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Animal models of malaria, mainly mice, havemade a large contribution to our knowledge of host–pathogen inter-
actions and immune responses, and to drug and vaccine design. Non-humanprimate (NHP)models formalaria are
admittedly under-used, although they are probably closermodels thanmice for humanmalaria; in particular, NHP
models allow the use of human pathogens (Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and
Plasmodium knowlesi). NHPs, whether natural hosts or experimentally challenged with a simian Plasmodium, can
also serve as robust pre-clinical models. Some simian parasites are closely related to a human counterpart, with
which they may share a common ancestor, and display similar major features with the human infection and
pathology. NHP models allow longitudinal studies, from the early events following sporozoite inoculation to the
later events, including analysis of organs and tissues, particularly liver, spleen, brain and bone marrow. NHP
models have one other significant advantage over mouse models: NHPs are our closest relatives and thus their
biology is very similar to ours.
Recently developed in vivo imaging tools have provided insight into malaria parasite infection and disease in
mousemodels. One advantage of these tools is that they limit the need for invasive procedures, such as tissue bi-
opsies. Many such technologies are now available for NHP studies and provide new opportunities for elucidating
host/parasite interactions. The aimof this review is to bring themalaria community up to date onwhat is current-
ly possible and what soon will be, in terms of in vivo imaging in NHPmodels of malaria, to consider the pros and
the cons of the various techniques, and to identify challenges.

© 2013 Published by Elsevier Ireland Ltd.
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1. Introduction

Malaria parasites infect a wide range of animals, including reptiles,
birds, rodents and NHPs, in addition to humans. Four species, Plasmodi-
ummalariae, Plasmodium ovale, Plasmodium falciparum and Plasmodium
vivax, are recognized as natural malaria parasites of humans. More re-
cently, it has emerged that a fifth species, Plasmodium knowlesi, that
morphologically resembles P. malariae and consequently has undoubt-
edly been misdiagnosed in the past, is a human pathogen [1]. The
main simian Plasmodium parasites infecting Old World primates in-
clude P. knowlesi, Plasmodium coatneyi, Plasmodium fragile, Plasmodi-
um cynomolgi, Plasmodium inui, Plasmodium fieldi, and Plasmodium
simiovale, in South East Asia, as well as Plasmodium gonderi in
Africa, while simian Plasmodium parasites infecting New World pri-
mates comprise Plasmodium brasilianum and Plasmodium simium in
South America [2].

Simian Plasmodium parasites sharing similarities with human
parasites were reported at the beginning of the XXth century [3].
Deciphering the evolutionary history of Plasmodium parasites and
their primate hosts' restrictions is a matter of intensive research, to
determine the origin of human Plasmodium parasites and when
they emerged.

Plasmodium parasites show a large propensity to “jump” from NHPs
to humans and the reverse. The origin of P. falciparum was recently
determined. African Apes are likely a reservoir and the species has
been found in Gorillas [4,5], Bonobos [6] and Chimpanzees [7]. For
P. vivax and P.malariae, which are genetically closely related to neotrop-
ical P. simium and P. brasilianum, the mechanisms of the host switch,
from New World primates to humans (zoonosis) or the reverse
(anthroponosis), have not been completely unraveled [8]. Some New
World monkeys are susceptible to human P. falciparum, P. vivax and
P. malariae. Current simian Plasmodium species known to naturally in-
fect humans include not only P. knowlesi, but also, although very rarely,
P. simium in South America and P. cynomolgi in Asia [3,9].

This close relatedness between human and NHP hosts and between
human and simian Plasmodium parasites, makes NHP models of choice
for human malaria for the biomedical research community.
2. A plethora of animalmodels are available to studyPlasmodium bi-
ology and pathogenesis, malaria immunity, and vaccine and drug
efficacy

In contrast to other pathogens such as HIV, both in-field trials and
experimental human challenges are feasible with Plasmodium [10].
Human subjects are mostly used to assess vaccine-induced protection.
Nonetheless, animal models remain highly valuable, not only to avoid
ethical problems with work on humans, but also to control the experi-
mental conditions. Indeed the choice of the pathogen form (species,
strain, isolate or clone) and the timingof infection allow the study of dif-
ferent aspects of the disease. Furthermore, the type of infection, using
infected red blood cells (iRBCs) or sporozoites, leads to studymore spe-
cifically the blood-stage or the transmission and the liver-stage,
respectively.

Animal models allow longitudinal studies from the early events fol-
lowing sporozoite inoculation, analysis of clinically-silent stages and
collections of organs and tissues. Confounding factors, such as previous
infections, co-infections ormalnutrition can be avoided. However, there
is not a single animal model that perfectly reproduces the spectrum of
human Plasmodium infection, malaria and immunity. Differences be-
tween parasite–host combinations may indeed be viewed as an asset,
because they may reflect the heterogeneity of human malaria, as
highlighted in a recent debate on animal models in malaria research
[11]. Each model has different strengths, limitations and degree of rele-
vance, and thus models should be carefully selected according to the
scientific issues and hypotheses addressed.
2.1. Limitations of mice and humanized mouse models for malaria

Mice are extensively used for modeling malaria [12–16]. Human
Plasmodium parasites are unable to infect mice, so rodent malaria para-
sites may be used. The four most widely used species are Plasmodium
berghei, Plasmodium yoelii, Plasmodium chabaudi and Plasmodium vinckei,
and they are used with inbred or outbred mice. They were isolated from
their natural hosts, such as the African rats for P. berghei, and then
adapted to laboratorymice. Rodent Plasmodium infections inmice display
some, but not all, of themain features of the human infection and disease.

