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ABSTRACT

Missing data are frequently encountered in molecular phylogenetics, but there has been
no accurate distance imputation method available for distance-based phylogenetic
reconstruction. The general framework for distance imputation is to explore tree
space and distance values to find an optimal combination of output tree and imputed
distances. Here I develop a least-square method coupled with multivariate optimization
to impute multiple missing distance in a distance matrix or from a set of aligned
sequences with missing genes so that some sequences share no homologous sites (whose
distances therefore need to be imputed). I show that phylogenetic trees can be inferred
from distance matrices with about 10% of distances missing, and the accuracy of the
resulting phylogenetic tree is almost as good as the tree from full information. The new
method has the advantage over a recently published one in that it does not assume a
molecular clock and is more accurate (comparable to maximum likelihood method
based on simulated sequences). I have implemented the function in DAMBE software,
which is freely available at http://dambe.bio.uottawa.ca.

Subjects Bioinformatics, Computational Biology, Evolutionary Studies
Keywords Distance matrix, Imputing missing distance, Least-squares method, Phylogenetics

INTRODUCTION

Distance-based phylogenetic methods, especially those based a local or global optimization
criterion (Desper & Gascuel, 2002; Desper ¢ Gascuel, 2004; Saitou ¢ Nei, 1987), are widely
used in studies on molecular phylogenetics and evolution. The least-square method

for phylogenetic reconstruction is generally consistent when the distance is estimated
properly (Felsenstein, 2004; Gascuel ¢ Steel, 20065 Nei ¢ Kumar, 2000), and is quite robust
against over- or under-estimated distances (Xia, 2006). The popularity of the distance-
based methods arises not only from their speed and performance which allows them

to build super-trees (Criscuolo et al., 2006; Criscuolo & Gascuel, 2008), but also from
their applicability to non-sequence data (Wayne, Van Valkenburgh ¢ O’Brien, 1991).

In particular, distance-based methods represent the only category of methods that can
construct a phylogeny based only on pairwise alignment (Thorne ¢ Kishino, 1992), which
may be valuable in situations when reliable multiple alignment is difficult to obtain with
highly diverged taxa. Such a phylogenetic method based on pairwise alignment has been
implemented in DAMBE (Xia, 2013; Xia, 2017) for nucleotide, codon and amino acid
sequences.
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Gene A Gene B

Spl CCGTTA..ACGGCTTTGCCGACGAC. ..ATCAGACGATGCG. . .AUGACGACTCACGATA
Sp2 CCGTCA..ACGACTTTGCCGACGAC...ACCAGACGATGCA...ACGACAACTTACGATA
Sp3 CCATTA..ACGGCTTTGCCGACGAC. . .222727222222722222227272222227272°22°2°2°72°7
Spd 227272272722272227222222272°2°27227. . .ATCGGGCGACGCG. . .ACGACGACTCACGATA
Sp5 CTGTTA..ACGGCTTTGCCGACGAC. . .ATCAGACGATGCG...ACGGCGACTTACGATA

Figure 1 A sequence data set from concatenating Gene A and Gene B sequences. A distance cannot be
computed between Sp3 and Sp4 because they share no homologous sites.
Full-size &l DOI: 10.7717/peer;j.5321/fig-1

There are cases where distance-based methods are the only option for building
phylogenetic trees, such as those involving the new genome-based distances proposed
in recent years. These include genome BLAST distances (Auch et al., 2006; Deng et al.,
2006; Henz et al., 2005), breakpoint distances based on genome rearrangement (Gramm
¢ Niedermeier, 2002; Herniou et al., 2001), distances based on the relative information
between unaligned/unalignable sequences (Otu ¢ Sayood, 2003), distances based on the
sharing of oligopeptides (Gao ¢ Qi, 2007), the composite vector distance (Xu ¢ Hao,
2009), and composite distances incorporating several whole-genome similarity measures
(Lin et al., 2009).

