributing
nutrients, thereby ensuring normal grain development (Li
et al., 2015; Masclaux-Daubresse et al., 2017; Di Berardino
et al., 2018). The process of autophagy begins with the
formation of a phagophore with a double-membrane cup-
shaped structure, which expands to form a double-membrane
vesicle called an autophagosome. Upon completion, the
autophagosome docks and fuses with the vacuole for cargo
degradation (Feng et al., 2014) then the resulting breakdown
products are released back into the cytosol to maintain nutrient
and energy homeostasis (Yin et al., 2016). However, whether or
not autophagy is involved in regulating PCD in the pericarp of
developing wheat grains, and the underlying regulatory
mechanism, remains unknown. Our data suggest that
autophagy is indeed involved, with repression of ATG8-
mediated autophagy seeming to delay PCD, resulting in an
increased thickness and number of cell layers within the pericarp.

High temperatures after anthesis can significantly reduce the
grain weight in wheat, thereby causing a reduction in yield
(Zahedi et al., 2003; Djanaguiraman et al., 2020). However,
grains in different positions of the spike are affected by
environmental stress to a differing degree (Yu et al., 2014; Li

et al., 2016). Light and temperature stress have the most serious
effect on grains at the top of the spike, followed by those in the
middle, and lastly, those on the bottom (Steinmeyer et al., 2013).
Top grains therefore reachmaturity earlier and are smaller in size,
while bottom grains mature later, but are also relatively small due
to the lack of light and insufficient supply of nutrients. It was
previously reported that stress promotes autophagy and PCD in
plants (Bassham et al., 2006; Kabbage et al., 2017; Chua et al.,
2019). Pericarp and endosperm PCD are necessary for grain
maturation (Dominguez and Cejudo, 2014). In this study, both
processes occurred most strongly in the pericarp of grains at the
top of the spike, followed by those in the middle, and lastly, to a
weaker degree, those at the bottom. The top-to-bottom
maturation sequence of wheat grain and its peel is actually a
process of abiotic stress that causes wheat autophagy and PCD.

Plant development requires specific cells to be eliminated in a
predictable and genetically regulated manner referred to as
programmed cell death (PCD). However, the target cells do
not merely die but they also undergo autophagy to degrade
their cellular corpses (Escamez and Tuominen, 2017). In
plants, controversy remains over the regulatory effect of
autophagy on PCD. One viewpoint is that autophagy
negatively regulates PCD; for example, mutation of autophagy
was found to result in leaf senescence in Arabidopsis (Hanaoka
et al., 2002), and autophagy in plants was found to eliminate
reactive oxygen species induced by various abiotic stresses (Avin-
Wittenberg, 2019). Meanwhile, the opposing view suggests that

FIGURE 6 | Relative expression of ATG8-PE as detected by Western blotting. (A). Specific detection of ATG8 polyclonal antibody on 15% SDS gel. (B). Specific
detection of α-tubulin polyclonal antibody on 12.5% SDS gel. (C). Relative expression of ATG8-PE in grains taken from the top (T), middle (M), and bottom (B) of the
spike 3 days after flowering. (D). Statistical analysis of ATG8-PE expression at each position on the spike. (E). Relative expression of ATG8-PE at 3, 5, 7 and 9 days (D)
after flowering. (F). Statistical analysis of ATG8-PE expression at each development stage. β-actin was used as a standard. Data represent the mean ± SD of three
independent experiments. Asterisks indicate a significant difference as determined by ANOVA. Different letters represent significant differences between columns.
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autophagy promotes PCD; for example, mutation of autophagy
caused degradation of rice pollen tapetum (Kurusu et al., 2014),
and autophagic components contributed to hypersensitive cell
death in Arabidopsis (Hofius et al., 2009). In this study, however,
the characteristics of autophagy and PCD coexisted in the
pericarp during early development of the wheat grains,
providing an ideal model for studies on the relationship
between autophagy and PCD.

Autophagy occurs not only in the pericarp, but also in the
embryo and endosperm of grain (Steinmeyer et al., 2013). At the
whole-plant level, autophagy is an essential process for nutrient
remobilization from leaves to seeds, and is fundamental for seed
filling (Avin-Wittenberg, 2019). In ATG8-RNAi lines of rice,
autophagic activity was slightly inhibited, grain yield and quality
were reduced, and grains matured early (Fan et al., 2020). In our
study, knockdown of wheat ATG8 also resulted in early maturity
and smaller grains. The main reason is that inhibition of

ATG8-mediated autophagy leads to the decrease of nutrient
recycling into wheat grains. So, it can be inferred that other
spike positions will also show the corresponding phenomena of
smaller grains and early maturity after ATG8 interference.