Complex humanized mouse models have been developed to over-
come the host species barriers to the use of P. falciparum in small
laboratory animals [17]. Briefly, mice with a reconstituted human
hematopoietic system, producing human RBCs, susceptible to several
P. falciparum strains and supporting long-lasting parasitemia and game-
tocyte development, would be ideal for studying the blood-stage. How-
ever, no such perfect model is available. Only transient models have
been reported, involving perfusion of infected RBCs into immunodefi-
cient mouse strains, such as NOD/SCID/IL2Rγ- [18–20].

For transmission and liver-stage studies,micewith engrafted human
hepatocytes have been generated and there is evidence that following
infection with P. falciparum sporozoites, liver-stage schizonts develop
[21,22]. The complete development of liver-stage parasites was recently
reported, with liver-stage schizonts exhibiting exoerythrocytic merozo-
ite formation and merosome release, and even with the transition from
P. falciparum liver-stage infection to a blood-stage infection with game-
tocyte development [23]. However, themain drawback of these human-
ized mice is clearly their low to medium throughput. They are also
inappropriate for the study of P. vivax, which requires human reticulo-
cytes and thus human erythropoiesis. Finally, these mouse models are
not adapted for the assessment of specific immunity which requires a
mature and fully competent human immune system.

2.2. Advantages of NHPs over mice and humans for the study of parasite bi-
ology, infection dynamics and pathogenesis

There are also several well-established NHP models available, al-
though they are not widely used. This is probably because NHP studies
require appropriate specific facilities (possibly with associated mosqui-
to facilities), and more rigorous ethical justification than other animal
models. They also require a close collaborative work between primatol-
ogists and malariologists, and specially trained personnel.

Safety issues are raised and BSL2 or BSL3 animal facilities are re-
quired when using mosquito-borne Plasmodium species infectious for
humans, such as human Plasmodium parasites and some of themacaque
parasites, including P. cynomolgi and P. inui.

NHP studies are also particularly costly. Nevertheless, many believe
that such models are worth the effort and they are committed to pro-
mote the use of NHPs, because these models of malaria closely repro-
duce human malaria. Indeed, continued investment in NHP systems
was recognized as a priority at a recent meeting on animal models for
research on severe malaria [15].

According to the molecular timescale for Vertebrate evolution, mice
and humans are separated by ~40 million years. Over this period, their
immune systems have been subjected to very different selection pres-
sures and there have been divergent host/pathogen adaptations. The
Macaca genus is more closely related to humans, the most recent com-
mon ancestor being ~25 million years ago [24]. The phylogenetic prox-
imity of humans and NHPs is associated with, for instance, comparable
dendritic cell subsets and similar panoplies of pattern recognition
receptors [25–27]. Both are central to the study of malaria immunology
and to vaccine development.

In vivomalaria liver-stage studies in humans are virtually impossible,
whereas NHPs provide access to asymptomatic stages, including the
journey of sporozoites from skin to liver and the dormant hypnozoite
forms in the liver, as seen with P. vivax or P. cynomolgi. In addition,
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various genes are conserved among primate parasites (P. falciparum,
P. vivax and P. knowlesi) but are absent from rodent parasites (P. berghei,
P. yoelii and P. chabaudi) [28]. The potential protective efficacy of anti-
gens corresponding to these genes or of newgenetically attenuated spo-
rozoites cannot be assessed inmice. The degree of attenuation resulting
from the deletion of any particular gene may also differ between
Plasmodium species [29].

The recent whole-genome sequencing of rhesus macaque (Macaca
mulatta) and cynomolgus macaque (Macaca fascicularis) [30–32] makes
these species even more valuable for modeling human diseases. Also, as
spin-offs of the extensive use of these NHP species in HIV/AIDS research,
numerous tools for detailed characterization of their physiology and im-
mune responses, in characterized genetic backgrounds (MHC, restriction
factors, and KIR genetics) are available [33–37]. In rhesus, cynomolgus
and pigtailed macaques (Macaca nemestrina), tetramer staining to quan-
tify antigen-specific CD8+T cells is feasible, since MHC class I typing is
possible.

This drive for progress is well illustrated by Primate Info Net, a library
and information service which gathers key information about various
primate species and provides links to resources about NHPs in biomedi-
cal research (http://pin.primate/wisconsin.edu), or the Nonhuman Pri-
mate Reagent Resource whose goals are to facilitate the use of NHPs by
producing specific reagents such as antibodies and recombinant cyto-
kines, and by sharing information on cross-reactivity of immunological
reagents and assays (http://nhpreagents.org). Similarly, a new research
center dedicated to preclinical research programs on host–pathogen
interactions, human vaccines and antimicrobial treatments in NHPs
was recently launched in France: the Center for Infectious Disease
Models and Innovative Therapies (IDMIT) (http://idmitcenter.fr) pro-
vides the scientific community with a NHP facility, with the cynomolgus
macaques/P. cynomolgi model currently being implemented, combined
with the most recent technologies, including imaging technologies
(in vivo fluorescent microscopy and MRI are already available and PET–
CT will be in 2017). To optimize the use of NHPs, particular emphasis is
given to assay standardization and harmonization, and both a reagent
repository and a biobank have been created.