Distance-based methods may be the only way to build phylogenetic tree even with
sequence data. For example, thousands of DNA transposons exist in Tasmanian devil
(Gallus et al., 2015), but many have accumulated so many indels and substitutions that it
is impossible to obtain a multiple alignment. The analysis is then limited to computing
the distance between the consensus and each individual sequences (Gallus et al., 2015),
without being able to have a phylogenetic tree. One can do pairwise alignment among
most of the transposon sequences and compute their distances, but some transposon
sequence pairs do not share homologous sites (Fig. 1, where a distance between Sp3 and
Sp4 cannot be computed) and therefore cannot have their distances computed. If these
missing distances can be imputed from those computable ones, then we have a method
(and the only one) to build a phylogeny from such sequences. The same scenario is found
in bacteriophage where (1) many do not share homologous genes and (2) high sequence
divergence precludes multiple sequence alignment (but pairwise alignment using dynamic
programming is often possible).

Note that missing data in this manuscript does not refer to indels in aligned sequences.
In the distance matrix context, missing data means that some distances in the distance
matrix are missing. In the sequence context, missing data means lack of homology
between sequences to compute evolutionary distances. For sequences where a reliable
multiple alignment can be obtained, likelihood-based methods are expected to have better

phylogenetic accuracy than distance-based method, with or without imputed distances.
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Figure 2 Topologies for illustrating distance imputation, with three possible unrooted topologies des-
ignated (A), (B) and (C) for four species labelled S1-S4.
Full-size Gal DOI: 10.7717/peerj.5321/fig-2

METHODS

The statistical rational

Suppose we have N species with K possible pairwise distances, where K = N(N —1)/2.
Also suppose that M distances are missing and need to be imputed. The general framework
for imputing missing distances is to find the M distances corresponding to the best
tree based on certain criteria. There are two criteria used in choosing the best tree: the
least-squares (LS) criterion (Beyer et al., 1974; Cavalli-Sforza ¢ Edwards, 1967) and the
minimum evolution (ME) criterion (Rzhetsky ¢ Nei, 1992). T will show that only the LS
criterion is appropriate for imputing missing distances.

I will first outline the general approach, point out problematic cases where unique
solution cannot be found, and then develop an efficient computational method which
partially resembles the expectation—maximization (EM) algorithm. However, this approach
is easily trapped in a local optimum and a downhill simplex method in multidimensions
(Press et al., 1992, pp. 408—412) was implemented for imputing multiple missing distances.
I illustrate the method by applying it to real data.

I will start with a simple illustrative example. Suppose we have four species (S1 to S4 in
Fig. 2) with Dy, =2, D14 =5, Dy3 =3, D2y =5, D34 = 4 but with D;3 missing. One may
take a wrong approach by thinking that, in this particular case, we have five unknowns and
five equations and can solve for D3 exactly. For example, given a topology in Fig. 2A, we
can write the expected D;; values, i.e., E(Dj), as:

E(D12) =x1+x

E(D14) =x1 +x5+x4

E(Dy3) =x+x5+x3 (1)
E(D24) =Xy +X5+X4

E(D34) =x3+x4

These E(Djy;) values are termed patristic distances in phylogenetics. If we replace E(Dj;)
by the observed Dj; values, we can indeed solve the simultaneous equations in Eq. (1),
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which give the solution as
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Xy=— -2
2 D2 D2 D2

23 34 24
X3=—F — —— (2)
> 2 2

D3y Dy Dos
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Dy Dys Dy Dag
Xs= 42 2R

2 2 2 2

The missing D3 given the tree in Fig. 2A, designated as D3 a, can therefore be
inferred, as:

Di3a=x1+x5+x3 =D14+ D3 —Dy4. (3)

Thus, given the five known Dj; values above, I obtain x; =x; =x3 = x5 =1,x4 =3,
Di3.4 = 3. The tree length (TL), defined as TL =) x;, is 7 for the tree in Fig. 2A, i.e.,
TLp =7. TL is used in the ME criterion for choosing the best tree. The best tree is one with
the shortest TL.

One might think of applying the same approach to the other two trees in Figs. 2B, 2C
to obtain Di3 g and D3¢ as well as TLg and TLc, and choose as the best D3 and the best
tree by using either the LS criterion or the ME criterion (Rzhetsky ¢~ Nei, 1992; Rzhetsky ¢
Nei, 1994), i.e., the tree with the shortest TL.

