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Summary

Arbuscular mycorrhizal fungi (AMF), which are
present in most natural environments, have demon-
strated capacity to promote biodegradation of
organic pollutants in the greenhouse. However, it is
not certain whether AMF can spontaneously establish
in phytoremediation systems constructed to decon-
taminate groundwater, because of the unusual condi-
tions during the construction and operation of such
systems. To assess this possibility, root samples
from a wetland constructed for the phytoremediation
of groundwater contaminated with benzene, methyl
tert-butyl ether and ammonia were analysed. Sub-
stantial AMF colonization was observed in plant roots
sampled close to the inlet of a basin filled with fine
gravel and planted with Phragmites australis. In addi-
tion, analysis of a fragment of the nuclear large ribos-
omal subunit, amplified by nested PCR, revealed the
presence of AMF molecular operational taxonomic
units closely related to Funneliformis mosseae and
Rhizophagus irregularis in the samples. These find-
ings demonstrate the capacity of generalist AMF
strains to establish spontaneously, rapidly and
extensively in groundwater bioremediation technical
installations.

Introduction

An arbuscular mycorrhiza is a type of close, mutualistic
association that forms in root systems between diverse
plant species and members of a small group of soil fungi

(arbuscular mycorrhizal fungi, AMF; Smith and Read,
2008). The association allows the exchange of nutrients
(carbohydrates provided by the plant, mineral nutrients
provided by the fungi), and markedly increases the host
plant’s tolerance of various biotic and abiotic stress
factors. Arbuscular mycorrhizal fungi also influence the
transport and distribution of organic pollutants in plants
(Debiane et al., 2009; Langer et al., 2010), reportedly
reducing their concentrations in shoots of colonized
plants, while increasing their concentrations in roots, par-
ticularly in the rhizodermis (Huang et al., 2007; Wu et al.,
2009). These effects may help to protect plants from
damage by organic pollutants. Beneficial effects of the
presence of AMF on soil bacteria (Toljander et al., 2007),
notably bacteria capable of degrading organic com-
pounds (Corgié et al., 2006; Alarcon et al., 2008), have
also been reported. By both protecting plants from
adverse effects of organic pollutants and promoting
associated bacteria, AMF can accelerate the biodegra-
dation of organic pollutants. Several studies have
recently demonstrated beneficial effects of AMF on the
biodegradation of organic pollutants, including: the dissi-
pation of polycyclic aromatic hydrocarbons (PAHs) by
Lolium multiflorum (Yu et al., 2011), dissipation of PAHs
by Medicago sativa under low water and phosphate
availability (Zhou et al., 2009), and phytoremediation of
aged petroleum contamination by Triticum aestivum
(Malachowska-Jutsz and Kalka, 2010). Arbuscular myc-
orrhizal fungi can therefore be considered ideal inhabit-
ants of technical installations for the plant-based
bioremediation of groundwater contaminated by organic
pollutants. However, such installations are often con-
structed without including a significant source of AMF
propagules. Furthermore, the stressful conditions in such
installations – such as poor substrates, and potentially
toxic concentrations of organic pollutants for the fungi
(Verdin et al., 2006; Debiane et al., 2011) – may hinder
the successful establishment of AMF.

To investigate the ability of AMF to establish under such
conditions, we analysed AMF colonization levels in plant
roots sampled from a wetland constructed to decontami-
nate groundwater polluted with benzene, methyl tert-butyl
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ether (MTBE) and ammonia. The wetland was continu-
ously streamed (inflow rate 6 l h-1) by water containing 20,
3.7 and 45 mg l-1 of these compounds respectively. Arbus-
cular mycorrhizal fungi present in roots from Phragmites
australis growing in this wetland were phylogenetically
analysed by cloning and sequencing a 400 bp fragment of
the nuclear large ribosomal subunit, amplified by nested
PCR.

Results and discussion

Spontaneous colonization of constructed wetlands

The constructed wetland investigated in this study was
established in March 2007. It consists of a basin that
receives a stream of contaminated groundwater. Phrag-
mites australis plantlets were planted at the inlet end,
which is filled with light gravel. Close to its outlet area
there is a compartment lacking the gravel substrate where
P. australis is growing in water, forming a dense root mat
(Fig. 1). Root samples taken from the part of the con-
structed wetland with the gravel substrate in 2011 were
substantially associated with AMF (colonized proportions
by length, 40%, 25%, 25%, 60% and 80%; see Fig. 1

legend for details), clearly showing that these fungi suc-
cessfully colonized this unusual environment within 4
years. Thus, establishment of AMF does not appear to
have been profoundly hindered in the inlet part of the
wetland, although it was exposed to the highest concen-
trations of organic pollutants. In contrast, no colonization
of roots by AMF was observed in the part of the basin
where the plants were growing in free water with no gravel
substrate, suggesting that a solid substrate was required
for AMF colonization. The likeliest sources of the coloniz-
ing fungi were airborne propagules or mycelia already
present in the P. australis plantlets when they were trans-
ferred to the constructed wetland.