2.3. Various complementary NHP models of human malaria

Several NHP/parasite combinations have been described. They are
variously useful to study Plasmodium biology, transmission, immunolo-
gy and/or pathology, acute and chronic infection, or severe malaria,
cerebral malaria, placental malaria, and other malaria-associated pa-
thologies (liver, lung, kidney or spleen involvement and thrombocyto-
penia, hemorrhage, and anemia). Very useful reviews have been
published recently providing summaries of NHP models for the study
of hepatic infections and pathogenesis [15,38]. The various isolates/
strains adapted to NHPs, their history and their characteristics (e.g. nat-
ural vs. experimental host, virulence, lethality, capacity to produce in-
fective gametocytes, resistance to anti-malarial drugs, complete or
partial development) have been exhaustively listed elsewhere [2,39].
Here, we present only the most widely used models.

2.3.1. P. falciparum and P. vivax in neotropical primates
There are few in vivomodels for human malaria using human para-

sites. The host specificity of malaria parasites is narrow such that the
only suitable NHP species that can be infected with P. falciparum, P.
vivax or P. malariae are some neotropical primates: South American
owl monkeys (Aotus spp.) and squirrel monkeys (Saimiri spp.) [40,41].
Furthermore, the parasites must be adapted to grow in these non-
natural hosts. Only P. ovale cannot be adapted to theseNewWorldmon-
keys. The susceptibility to infection by sporozoites and/or iRBCs, the
production of viable gametocytes, the characteristics of the blood-
stage infection and the requirement for splenectomy all depend on
the host/strain combination. The Colombian Night Monkey (Aotus
lemurinus griseimembra) may emerge as one of the best NHP malaria
models because of its high susceptibility to infection both by blood
forms and by sporozoites of both P. falciparum and P. vivax [42]. Saimiri
sciureus is used to investigate P. falciparum blood-stage human para-
sites, but splenectomy is required for reproducible high parasitemia
after injection of parasitized RBCs [43]. Saimiri boliviensis is considered
as the most reliable model for P. vivax [41].

Chimpanzees are also susceptible to P. falciparum and P. vivax, as
well as P. malariae and P. ovale. However, their use is limited for ethical
reasons. Indeed, the European Union has now banned the use of great
apes for research purposes (Chimpanzees, Bonobos, Gorillas and Orang-
utans) and such research is also now highly restricted in the US [44].

The obvious advantage of NewWorld primates over Old World pri-
mates asmodels for humanmalaria is that humanparasites can be used.
However, the advantages of using human parasites are counterbalanced
by the limited supply of neotropical primates. There are fewer breeding
colonies than for macaques, for example, and export of some of them
from their countries of origin is prohibited. A recent workshop on neo-
tropical primates in biomedical research [45] led to the conclusion that
efforts should be pursued to develop new reagents and to support
breeding colonies, including by improving colony and veterinary man-
agement. Finally, less blood for experimental purposes can be collected
from these species than from macaques.
2.3.2. P. knowlesi in macaques
P. knowlesi is a primate malaria parasite endemic in some South East

Asian species, for example cynomolgus and pig-tailed macaques. P.
knowlesi is also the fifth malaria species naturally infecting humans
and causing life-threatening disease [46]. Experimental infections
have been described in a wide range of NHPs, from OldWorld primates
rhesusmacaques and baboon (Papio spp.) to NewWorld primates, such
as squirrel and Aotus monkeys and the common marmoset (Callithrix
jacchus). Interestingly, there are two opposed asexual-blood stage out-
comes in rhesus and cynomolgus macaques: P. knowlesi causes severe
disease, inevitably lethal if untreated, after inoculation of rhesus ma-
caqueswith sporozoites or iRBCs, whereas parasite development is con-
trolled and chronic infection develops in its natural host, cynomolgus
macaques. Parasitemia needs to be monitored daily because P. knowlesi
has an asexual life cycle of about 24 h and the parasites can increase
quickly to detrimental levels. The model of P. knowlesi in macaques is
mainly used for investigating parasite biology, physiopathology and im-
munology, and for vaccine studies [47–49].
2.3.3. Simian Plasmodium species in macaques
Human Plasmodium species, other than P. knowlesi, do not infect Old

World monkeys. However, there are many simian Plasmodium species
naturally infecting macaques, and some are used as experimental
models of human malaria.

P. coatneyi and P. fragile, which naturally infect cynomolgus ma-
caques, and bonnet (Macaca radiata) and toque macaques (Macaca
sinica), respectively, are used as models of P. falciparum in various ma-
caques (M. mulatta, M. fascicularis, M. nemestrina or Macaca fuscata),
with sequestration, rosetting, and severe disease, including cerebral
malaria [50–52]. Both parasites are very virulent after sporozoite inocu-
lation of rhesus macaques and Japanese macaques (M. fuscata) [53,54].