This approach has two problems. First, the approach fails with the tree in Fig. 2B
where the missing distance, D13, involves two sister species. One can still write down five
simultaneous equations, but will find no solutions for x;, given the D;; values above, because
the determinant of the coefficient matrix is 0. For the tree in Fig. 2C, the solution will have
x5 = —1. A negative branch length is biologically meaningless and defeats the ME criterion
for choosing the best tree and the associated estimate of D;3. Second, in most practical
cases where missing distances are imputed, there are more equations than unknowns, e.g.,
when we have five or more species with one missing distance.

The LS approach aims to find the missing distances and the topology that minimizes
the residual sum of squared deviation (RSS):

RSS = Z

where Dj; is the distance that can be computed from species i and j (i.e., not missing),

Dl E

E(Dy) is specified in Eq. (1) for the tree in Fig. 2A, m is a constant typically with a value
of 0 (ordinary least-squares, OLS), 1 (Beyer et al., 1974), or 2 (Cavalli-Sforza ¢ Edwards,
1967). In the illustration below, I will take the OLS approach with # = 0. It has been shown
before that OLS actually exhibits less topological bias than alternatives with m equal to 1
or 2 (Xia, 2006).
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Table 1 Estimation results from minimizing RSS, with Trees A, B, and C as in Fig. 2, and with the
constraint of no negative branch lengths.

Site Tree A Tree B Tree C
X 1 0 1

X 1 1.5 1.5

P 1 0 1

X4 3 3.5 3.5

x5 1 1 0

Dy 3 0 2

TL 7 6 7

RSS 0 1 1

Given the three tree topology, the results from the LS estimation are summarized in
Table 1. Note that, for the tree in Fig. 2B, there are multiple sets of solutions of x; that can
achieve the same minimum RSS of 1.

We see a conflict between the LS criterion and the ME criterion in choosing the best tree
and the best estimate of D;5. The ME criterion would have chosen Tree B with TLg = 6
and D;3 =0 because TLg is the smallest of the three TL values. In contrast, the LS criterion
would have chosen Tree A with RSS = 0 and D;3 = 3. There is no strong statistical rationale
for the ME criterion, which is based on the assumption that substitutions are typically rare
in evolution, so a tree with few substitutions is more likely than a tree requiring many
substitutions. However, this criterion is logically inappropriate for imputing distances
because it favors the distance that is the smallest. Phylogeneticists sometimes think that
the ME criterion would be appropriate if the branch lengths are not allowed to take
negative values (Desper ¢ Gascuel, 2002; Desper ¢ Gascuel, 2004; Felsenstein, 1997). The
illustrative example in Table 1 shows that the ME criterion is problematic even when I do
not allow negative branch lengths. In contrast, the LS-criterion (or the best-fit criterion) is
well-established.

An earlier version of DAMBE implemented the LS approach above by using an iterative
approach similar to the EM (expectation—maximization) algorithm as follows. For a given
distance matrix with a missing distance Djj, I simply fill in the missing D;; by the smallest
sum of Dy and Dj. For example, if D5 is missing, but I have a {D,3, D35} pair and a
{D,7, D57} pair with (D34 D35) < (D37 + Ds7), then (D,3 4 Ds5) is used as the initial D5s.
According to triangular inequality, D25 < (D;3 + D3s). These initial Dj; guesstimates are
designated as Djj ;o where the subscript “m0” indicates missing distances at step 0. I now
build a tree from the distance matrix that minimizes RSS in Eq. (4). From the resulting tree
I obtain the patristic distances E(D;;) from the tree and replace Dj; o by the corresponding
E(Djy) values which are now designated as Djj.m1. I now build a tree again, obtain the
corresponding E(Dj) to replace Djjm1, so now I have Djjm,. I repeat this process until
RSS does not decrease any further. This process can quickly arrive at a local minimum.
Unfortunately, different topologies have different minimums, and this approach is too
often locked in a local minimum with a tree that does not achieve a global minimum RSS.
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Figure 3 Sequence configuration for each set of sequences before deletion (A) and after (B).
Full-size & DOI: 10.7717/peer;j.5321/fig-3

I have implemented the LS criterion with a downhill simplex method in multidimensions
(Press et al., 1992, pp. 408—412) when multiple distances are missing. With a single missing
distance, the Brent’s method (Press et al., 1992, pp. 402-408) is used. The optimization is
run multiple times, with different initial values for the points in the simplex to increase the
chance of finding the global RSS associated with the missing distances and the tree. While
the simplex method is slow, it is good for proof-of-principle studies. The next version of
DAMBE will replace the simplex method by the faster Powell’s method (Press et al., 1992,
pp. 412-419).