Generalist AMF strains as early and rapid colonizers of
the constructed wetland

Considerable frequencies of very similar patterns were
detected in restriction fingerprinting of PCR products
cloned from a fragment of the large ribosomal subunit,
indicating that the AMF community within the constructed
wetland had low diversity at the sampling time. Fifty-one
clones with identical patterns were removed from the
analysis, leaving 34 unique clones for sequence analy-
sis, and only two AMF taxa were detected: Rhizophagus
irregularis and Funneliformis mosseae. The restriction
endonuclease Taq I was used for restriction fingerprint-
ing, partly because it has been recommended for
T-RFLP analysis of the PCR fragment analysed in this
study (Mummey and Rillig, 2007), and partly because
almost all AMF species in the phylogenetic tree shown in
Fig. 2 could be differentiated using this enzyme in a
virtual digest. In particular, it was possible to differentiate
all other species from R. irregularis and F. mosseae, the
two AMF found in the wetland samples, excluding the
possibility that AMF species were missed because of
the use of Taq I for restriction fingerprinting prior to
sequence analysis. As the primer pairs used in our
analysis are not capable of amplifying sequences of
members from the genus Diversispora or the families
Archaeosporaceae and Paraglomaceae (Gamper et al.,
2009), however, the possible presence of additional AMF
from these groups cannot be excluded. Phylogenetic
analysis using the set of consensus sequences for AMF
(see fig. 1 in Krüger et al., 2011) clearly showed that
all sequences analysed in our study clustered with the
AMF genera Rhizophagus or Funneliformis (data not
shown). Only four sequences clustered with different
fungal groups, one of which proved to be a chimeric
sequence in later analysis, while the other three were
very similar to sequences of the basidiomycotan genus
Cryptococcus. We have previously observed unspecific
amplification of nuclear rRNA from this genus using the
primers FLR3 and FLR4 on a number of occasions.
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Fig. 1. In March 2011 five samples of roots (each about 10 g) were
taken from the ‘front’ (near the inlet) and five from the ‘rear’ (near
the outlet; 10 samples in total) of the illustrated constructed wetland
(5 m long, 1.15 m wide, 1.25 m deep; inflow rate 6 l h-1) planted
with P. australis, which is being used in a compartment transfer
experiment close to Leuna, Germany (Seeger et al., 2011). Parts of
the sampled roots were stained with ink (Sheaffer, Middlesex, UK)
and vinegar according to Vierheilig and colleagues (1998) to high-
light AMF structures, and the degree of colonization by AMF was
roughly estimated by inspecting the stained roots under a stereomi-
croscope and estimating approximate ratios of mycorrhizally colo-
nized to non-colonized root lengths. Substantial degrees of AMF
colonization were observed in all five root samples from the ‘front’
part of the wetland (40%, 25%, 25%, 60% and 80%). In contrast,
no colonization of P. australis roots was observed in samples from
the rear part, where there was no gravel substrate and the roots
formed a dense root mat. These microscopic observations are con-
sistent with results of nested PCR analysis of a 400 bp fragment of
the nuclear large ribosomal subunit using the primer pairs LR1/
FLR2 and FLR3/FLR4 (Gollotte et al., 2004) and Taq PCR Master-
mix (Qiagen, Hilden, Germany). DNA extracted (using a DNeasy
Plant Mini-Kit, Qiagen) from all samples from the front part of the
wetland yielded fragments of expected size (for AMF), while DNA
extracted from samples from the rear part yielded no PCR prod-
ucts. The concentrations of pollutants (benzene, methyl tert-butyl
ether/MTBE and ammonia N) shown in the figure have been taken
from Seeger and colleagues (2011).
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Cryptococcus is a large fungal genus with some species
that are pathogenic for humans. Although substrate (light
gravel) and inflowing water (contaminated groundwater)
can be expected to be relatively poor inocula in general,
introduction of members from Cryptococcus by these
sources cannot be excluded. Alternatively, airborne
spores have been described for the pathogenic species
(Hajjeh et al., 1995; Kidd et al., 2007) and appear also
possible as sources of inoculation in the case presented
here.