P. cynomolgi, which naturally infects a wide variety of macaque hosts,
including cynomolgusmacaques, is amodel for studying the biology, im-
munology and pathology of P. vivax. It mimics the biology and pathogen-
esis of P. vivax, with the dormant relapsing parasite forms, hypnozoites,
and similar RBC infection features (reticulocytes) [48,55–57].

Although P. fieldi and P. simiovale, which naturally infect cynomolgus
and pigtailed macaques and toque macaques, respectively, share some
characteristics with P. ovale, they are reproducing better features of
P. vivax infection. Both are used as models of P. vivax in rhesus and
cynomolgus macaques, but not as frequently as P. cynomolgi [49].

http://pin.primate/wisconsin.edu
http://nhpreagents.org
http://idmitcenter.fr
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P. inui naturally infects a large variety of macaque species, and is
considered as amacaquemodel for P.malariae, as it displays persistence
and a similar kidney pathology [58].

Somemacaque species are natural hosts, and consequently there has
been evolutionary co-adaptation [59]. Note also that animals may have
been exposed to malaria before experimental infection. It may be pref-
erable to use naive animals: captive-born, or from areaswhere the prev-
alence of malaria is low, such as cynomolgus macaques fromMauritius.

In malaria endemic regions, there are other pathogens which may
interfere with the host immune responses to Plasmodium. Macaques
are also used to study a wide range of infections with human pathogens
or their simian counterparts, as well as vaccines [60,61]. Thus, it is
possible to model co-infections in macaques, such as SIV/Plasmodium
[62–65] and Schistosoma/Plasmodium [66] and to study interference
with vaccine-induced immune responses [67].

To conclude, NHP models of human malaria present several advan-
tages over mouse models, which justify the efforts to facilitate and
improve their use. This is especially true as in vivo imaging technologies,
which have revolutionized our understanding of malaria in the last few
years using mouse models, are actually not limited to small laboratory
animals. However, insufficient access to adequate structures and equip-
ment for imaging NHPs associatedwith suitable confinement for class 2
and 3 pathogens, in large part explains the relatively limited exploration
of pathogen transmission and dissemination using in vivo imaging in
NHPs. Nevertheless, in vivo imaging is entirely feasible in larger animals
such as monkeys [68,69]; even though adult male Aotus monkeys and
rhesus macaques weigh about 1 and 8 kg on average, respectively,
and are about 35 and 55 cm long, respectively [70] (mice weigh 20–
30 g and are 6 cm long).

3. In vivo imaging and infectious diseases in NHPs

Early events in the transmission and dissemination of pathogens in
the host organism through mucosal barriers are still poorly understood
in most cases. A better characterization of these early steps of infection
is needed to develop and improve prevention strategies and therapy.

In vivo imaging can be used for non-invasive and longitudinal stud-
ies, allowing the use of animals to be minimized and refined. Molecular
imaging techniques such as optical imaging (fluorescence, biolumines-
cence), PET (positron emission tomography) and SPECT (single-photon
emission tomography) can document molecular and cellular events.
These methods are also complementary, as different techniques are ap-
propriated for different biological investigations in different organs. The
strengths and weaknesses of various imaging techniques have been
reviewed elsewhere [71,72].

Fluorescence imaging and bioluminescence imaging involve the
detection of visible light and are therefore limited to the study of super-
ficial organs; they have mainly been used in small animals. The feasibil-
ity of using bioluminescence to visualize infection by, and dissemination
of, various viruses, such as murine herpes virus, mouse hepatitis virus,
coronavirus, or Chikungunya virus, has been demonstrated in murine
models [73–75]. The relative ease of use and the relatively low cost of
these imaging techniques make them useful for the exploration of
superficial organs even in large animals. Furthermore, with adapted en-
doscopic and intraoperative techniques, fluorescence could be used to
study deeper organs. Traditional confocal microscopy can image at
depths up to 100 μm. Intravital multiphoton imagingwithmultiphoton
excitation can extend this limit up to a maximum of 1 mm in living
animals [76], which is a huge advantage, especially when excision of
the specimen is not possible. Recently, two-photon microscopy has
been used for imaging and analyzing immune responses in single cells
in intact tissues and for time-lapse imaging of living tissues. Indeed,
the use of a pulsed infrared laser for fluorescent dye excitation was a
major advance [77]: the high excitation wavelength allows deep tissue
imaging and its relatively low energy, constrained to the focal plane,
limits phototoxicity. As a consequence, two-photon microscopy has
become the technique of choice to follow the dynamic behavior of
immune cells in vivo; single cells can be studied in murine models of
tumors, skin graft or infection [78–80]. For instance, intravital two-
photon microscopy of the popliteal lymph nodes in mice was used to
investigate how fluorescently labeled inactivated vesicular stomatitis
virus (VSV) is captured from the lymph and transported into the B cell
compartment to induce humoral immunity [81]. It has also been used
to investigate the dynamic behavior of T cells infected with green fluo-
rescent protein- (GFP-) expressing HIV in the stromal environment of
lymph nodes [82]. Intravital microscopy of the skin or surgically
exposed internal organs offer excellent resolution for studying individ-
ual cells or even subcellular structures and microorganisms [83,84],
although this is not strictly noninvasive. However, this technique has
only been applied to murine models.