Comparison against the maximum likelihood method with simulated
sequences

The pruning algorithm used for computing the likelihood can handle missing data, which
was numerically illustrated in detail (Xia, 2014). While this method is intended in cases
where a reliable multiple sequence alignment is difficult to obtain, i.e., when the maximum
likelihood (ML) method is inapplicable, it is still of interest to gauge the performance of
the distance imputation and phylogenetic reconstruction against the ML method.

The simulated sequences consist of 24 OTUs and 10 genes evolving in the HKY85
model (Hasegawa, Kishino ¢ Yano, 1985) but with different transition bias (different «
values) varying from 2 to 6.5 (Fig. 3). The simulation was performed with INDELible 1.03
(Fletcher ¢ Yang, 2009) with a symmetrical topology. I attach the supplemental control.txt
file that specifies the specifics of the simulation including substitution models, nucleotide
frequencies, indel rate and distribution, and phylogenetic tree with branch lengths. Each
simulated set of sequences is aligned with MUSCLE (Edgar, 2004) with the default option
(which is the slowest but most accurate). I have also used MAFFT (Katoh, Asimenos ¢
Toh, 2009) with the LINSI option that generates the most accurate alignment (‘~localpair’

Xia (2018), PeerdJ, DOI 10.7717/peerj.5321 6/17


https://peerj.com
https://doi.org/10.7717/peerj.5321/fig-3
http://dx.doi.org/10.7717/peerj.5321

Peer

and ‘—maxiterate = 1,000’). Alignment from MAFFT generally contains more indels than
MUSCLE but the phylogenetic results from the sets of alignments are almost identical.

Each of the 10 genes were simulated independently generating 1,000 sets of sequences
with each set containing 24 OTUs (and 24 simulated sequences). They are then concatenated
into 1,000 sets of sequences, with each sequence being a concatenation of 10 genes in the
configuration shown in Fig. 3. The first 100 sets of sequences without gene deletion is
designated GroupO (Fig. 3A). The next 100 sets of sequences with one gene randomly
deleted (out of the 10 concatenated genes in Fig. 3) is designated Groupl, and so on. The
100 sets with N genes randomly deleted is designated GroupN, where N varies from 0 to
9. The simulated data in 10 files named Group0.fas, Groupl.fas, ..., Group9.fas are in
supplemental file Group0_9.fas.zip.

Maximum likelihood phylogenetic reconstruction was performed with PhyML (Guindon
¢ Gascuel, 2003). The tree improvement option ‘-s’ was set to ‘BEST” (best of NNT and SPR
search). The ‘-0’ option was set to ‘tlr’ which optimizes the topology, the branch lengths
and rate parameters. The distance imputation and distance-based phylogenetic analysis
was done in DAMBE by choosing simultaneously estimated distance (Tamura, Nei ¢
Kumar, 20045 Xia, 2009; Xia & Yang, 2011) and FastME as the tree building algorithm. To
replicate results from this method in DAMBE, click ‘File|Open file with multiple data sets”
to open a GroupX.fas file. Specify 24 as the number of sequences per set, and then choose
“Distance-based phylogenetics” to perform phylogenetics analysis with DAMBE defaults
on all data sets in the file. PhyML can be run in DAMBE in a similar way. The resulting trees
are then compared against the “true tree” used in simulation. I used the bipartition-based
Robinson-Foulds’ method for tree comparison. Recovering a true tree also recovers all
bipartitions in the true tree. A reconstructed tree that differs from the true tree also implies
that some bipartitions in the true tree are not recovered. The Robinson-Foulds method of
tree comparison can be accessed in DAMBE by clicking “Phylogenetics|Robinson-Foulds
dist between trees”.

