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Research in the field of gerontology has traditionally focused on later life stages. There
is increasing evidence, however, that both the rate of age-related functional decline and
the later-life health status can be programmed during early development. The central role
of epigenetic mechanisms (methylation of DNA, histone modifications and regulation by
non-coding RNAs) in mediating these long-term effects has been elucidated. Both rate
and direction of age-associated change of epigenetic patterns (“epigenetic drift”) were
shown to be largely dependent on early-life environmental conditions. Inter-individual
divergences in epigenetic profiles may arise following the stochastic errors in maintaining
epigenetic marks, but they may also be adaptively mediated by specific environmental
cues. Recent cohort studies indicate that ticking rate of epigenetic clock, estimated
by a DNA methylation-based methods, may be developmentally adjusted, and that
individual’s discrepancies among epigenetic and chronological age would be likely
programmed early in development. In this Perspective article, recent findings suggesting
the importance of early-life determinants for life-course dynamics of epigenetic drift are
summarized and discussed.

Keywords: DNA methylation, age-related disease, aging rate, developmental programming, epigenetic clock,
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INTRODUCTION

Genetic and lifestyle factors have been traditionally considered as main determinants of aging
rate and longevity. However, accumulating data indicate that both individual’s aging trajectory
and population mortality rate may substantially depend on developmental conditions (Tarry-
Adkins and Ozanne, 2014; Vaiserman et al., 2018). The mechanistic pathways underlying
such life-long effects are largely unknown, but modulation of epigenetic regulation of gene
expression appears to be the most plausible explanation (Bianco-Miotto et al., 2017). Epigenetic
modifications refer to heritable changes in gene expression occurring without changes in
DNA sequence. Main components of epigenetic control include DNA methylation, histone
modifications, and regulation by non-coding RNAs. Initially, it was assumed that stochastic
errors in maintaining epigenetic marks (“epimutations”) occur during the life course due to
limitations in epigenetic settings of maintenance and repair functions (Holliday, 1987). Since
age-related accumulation of epimutations inevitably leads to impairment of the normal gene
responsiveness to environmental stresses and to gradual loss of phenotypic plasticity, this process
is commonly believed to be one of the main causes of aging (Gravina and Vijg, 2010). In
addition, since age-related loss of DNA methylation may result in chromosome instability,
and hypermethylation of DNA in promoter regions of tumor suppressor genes can cause
their suppression, accumulation of epimutations with age could play an important role in the
initiation and progression of different cancers (Jung and Pfeifer, 2015; Feinberg et al., 2016).
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An accumulation of mistakes in maintaining normal
epigenetic patterns leads to an increase in variability of
epigenetic marks throughout the individual’s life course. This
process currently referred to as “epigenetic drift” results in a
gradual impairment of the body’s homeostatic mechanisms and
appears to be a crucial hallmark of aging and an important
determinant of longevity (Mendelsohn and Larrick, 2017).
The earliest evidence for epigenetic drift in humans was
provided from studies of monozygotic (MZ) twins. Within-
pair comparison of such twins provides a useful model
for investigation of factors regulating epigenetic variability by
controlling for genetic variation. Despite MZ twins have the same
genetic background their epigenetic profiles have been shown to
gradually diverge with age (Fraga et al., 2005). Remarkably, most
apparent divergences in epigenetic profiles have been observed
in MZ twins who, according to questionnaire responses, had
spent less of their lifetime together and/or had more differing
natural health–medical history. Similarly, in recent study by
Li et al. (2018), the correlation in genome-wide average DNA
methylation levels between non-twin first-degree relatives
was shown to increase with time living together and decrease
with time living apart. An interaction between environmental
conditions and age-related methylation divergence was also
confirmed in a longitudinal, genome-scale analysis of DNA
methylation in MZ twins from birth to 18 months (Martino
et al., 2013). These findings collectively suggest that divergence
in epigenetic profiles can occur not only via the stochastic
epigenetic drift caused, e.g., by errors in the maintenance of
DNA methylation patterns throughout DNA replication cycles,
but may also be mediated directly by specific environmental cues
(Cortessis et al., 2012; Cunliffe, 2015). From this, it is assumed
that epigenome can respond to environmental challenges in
an adaptive manner to maintain homeostasis and performance
(Vaiserman, 2008, 2010; Herman et al., 2014). Thereby, the
age-associated epigenome modification is increasingly seen
as a process of memorization of environmental exposures
experienced by organism over the lifetime. The epigenetic
memorization likely affects the epigenetic drift rate. In this
Perspective article, recent findings suggesting the importance
of early-life determinants for life-course dynamics of epigenetic
drift are summarized and discussed.

EARLY-LIFE DETERMINANTS OF
EPIGENETIC DRIFT

Multiple lines of evidence indicate that both direction and
rate of age-associated epigenetic drift largely depend on early-
life environmental conditions (Li and Tollefsbol, 2016). This
is not surprising, since it is well known that the epigenome
(the whole-genome totality of epigenetic marks) is highly plastic
during the early developmental period, especially throughout
the establishment of the cell lineage-specific profiles of gene
expression (Iurlaro et al., 2017; Burns et al., 2018). In mammals,
including humans, windows of early-life epigenetic plasticity
extend from preconception through weaning (Vaiserman, 2015).
After the establishment throughout early developmental stages,