Positron emission tomography (PET), magnetic resonance imaging
(MRI) and single photon emission computed tomography (SPECT) can
also be used in both small and large animals. Indeed, they are routinely
used for clinical purposes [72]. These techniques can reveal molecular
and cellular events. The sensitivity of PET is high, in the range of 10−11

to 10−12 mol/L, and is independent of the location, or depth, of the re-
porter probe. Combiningmorphological/anatomical andmolecular imag-
ing methods, using multimodality hardware and/or co-registration post-
acquisition processing, allowswhole-body exploration of the early events
in the transmission of pathogens throughmucosal barriers, assessment of
the dynamics of pathogen biodistribution, evaluation of the dynamics of
early events following vaccinations, and determination of the pharmaco-
kinetics and pharmacodynamics of new drugs in infected hosts. CT (com-
puted tomography) and MRI can be combined with PET or SPECT to
provide anatomical references [85]. MRI gives good spatial resolution
allowing both anatomical imaging and molecular imaging, if associated
with contrast agents, for cell tracking, characterization of inflammation
or cancer cell detection [86–88]. [18F]-labeled fluoro-2-deoxy-2-D-
glucose ([18F]FDG) has been widely used for PET imaging of activated
cells (such cells show increased glucose metabolism). [18F]-labeled 3′-
fluoro-3′-deoxy-thymidine ([18F]FLT) was designed as a tracer for cell
proliferation and is increasingly being exploited in oncology.

The location and replication of pathogens can be followed by PET
reporter gene imaging, for example using herpes simplex virus-1
thymidine kinase (HSV1-tk). HSV1-tk phosphorylates a broad range
of nucleoside analogs, and its expression can be imaged with several
substrate analogs including 2′-deoxy-2′-18F-fluoro-5-ethyl-1-β-D-
arabinofuranosyl-uracil (18F-FEAU) and acycloguanosine derivatives,
such as 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine (18F-FHBG).
This strategy has been widely used in various animal models including
NHPs, but not yet in the malaria context [89–92]. PET imaging has also
been used to detect immune activation of T cells in lymphoid organs
in the context of antitumor immunity using an [18F]-labeled 2′-
deoxycytidine analog in a mouse model and [18F]FLT in humans after
anti-tumor vaccination [93,94].

The pharmacokinetics, biodistribution, metabolism and toxicity of
diagnostic doses of novel radiolabeled or contrast imaging agents have
been studied in NHPs to facilitate translation to clinical applications
[68,95]. In vivo brain imaging by PET and/or MRI has been developed
for diverse experimental models of neurodegenerative studies. For
instance, imaging techniques, including PET, can directly visualize the
concentration and localization of amyloid deposits, the pathological
marker of Alzheimer disease, throughout the brain [96–98].

The immune response to viral infection in SHIV-infected macaques
has also been explored by SPECT [99] and delivery of a botulism vaccine
has been studied by a combination of PET and MRI [69]. Also, [18F]FDG
PET/CT imaging has also been used to assess novel combinations of
new drugs in NHP models of tuberculosis [100].

The variety of imaging technologies available for the examination of
living material is increasing rapidly. The choice of imaging technology
for a study should be based on the biological issues to be resolved and
the organ(s) or tissues to be explored. For Plasmodium infection and
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malaria studies, the organs and tissues of interest (e.g. skin, blood, lymph,
liver, spleen, lungs or brain) depend on the malaria stage, transmission,
and liver- and blood-stages. Similarly, the forms of the pathogen differ
during parasitic development. Mosquitoes inject sporozoites into the
skin. Sporozoites are characterized by their size (10–15 μm in length
and 1 μm in diameter), their mobility, and their characteristics of migra-
tion from skin to liver, including the speed, the gliding motility and the
cell traversal. After productive invasion of hepatocytes, parasites develop
in the parasitophorous vacuole until the egress of merosomes from liver
cells, with or without dormant hypnozoite formation, depending on the
Plasmodium spp. Aftermerosomes burst in themicrovasculature,merozo-
ites (1.5–2.5 μm in length and 1.0–2.0 μm in diameter) are released and
invade RBCs. The resulting iRBCs can bind non-infected RBCs (rosetting),
and adhere to endothelial cells of the microvasculature (sequestration).
The rupture of schizont-infected erythrocytes releases new merozoites.
Someparasites eventually differentiate intomale and female gametocytes
(up to 10 μm in length and 2.5 μm in diameter) that can be ingested by
mosquitoes. Therefore, the strategy for in vivo imaging of Plasmodium in-
fection andmalaria, and thus the choice of imaging techniques, should be
adapted to the resolution, depth of penetration, and sensitivity required.
Multi-modal imaging approaches are entirely feasible.

4. In vivo imaging of malaria in NHPs

4.1. Clinical severe malaria: imaging of brain and spleen in NHPs

In vivo imaging studies of malaria have mainly focused on clinical
features of the disease using various animal models, including NHP
models. In particular, the features of cerebral malaria in NHPs have
been explored using in vivo imaging.