RESULTS

Distance matrix input

Figure 4 shows an illustrative example with seven OTUs (operational taxonomic units).
The distance matrix in Fig. 4A is computed from aligned sequence data used before (Xia
¢ Yang, 2011). Figure 4B is the phylogenetic tree built from this distance matrix. Suppose
Dgibbon, orangutan aNd Dgorrila.chimpazee ate missing (shaded in Fig. 4A) and need to be imputed.
The method above yields Dyipbon,orangutan = 1.3776 and Dggrrila.chimpazee = 0.4600, which
are close to the observed values (Fig. 4A). The final tree built from the distance matrix
with the two missing distances is identical to Fig. 4B except for a negligible difference in
branch lengths. Note that I have two distances missing out of a total of 21 possible pairwise
distances, which suggests that phylogenetic reconstruction is possible with nearly 10% of
distances missing.
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7
gibbon (A)
chimpanzee 1.31246
sumatran 1.37126 0.90859
orangutan 1.40413 0.90861 0.20127
gorilla 1.33943 0.45012 0.94433 0.94744
human 1.31990 0.34807 0.89956 0.92219 0.48236
bonobo 1.27691 0.11351 0.89827 0.89101 0.42874 0.33433
gibbon
[ orangutan
sumatran
gorilla
human
4|:bonobo (B)
chimpanzee

Figure 4 An example data set for imputing missing distances. (A) A real distance matrix computed
from aligned sequences, but we pretend that the two shaded distances are missing. (B) A phylogenetic tree
from the distance matrix.

Full-size Gl DOI: 10.7717/peerj.5321/fig-4

Sequence input

I used a set of mitochondrial COI and CytB sequences from 10 Hawaiian katydid species

in the genus Banza together with four outgroup species (Table 2) to test the performance
of distance imputation by the method detailed above. Two sequence files are provided as

supplemental file: (1) COI_CytB_aln.fas file that contains both COI and CytB sequences

for each specimen, and (2) COI_CytB_aln_withMissing.fas that excluded sequences whose
accession numbers are in strikethrough font in Table 2. There are 24 OTUs (Table 2), with
18 OTUs having COI sequences and 19 OTUs having CytB sequences. Out a total of 276

possible pairwise distances, 30 OTU pairs do not share homologous sites and need to have
their distances imputed. This is a more dramatic example than before with more than 10%
of the distances missing.

The two sequences were read and analyzed in DAMBE with the simultaneously estimated
distances based on the TN93 model (MLCompositeTN93). The missing distances are then
imputed. The final output tree, based on the distance matrix with the imputed distances, is
reconstructed with either the FastME method (Desper ¢ Gascuel, 2002; Desper & Gascuel,
2004) or the neighbor-joining method (Saitou ¢ Nei, 1987). The tree with 30 distances
missing (Fig. 5B) is generally consistent with the tree with the full data set (Fig. 5A) except
three minor misplacements of OTUs (shaded in Fig. 5B). Giving the missing sequences
indicated in Table 2, I can only get a tree of 18 OTUs with the COI data, and a tree of 19
OTUs with CytB data. By imputing missing distances, I can obtain a tree with 24 OTUs
that is almost as good as the tree with the full data set.
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Table 2 Katydid species, GenBank accession, and sequence length (L) of COI and CytB genes. The suffixes A, B and C indicate different

specimens from the same species.

Species ACCN* Lcor Lcys Distribution
Banza nihoa_A DQ649491 , DQ649515 1,233 729 Nihoa

B. nihoa_B DQ649492-, DQ649516 1,255 729 Nihoa

B. kauaiensis_A DQ649483, DQ649507 1,255 729 Kauai

B. kauaiensis_B DQ649484, DQ649508- 1,255 729 Kauai

B. unica_A DQ649501, DQ649525 1,255 729 Oahu

B. unica_B PQ649502-, DQ649526 1,117 729 QOahu

B. parvula_A DQ649497, DQ649521 1,255 748 Oahu

B. parvula_B DQ649498, PQ649522- 1,254 748 QOahu

B. molokaiensis_A DQ649487, DQ649511 1,255 695 Molokai
B. molokaiensis_B DQ649488-, DQ649512 1,255 659 Molokai
B. deplanata_A DQ649481, DQ649505 1,255 686 Lanai