To examine the sequences clustering with Rhizophagus
or Funneliformis in more detail, all reference sequences
not belonging to either of these genera or the out-group
genus Glomus were removed, while more sequences from

Rhizophagus and Funneliformis – summarized by Krüger
and colleagues (2011) – were included in the analysis.
After sequence alignment and construction of a maximum
likelihood tree (using the general time reversible evolution-
ary model), the sequence groups clustering with Funneli-
formis showed a close relationship with F. mosseae, while
those clustering with Rhizophagus clustered exclusively
with sequences from R. irregularis (Fig. 2). The phyloge-
netic tree produced from the applied sequences (Fig. 2)
was therefore restricted to those branches in R. irregularis
and F. mosseae that can be differentiated by virtual
digestion using Taq I. As already mentioned, the possible
presence of additional AMF from the Diversispora,
Archaeosporaceae or Paraglomaceae cannot be
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Fig. 2. PCR amplification products of a fragment of the nuclear large ribosomal subunit obtained from DNA in root samples collected from the
front part of the constructed wetland were purified (using a peqGold Cycle-Pure Kit; Peqlab, Erlangen, Germany), pooled and ligated into pCR
2.1 (using a TA cloning kit; Life Technologies, Darmstadt, Germany). After transformation into Escherichia coli DH5a, 85 positive clones were
identified using classical blue–white screening, and amplified by colony PCR (using M13 primers). The resulting products were screened by
Taq I restriction digestion at 37°C overnight, and analysis of electrophoretic patterns using GelCompar II (Applied Maths NV, Sint-Marten-
Latern, Belgium). Forty-eight clones with identical restriction patterns were identified and eliminated from further analysis. PCR products from
the remaining 34 clones were purified using a SureClean kit from Bioline (Luckenwalde, Germany) and sequenced using a BigDye® Termina-
tor v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, USA) and a 3130xl Genetic Analyzer (Applied Biosystems). Sequences were
edited (by removing primer and vector sequences, and controlling sequence quality) using Sequencher 4.8 (Gene Codes Corporation, USA).
Database searches for similar sequences were performed using the BLAST program (Altschul et al., 1990). In a few cases, non-
glomeromycotan sequences (similar to sequences from the basidiomycotan genus Cryptococcus) were found. The ClustalW2 algorithm imple-
mented in Seaview (Gouy et al., 2010) was used to align sequences with corresponding sequences from AMF strains defined in Krüger and
colleagues (2011). Most of these sequences refer to individual GenBank accessions, although the sequences for Glomus sp. W3347/Att565-7,
Glomus macrocarpum W5293 and G. macrocarpum epitype refer to consensus sequences defined in Krüger and colleagues (2011). Seaview
was also used to construct neighbour joining trees (using BioNJ and Kimura 2-parameter models, with 1000 bootstrap permutations) and the
maximum likelihood tree shown here (model: general time reversible, starting from a neighbour joining/BioNJ tree, with branch support esti-
mated using the approximate likelihood ratio test approach). The genus Glomus was used as an out-group in this tree. Branches were col-
lapsed to those branches showing unique Taq I restriction patterns in a virtual digest. GenBank accession numbers for the sequences
obtained in this study (black triangles) are shown. Numbers within the triangles refer to the numbers of respective sequences analysed and to
numbers of clones with concordant Taq I digestion patterns (in brackets).
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excluded, because of limitations of the primers used in our
analysis. Nevertheless, the observation only of sequences
connected to R. irregularis and F. mosseae, after screen-
ing 85 and sequencing 34 sequences, corroborates the
preliminary indications that the constructed wetland con-
tained an AMF community with very low diversity.

Rhizophagus irregularis refers to a large part of the
taxonomic group that was previously known as Glomus
intraradices, while F. mosseae was previously named
Glomus mosseae (Schüßler and Walker, 2010). Both of
these species are known to be typical generalist AMF
(Öpik et al., 2006; Rosendahl et al., 2009; Oehl et al.,
2010) that have been found in diverse habitats around the
world. Although they have not been mentioned specifically
in analyses of AMF succession (Piotrowski and Rillig,
2008), they seem to be pioneer AMF strains in the con-
structed wetland we studied.
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