Cerebral malaria is a major complication of severe human malaria
and is defined as acute encephalopathy caused by P. falciparum infection
[101]. Imaging analysis of the brain is currently the preferred technique
for the evaluation and diagnosis of impaired cerebral function. There
have been numerous reports of brain imaging (CT, MRI) in patients
with cerebralmalaria [102–105], revealing brain swelling, small hemor-
rhagic lesions, and focal lesions in the cerebrum and brainstem. Howev-
er, the correlation between pathological changes and altered metabolic
activity, which may directly reflect neurological symptoms in cerebral
malaria patients, is not clearly understood [106].

MRI andmagnetic resonance spectroscopy (MRS) have been used to
study experimental cerebral malaria and to identify its early markers in
mice infected with P. berghei ANKA [107–109]. Platelet accumulation,
which occurs in the microvasculature of patients with cerebral malaria,
has also been investigated byMRI in the P. berghei ANKA/murinemodel
[110].

PET imagingwith [18F]FDGhas beenused in aprimatemodel of severe
humanmalaria (Japanesemacaques infectedwith P. coatneyi) to evaluate
cerebral glucose metabolism [53,54,106,111]. The value of the P. coatneyi
Japanese macaque model for the study of cerebral malaria was demon-
strated by the identification of cytoadherence of infected erythrocytes
to brain endothelial cells within microvessels in vivo, similar to observa-
tions in human cerebral malaria [53,54]. Indeed, FDG-PET imaging stud-
ies demonstrated that pathological findings in infected monkeys were
similar to those in human cases of P. falciparum malaria [106].

The group that studied cerebral glucose metabolism in Japanese
macaques infected with P. coatneyi also investigated the relationship
between glucose uptake by the spleen determined by FDG-PET and
histopathological changes in spleen tissue: FDG uptake was higher in
infected than control animals. This may reflect the activation of host
splenic clearance systems or glucose consumption by congested malar-
ial parasites themselves, or both [112].

Imaging analysis of the progression of pathological processes in NHP
models can be informative about the mechanisms of malaria. The use of
in vivo imaging in NHPmodels of experimental malaria may help the de-
velopment of imaging strategies that could be transferred to studies for
humans. However, murine models of malaria, and particularly as con-
cerns the transmission, liver-stage and blood stage of the parasite, have
been much more extensively used than NHP models for in vivo imaging.

4.2. Transmission, liver- and blood-stages: imaging mainly in mice

The techniques of in vivo imaging can contribute to parasitology by
providing dynamic images of host–pathogen interactions in vivo, there-
by overcoming the limitations of post-mortem investigation and in vitro
studies (reviewed in [113–115]).Most imaging studies inmurinemodels
of malaria have used fluorescence, includingwide-field fluorescencemi-
croscopy, intravitalmicroscopy, and bioluminescence. To analyze themi-
gration of parasites, transgenic parasites expressing GFP [116,117], red
fluorescent protein (RFP) [118] or a GFP–luciferase fusion protein [119]
were used. Fluorescent P. berghei sporozoites have been used to study
mosquito and mammalian host interactions in the dermis with malaria
parasites by in vivo microscopy [116,117,120–122]. Not all sporozoites
reach the liver. Some enter lymph vessels and accumulate in the draining
lymph node, where they appear to reside for some time before being de-
graded [120]; others remain in the skin. It is possible to observe and
count the number of fluorescent parasites that are ejected from themos-
quito over time [123]. This has revealed that there is a limited pool of
Plasmodium sporozoites available for ejectionwithin the vector's salivary
glands.

RFP- and GFP-expressing parasites and various in vivo microscopy
techniques have been used for in vivo investigations of the behavior of
P. berghei parasites in the hepatic tissue of the murine host. These stud-
ies have provided useful information about the primary infection pro-
cess and about parasite interactions with the host immune cells in the
liver [118,124–126].

The use of bioluminescence imaging has been described for in vitro
screening of inhibitors and chemicals for antimalarial activity against
blood stages of P. berghei [127], and for in vitro and in vivo assays to
analyze Plasmodium liver stage development using transgenic P. berghei
(PbGFP-Luccon) or P. yoelii (Py-GFP-luc) [128] parasites, which express
the bioluminescent reporter protein, luciferase. In these assays, parasite
development in hepatocytes can be visualized and quantified by real-
time bioluminescence imaging both in culture and in live mice. The
luminescence signal is a measure of the parasite load in the liver para-
site [129,130]. PbGFP-Luccon can therefore be used for the evaluation
of protective immunity against malaria, following immunization with
either radiation attenuated sporozoites or wild-type sporozoites under
chloroquine prophylaxis [131].

These transgenic parasites are straightforward and valuable tools for
investigating the biology and immunology underlying the mechanisms
of pathogen transmission and dissemination, and the mechanisms of
protection againstmalaria. However, findings inmurinemodels require
confirmation in NHP models. Rodents and primates differ in their sites
and mechanisms of erythropoiesis, making NHP research for blood-
stage malaria valuable. Furthermore, work with NHP models would
contribute to a more complete understanding of the mechanisms of
infection of some parasites, such as P. vivax. This species has a silent
liver phase in humanswhich could not been explored inmurinemodels
since rodent parasites do not have a dormant liver-stage form.