B. deplanata_B DQ649482, DQ649506- 1,255 686 Lanai

B. brunnea_A DQ649479, DQ649503 1,255 748 West Maui
B. brunnea_B DQ649480-, DQ649504 1,255 747 West Maui
B. mauiensis_A DQ649485, DQ649509 1,255 744 West Maui
B. mauiensis_B DQ649486, DQ649510- 1,255 748 West Maui
B. pilimauiensis_A DQ649499, DQ649523 1,255 729 East Maui
B. pilimauiensis_B DQ649500-, DQ649524 1,255 729 East Maui
B. nitida_A DQ649493, DQ649517 1,255 747 Hawaii

B. nitida_B DQ649495, DQ649519 1,222 705 Hawaii

B. nitida_C DQ649494, BPQ649518- 1,255 690 Hawaii

R. lineosa NC_033991 1,534 1,137 East Asia
R. dubia NC_009876 1,537 1,137 East Asia
Neoconocephalus sp DQ649489-, DQ649513 1,117 748 America

Notes.

2Two accession numbers are for partial COI and CytB sequences, respectively. One accession number is for the mitochondrial genomic sequence from which full-length COI

and CytB sequences are extracted. Those with a strike-out font are “missing”, i.e., removed from aligned sequences for testing the effect of missing data, so some OTUs, e.g.,

B. nihoa_B and B. kauaiensis_B, do not share homologous sites and need to have their distance imputed.

In addition to the purging of sequences shown in Table 2, I have also purged sequences

in different ways. The result that distance imputation and phylogenetic reconstruction can

be done satisfactorily with about 10% of distances missing is generally repeatable.

Contrasting performance against maximum likelihood method for

aligned sequences

Simulated sequence data are grouped into Group0 to Group9. Each group contain 10

sets of aligned sequences, with no gene deletions in sequence sets in Group0, but with

progressively more gene deletions from Groupl to Group9, leading to progressively more

missing distances (Fig. 6). Sequence sets in Group0 to Group4 data do not have missing

distance to impute, although deletion of gene sequences occur in sequences from Groupl

to Group4. This is because sequences share at least one gene with either other for distance
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Figure 5 Phylogenetic performance from imputed distances. Comparison between a tree with all dis-
tances known (A) and another with 30 distances missing (B), reconstructed with the FastME method im-

plemented in DAMBE. The neighbor-joining tree, also implemented in DAMBE, is the same. Three differ-
ences in OTU placement were highlighted in (B).
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Figure 7 Illustration of the Robinson-Foulds method of comparing phylogenetic accuracy. (A) A bal-
anced tree with node labels, with 21 possible bipartitions, used in sequence simulation. A bipartition is
created by cutting one internal branch, e.g., cutting the branch between nodes 24 and 25 (designated as
24..25) creates a bipartition with OTUs Al to H1 in one partition and all other OTUs in the other. (B) %
of bipartitions (created by cutting the branch specified in X -axis) recovered from simulated sequences,
based on (1) distance-based method FastME in conjunction with distance imputation (FM+Distance im-
putation) and (2) the maximum likelihood method (DNAML), for the 100 data sets when seven of the 10
concatenated genes are randomly deleted (N_7_MF +Distance imputation versus N_7_DNAML).
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computation. Sequence sets in Group0 to Group5 always recover the true tree with either
PhyML or the method of distance-imputation plus FastME reconstruction.

The Robinson-Foulds method used here to assess phylogenetic accuracy is based on tree
bipartitions. A bipartition is generated when a branch is broken to separate a tree into two
subtrees. A tree with 24 OTUs have 21 bipartitions. Cutting the branch between nodes 24
and 25 (designated as 24..25) creates a bipartition with OTUs Al to H1 in one partition
and all other OTUs in the other. A tree with 24 OTUs as in Fig. 7A has 21 bipartitions.
If a reconstructed tree has the same topology as the true tree, then all 21 bipartitions
will be identical between the two trees. Thus, the percentage of bipartitions in a true tree
(which is used to simulate the sequences) recovered from simulated sequences is a proxy of
phylogeny accuracy. Figure 7B shows one special comparison between the distance-based
method with imputed distances and the maximum likelihood method, with seven of
the 10 concatenated genes randomly deleted from each sequence. The two approaches
recovered a high and comparable percentage (93-100%) bipartitions in the true tree. The
corresponding lines for data sets with fewer gene deletions are expected to be closer to 100%,
and those for data sets with more gene deletions are expected to have lower percentages.