The ATG8 gene is an evolutionarily conserved gene that is
expressed in various plant tissues (Boycheva Woltering and Isono,
2020). In rice, ATG8 interference lines exhibited abnormal roots, a
reduced number of grains per panicle, and other unfavorable
agronomic traits (Fan et al., 2020). It is therefore difficult to
rule out the negative effects of ATG8 knockout on other
agronomic traits in analysis of grain phenotypes. In this study,
we therefore carried our BSMV-mediated transient interference of
ATG8 to minimize interference of other agronomic traits. As a
result, PCD was weakened, and the thickness of the pericarp
increased, suggesting strong dependency on ATG8-mediated
autophagy, and a positive regulatory effect. Overall, the findings
suggest that positive and negative regulation of PCD by autophagy

FIGURE 7 | Immunohistochemical analysis of autophagy structures in grains taken from the top (T), middle (M) and bottom (B) of the spike. Short arrows indicate
autophagy structures (brown indicate pericarp autophagy structures, white indicate endosperm autophagy structures). Grains were obtained 3 days after flowering,
then the pericarp was stained with DAPI and anti-ATG8 antibody followed by Alexa 555-labeled secondary antibody. PE: pericarp, AL: aleurone layer, EN: endosperm;
Scale bars: 200 µm.
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mainly depends on the types of plant tissue and stress. Autophagy
is dependent on a set of autophagy-related (ATG) proteins, of
which the ubiquitin-like protein ATG8 plays a central role,
functioning in autophagosome formation, and mediating
membrane tethering, elongation and fusion (Nakatogawa et al.,
2007). Upon autophagy activation, ATG8 undergoes lipidation to
generate a membrane-bound ATG8-phosphatidylethanolamine
(ATG8-PE) conjugate that localizes on growing phagophores
and autophagosomes. ATG8 proteins are therefore often used as
reliable markers to assess the induction and progression of

autophagy (Yoshimoto et al., 2004). In this study, ATG8 was
required for PCD in the pericarp of developing wheat grains.
ATG8 lipidation occurs in both the outer and inner membrane of
the phagophore, the precursor to autophagosomes, and is involved
in autophagosome formation, as well as the recognition of specific
cargo specifically targeted for autophagy (Kellner et al., 2017).
These cargo receptors then interact with ATG8 proteins via short
peptide motifs known as AIMs (ATG8-family interacting motifs)
(Fracchiolla et al., 2017). Vacuolar processing enzymes (VPEs), a
class of conserved cysteine proteases, are also involved in plant

FIGURE 8 |Morphology of the grains after knockdown of ATG8. (A). Cross sections of grains sampled five and 7 days after flowering following ATG8 knockdown. dsGFP
was used as a control. PE: pericarp, AL: aleurone layer, EN: endosperm; Scale bars: 500 µm. (B). Statistical analysis of pericarp thickness following ATG8 knockdown. Asterisks
indicate a significant difference based on the Student’s t-test, p < 0.05. (C). Knockdown efficiency of ATG8 as determined byWestern blotting. α-tubulin was used as the internal
reference. (D). Statistical analysis of the knockdown efficiency of ATG8. Asterisks indicate a significant difference based on the Student’s t-test, p < 0.05. (E). PAS staining
7 days after flowering showing the morphology and structure of the grains following ATG8 knockdown. Scale bars: 20 μm. (F). Statistical analysis of pericarp cell layers following
ATG8 knockdown. Bars represent the mean ± SD of three independent experiments. Asterisks indicate a significant difference according to the Student’s t-test, p < 0.05. (G).
TUNEL staining 7 days after flowering showing the morphology and structure of the grains following ATG8 knockdown. Scale bars: 50 μm.
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PCD (Hatsugai et al., 2004; Rojo et al., 2004). For example, VPE4 in
barley is required for PCD in the pericarp during grain
development (Radchuk et al., 2018), while VPE1 in tomato is
translocated to the vacuole through the autophagy pathway, co-
localizing with ATG8 in the autophagosomes and autolysosomes to
induce PCD (Teper-Bamnolker et al., 2020). However, whether
VPE1 interacts with ATG8, and is transported to the vacuole to
exert its function on PCD requires further clarification.

CONCLUSION

The findings of this study suggest that autophagy and PCD
coexist in the pericarp during the early development of wheat
grains. Moreover, autophagy and PCD increased from the bottom
to the top of the spike, and PCD was dependent on ATG8-
mediated autophagy. Meanwhile, following knockdown of ATG8,
the thickness of the pericarp increased, resulting in small
premature grains. Overall, this dependence between autophagy
and PCD determines the early development of grain pericarp.
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