4.3. Tools required facilitating in vivo imaging of malaria in NHP models

Progress in various areas would allow the use of NHP models of
human malaria to be extended: improvement of techniques for culture
and laboratorymaintenance of Plasmodium, completion of their genome
sequences and generation of transgenic strains [132,133]. These issues
are not specific to the in vivo imaging field. Advances in these areas
are in line with the research agenda for malaria eradication (malERA),
recently established by the consultative group on Basic Science and
Enabling Technologies [134].



Table 1
Several malaria NHP models have been developed to study host/pathogen interactions, disease pathogenesis, malaria immunity, drugs and vaccines. New World primates (Aotus and
Saimiri) are used for experimental infections with either human malaria species (except P. ovale) or simian malaria species. They are the only animal models available for the study of
vaccine efficacy or drug susceptibility of human malaria parasites P. falciparum and P. vivax. Macaques (Old World primates), when infected with simian malaria parasites, can also be
used to study the biology of the human malaria and to explore mechanisms and treatments for severe pathology associated with malaria infections. Only the main models are listed
below [2,11,38,39].

Plasmodium NHP Model Remarks References

Human
Plasmodium

P. falciparuma Aotus lemurinus griseimembra Human infection with P. falciparum,
severe malaria and vaccine efficacy

No cerebral malaria [42]

P. vivax Aotus lemurinus griseimembra Human infection with P. vivax, severe
malaria and vaccine efficacy

For protective efficacy testing of sporozoite
and liver stage vaccines but not blood-stage vaccines
(unless strains further adapted in spleen-intact
animals)

[41,42]
Saimiri boliviensis

P. knowlesia Macaca mulatta Human infection with P. knowlesi,
severe malaria and malaria immunity

Including cyto-adherence, parasite sequestration and
Ag variation with Ag switching in vivo; renal failure

[47–49]

Macaca fascicularis Natural control of parasite development
and chronic infection (natural host)

Simian
Plasmodium

P. coatenyi Macaca mulatta Human infection with P. falciparum
and severe malaria

Including cerebral malaria, cytoadherence, parasite
sequestration andAg variation, anemia, placentalmalaria

[50,51,53,54,66]
Macaca fuscatab

P. cynomolgia Macaca mulatta Human infection with P. vivax and
malaria immunity

Including relapse-infections resulting from reactivation
of hypnozoites and unique iRBC features

[48,55–57,64]
Macaca fascicularis

P. fragile Macaca mulatta Human infection with P. falciparum
and severe malaria

Including cerebral malaria; cytoadherence, parasite
sequestration and Ag variation

[52,62,63,65]

a The only transgenic parasites encoding an imaging reporter gene that could be used for in vivo fluorescent microscopy and bioluminescence are P. falciparum, P. knowlesi and
P. cynomolgi. So far, they have only been used in vitro.

b To date, only cerebral malaria in the NHP model ofM. fuscata/P. coatneyi was studied using in vivo imaging (PET).
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Currently, it is not possible to culture Plasmodium throughout its
complete life cycle. Long-term in vitro blood-stage culture of P. vivax
and P. cynomolgi is not possible, in contrast to P. falciparum and
P. knowlesi [135]. If such culture techniques were available, it would be
possible to study at least blood-stage parasites more easily, to screen
drugs, and to feed female Anopheles mosquitoes, without having to use
infected donor NHPs for a continuous source of parasites. Unfortunately,
some in vitro-adapted strains lose their capacity to produce sexual stages,
like for P. knowlesi [135].

Bites from infected mosquitoes or sporozoite injection can be used
for experimental sporozoite inoculation. Sporozoites isolated from sali-
vary glands of mosquitoes have a limited ex vivo viability [136,137], and
methods to improve their preservation would be useful.

Mosquito colonies need to be maintained near the NHP facilities to
facilitate transmission and liver-stage studies in NHP models due to
the lack of an effective in vitro sporozoite culture system, including for
the transformation of gametocytes into ookinetes and the sporogonic
development into sporozoites occurring in mosquitoes.

Whole genome sequences of P. falciparum [138], P. vivax [139] and
P. knowlesi have been reported [140]. Draft sequences for three
Table 2
Available tools for in vivo imaging of Plasmodium parasites and host response in NHPs. So
far these transgenic parasites expressing an imaging reporter gene have only beenused for
in vitro studies, and should be developed for other parasites such as P. vivax to explore the
biology of Plasmodium by in vivo imaging.

Imaging the pathogen

Available transgenic Plasmodium parasites Imaging
techniques

References

• Transgenic GFP and GFP–Luc P. falciparum
with a constitutive expression

Fluorescence
Bioluminescence

[145,158,23]

• Transgenic P. falciparumwith
a blood-stage expression

• Transgenic GFP–mCherry P. cynomolgi
with a constitutive expression

Fluorescence [55]

• Transgenic GFP P. knowlesiwith
a blood-stage expression

Fluorescence [159]

Imaging the host

Model Imaging
techniques

References

Cerebral/splenic glucose metabolism in P.
coatneyi/Japanese macaque models

[18F]FDG-PET
imaging MRI

[106,111,112]
P. cynomolgi strains were published recently [141]. Improved and addi-
tional genomes for each species are in progress.