These expected patterns are empirically substantiated in Fig. 8 for Group5 to Group?9.
The percentage of recovered bipartitions decreases with increasing number of gene deletion
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(which is associated with an increasing number of missing distances). The distance-based
method (FastME) based on imputed distances on average is worse than the likelihood-based
method (represented by DNAML in Fig. 8), especially with more genes randomly deleted.

The results from simulated data are consistent with the previous deletion involving the
COI and CytB genes. Given the variation in the number of missing distances in Fig. 6,
the distance imputation and phylogenetic reconstruction is comparable to that of the
maximum likelihood (Fig. 7 and Fig. 8), albeit slightly worse. The pattern suggests that
the distance-based method with imputed distances should be used in cases involving up to
about 10% of missing distances.

DISCUSSION

Imputing 30 missing distances does highlight the speed limitation of the simplex method of
optimization, which is known to be the slowest (but simplest to implement) in multivariable
optimization (Press et al., 1992, pp. 408—412). It takes almost 1.5 min to complete the
distance imputation and phylogenetic reconstruction on my desktop PC with a i7-4770
processor clocked at 3.4 Ghz. If the number of missing distances is reduced to 15, then the
computation is instantaneous.

There are cases where missing distances can only be determined approximately. For
example, if our OTUs include avian species and mammalian species and if distances
between mammalian species are missing, then there will be distances that have a narrow
range of optimal values instead of a single optimal value. Any distance value within that
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range will lead to the same minimum RSS. The only way to eliminate this problem is not
to have sister species with a missing distance.

There is another program, Lasso, for building phylogenetic trees from a distance matrix
with missing values (Kettleborough et al., 2015). I found Lasso to be inaccurate. First,
Lasso does not recover the tree in Fig. 4B. Second, the tree for the katydid species, when
constructed with Lasso, differs in numerous ways from the tree in Fig. 5A. Lasso assumes a
molecular clock, probably because it uses a UPGMA-type of phylogenetic reconstruction. I
did not investigate whether Lasso’s performance is limited by the assumption of molecular
clock assumption or in distance imputation.

While missing data can be accommodated by the likelihood method with the pruning
algorithm (Felsenstein, 1973; Felsenstein, 1981, pp. 253-255; 2004), they can inflate branch
lengths and introduce phylogenetic bias (Darriba, Weiss ¢ Stamatakis, 20165 Xia, 2014).
Some popular likelihood-based phylogenetic methods, e.g., PhyML (Guindon ¢» Gascuel,
2003), optionally use distance-based methods to build the initial phylogenetic tree, which
is then modified in various ways and evaluated in the likelihood framework to find the
maximum likelihood tree. Distance-based methods are much faster than other phylogenetic
methods such as maximum likelihood, Bayesian inference and maximum parsimony, and
consequently are useful in constructing supertrees.

CONCLUSION

Distance imputation and phylogenetic reconstruction can be done with about 10% of
distances missing, and the phylogenetic result is almost as good as that with full information.
The method in the paper has an advantage over a previous method (Kettleborough et al.,
2015) that assumes a rooted tree and a molecular clock for building a tree and for inferring

missing distances. This assumption is not needed and is too restrictive in practice.

SOFTWARE AVAILABILITY

DAMBE is available free at http://dambe.bio.uottawa.ca. It can take two types of distance
data. The first is the distance matrix data in PHYLIP format, but with missing distances
represented by .’ (a period without quotation marks). One can access the function of
distance imputation by clicking ‘File|Open other molecular data|Distance matrix file with
missing values’, and open a distance matrix file. DAMBE will output the imputed distance
together with the best tree.

The second input type sequence data, either aligned or unaligned. DAMBE reads and
converts almost all currently used sequence formats. For aligned data, DAMBE will compute
the distances between sequences sharing homologous sites, impute distances between
sequence pairs that do not share homologous sites, and output the imputed distances
and the associated optimal tree. For unaligned sequences, DAMBE will align homologous
sequences, compute their pairwise distances, impute distances from those sharing no
homologous sites, and output the imputed distances and the optimal tree. This function
is accessed by clicking ‘Phlogenetics|Sequence aligned’ or ‘Phylogenetics|Phylogenetics by
pairwise alignment’.
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