Genetic manipulations (gene disruption, mutation, tagging or intro-
duction) were initially developed in P. berghei [142] and then in
P. falciparum [143–145]. The generation of transgenic parasites that con-
tain an imaging-reporter gene, either a fluorescent reporter or an enzy-
matic reporter, such as luciferase or tk, is essential for in vivo imaging.
Exogenous genes can be introduced either on a plasmid or by homolo-
gous recombination of a linear DNA fragment into the parasite genome,
targeted to a silent chromosomal locus without alteration of the pheno-
type of the parasite after disruption, such as the dispensable Pf47 locus
in P. falciparum. Episomal plasmids containing origins of replication
derived from bacteria do replicate in Plasmodium; they are not equally
segregated into daughter cells during mitosis and they may be lost.
Stable episomal transfection is however possible, and differs from tran-
sient episomal transfection by the presence of a selection marker in the
transfected DNA. Multiple rounds of drug treatment allow selecting
parasites with crossover integration of episomes. For comprehensive
reviews and detailed protocols, see [146–149]. Briefly, the asexual
stage has a haploid genome and thus is the preferred stage for the gen-
eration of transgenic parasites because it requiresmodification of only a
single allele. Optimal conditions have been defined for electroporation
and for nucleofection ensuring the access of exogenous DNA to the
parasite nucleus while preserving viability. Transfection efficiencies
differ according to the developmental stage of the parasite and the
Plasmodium species. Infected erythrocytes containing ring-stage
parasites (P. falciparum) or mature schizonts (P. berghei) can be used
for genetic manipulations, and transfected (e.g. resistant or fluorescent)
parasites can be selected and cloned either in vivo or in vitro. Various pro-
moters, both homologous and heterologous, with different strengths and
timing of activity, e.g. stage-specific, conditional or constitutive, are avail-
able for use in these species.

The third Plasmodium parasite for which transfection has been re-
ported is P. knowlesi [132,150–152]. Stable transfection of P. vivax has
not yet been described: only transient transfection of P. vivax blood-
stage parasites using P. vivax-infected reticulocytes from splenectomized
monkeys has been reported [153,154]. Stable transfection of P. cynomolgi
has been demonstrated [155,156].

There is no standardization in generating and reporting genetically
modified primate malaria parasites, in contrast to rodent transgenic par-
asites [157]. There are several transgenic P. falciparum expressing an im-
aging reporter gene during blood-stage. They are used for in vitro assays,
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likely because of the lack of gametocyte production. Theoretically, RBCs
infectedwith these transgenic parasites could be used for in vivo imaging
of blood-stage. Transgenic P. falciparum expressing an imaging reporter
gene throughout the entire parasite life cycle include P. falciparum ex-
pressing GFP (3D7HT-GFP) [158], deposited at the Malaria Research
and Reference Reagent Resource Center (MR4) and tested for liver-
stage using ex vivo human primary hepatocytes infection; and P.
falciparum expressing a luciferase–GFP fusion (NF54HT-GFP–Luc) tested
for liver-stage using human liver chimeric mice [23]. They are available
for in vivo imaging studies in NHP models of malaria. Recently, a trans-
genic P. cynomolgi with two expression cassettes for constitutive ex-
pression of GFP and mCherry was developed. Ex vivo infection of
primary hepatocytes from rhesusmonkey was performed and develop-
ing liver stage and hypnozoites formswere documented by live fluores-
cent microscopy [55]. Finally, the adaptation of a P. knowlesi line
expressing GFP throughout the asexual blood-stage cycle to continuous
culture in human erythrocytes has been recently demonstrated, provid-
ing potential tools for studying blood-stage in NHPs [159].
5. Conclusions and perspectives

In vivo imaging is an enormously powerful approach to
deciphering host/Plasmodium interactions in mouse models, and
NHP models are extremely valuable models of human malaria.
Consequently, it is unsurprising that in vivo imaging is increasingly
linked to primate parasitology, particularly as it becomes clear that
in vivo imaging is feasible with larger animals. However, so far, studies
using in vivo imaging approaches in NHPs are rare. They have been lim-
ited to PET imaging to document inflammation and cerebral malaria in
the M. fuscata/P. coatneyi model [106,111,112]. Admittedly, facilities
where the dual NHP/malaria expertise is available, and have both the
desired model up-and-running and appropriate in vivo imaging
devices can be difficult to find (Table 1). Nevertheless, the list of
transgenic parasites encoding an imaging reporter gene usable in
NHP models is growing (Table 2). To our knowledge, they have not
yet been tested in vivo.

There is no doubt that the complexity of the interaction between
pathogens and the host immune system can only be properly under-
stood when studied in the native tissue environment [160]. Indeed
the in vivo dynamic imaging techniques can reveal differences with
in vitro data such as the CD8+T cell-mediated elimination of malaria
liver stages [161]. Development of these new imaging tools that are ap-
plicable for NHPmodelswill allow a better understanding of the biology
of Plasmodium and of the host immune responses against parasites and
parasitized cells as well as the development of novel therapeutic strat-
egies. To conclude, in vivo imaging in NHP models of malaria could be
very helpful to explore the following top four topics: the study of the
early events in transmission to characterize the dynamic of skin stage
and liver infection, the longitudinal characterization of hypnozoite
forms and infection relapses, the time-lapse imaging of the invasion of
red blood cells, and the dynamic imaging of host-parasite interactions
and immunity.
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