most epigenetic marks are stably propagated in course of
numerous cell divisions. Such epigenetic cellular memory allows
to maintain stable profiles of gene expression in particular cell
lineages throughout lifetime. This process is commonly referred
to as “developmental epigenetic programming” (Hochberg et al.,
2011). Importance of this period to future health status underlies
the concept of the “first 1000 days,” prioritizing gestation and
first 2 years after birth as a critical developmental period
(Garmendia et al., 2014). According to the concept of predictive
adaptive response, early-life cues can be used by an organism to
rearrangement of the epigenome in a way that provides greatest
fitness dividends in future life (Bateson et al., 2014). If resulting
phenotype is properly matched to predicted environmental
conditions, such adaptive strategy results in survival benefits
in adult life. If adaptive epigenetic fine-tuning in early life
is, however, incorrect and a mismatch exists between the
further living conditions and the developmentally programmed
phenotype, it may cause increased disease risk in adulthood
(Godfrey et al., 2007). These conceptual considerations seem
particularly relevant in the context of the topic discussed.
The research findings suggesting the importance of early-life
determinants for epigenetic programming of aging phenotypes
and dynamics of epigenetic drift are presented in subsequent
sections.

Evidence From Animal Models
Since human data are scarce owing to restricted access to
suitable biological materials, the most direct evidence for the
role of epigenetic regulation in developmental programming of
aging and longevity phenotypes came from animal models. In
Merkwirth et al. (2016) study, perturbation of mitochondria
throughout larval development not only delayed aging but
also maintained unfolded protein response [UPR(mt)] signaling
in Caenorhabditis elegans, assuming an epigenetic mechanism
contributing to both lifespan and mitochondrial proteostasis
across life course. In particular, reducing the function of lysine
demethylases, JMJD-1.2/PHF8 and JMJD-3.1/JMJD3, has been
shown to be able to potentially suppress longevity and UPR(mt)
induction, while gain of function was sufficient to extend lifespan
in a UPR(mt)-dependent manner. In the Greer et al. (2010) study,
the ASH-2 trithorax complex, which trimethylates histone H3 at
lysine 4 (H3K4), was identified as another important player in
epigenetic programming of longevity in nematode. Remarkably,
developmental activation of a particular longevity-regulating
signaling pathways caused by misregulation of H3K4me2, led
to a transgenerational lifespan extension in F2-F4 nematode
offspring, potentially indicative of epigenetic memory (Greer
et al., 2011). The possibility of such epigenetically mediated
transgenerational effects on the worm’s longevity has been also
confirmed in more recent studies (Alvares et al., 2014; Greer et al.,
2016; Kishimoto et al., 2017).

Transgenerational effects on reproductive activity and
longevity of Drosophila melanogaster induced by post-eclosion
manipulation with dietary protein content were reported by
Xia and de Belle (2016). In this research, both low- and high-
protein diets reduced lifespan, while the intermediate-protein
diet significantly extended longevity until F3 generation. In a
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subsequent study, feeding with a low-protein diet throughout
the post-eclosion period resulted in a shortened life expectancy
in F0 generation as well as in F2 offspring. These effects
were accompanied by upregulating the H3K27-specific
methyltransferase, E(z), and enhanced levels of H3K27
trimethylation, H3K27me3 (Xia et al., 2016). Interestingly,
both RNAi-mediated knockdown of E(z) and pharmacological
inhibiting its enzymatic function with a specific inhibitor of
histone methyltransferase, Tazemetostat (EPZ-6438), lowered
H3K27me3 levels across generations. In addition, Tazemetostat
completely abolished the lifespan-shortening effect of the
parental low-protein diet.

In rodent models, confirmatory evidence was also obtained
for the role of factors such as xenobiotic exposure, stress,
and malnutrition in developmental epigenetic programming of
pathways contributed to the control of aging and longevity (for
reviews, see Vaiserman, 2014; Tarry-Adkins and Ozanne, 2017;
Ambeskovic et al., 2018). For example, in the study by Heo
et al. (2016), prenatal malnutrition led to disrupted patterns of
DNA methylation and dysregulation of transcriptional activity
of genes implicated in aging-related processes and development
of metabolic disorders in young (9-week-old) rat offspring.
Remarkably, these dysregulated epigenetic patterns have been
similar to those revealed in aged (20-month-old) offspring.

Evidence From Twin Models
The evidence that epigenetic drift can be developmentally
programmed was mostly obtained from studies in birth-weight
discordant MZ twins. Birth weight was used in these studies
as a proxy for prenatal conditions. Such research design
generally relies on investigating twins raised in shared family
environments, which may provide control not only for common
genetic background but also for similar postnatal rearing
environment. In the study by Gordon et al. (2011), strong
evidence of gene expression discordance in MZ twins at birth
was found in two different cell types. Among genes showing
most different expression patterns within pairs, there were genes
involved in stress response, metabolism, and cardiovascular
function. In several recent studies, evidence was also obtained
that early-life-induced epigenetic alterations may persist into
adulthood. Although very similar genome-wide profiles of DNA
methylation were found in saliva samples from discordant for
birth weight adult female MZ twins (Souren et al., 2013), more
recent studies revealed persistent differences in DNA methylation
profiles. Importantly, most of these differentially methylated
genes were known to be implicated in aging-associated processes.
Pronounced differences in fetal growth (discordance in birth
weight more than 20%) were significantly associated with DNA
methylation changes in the IGF1R gene during adulthood (Tsai
et al., 2015). In an epigenome-wide DNA methylation analysis
conducted to examine adult MZ twins discordant for birth
weight, a region on chromosome 1 has been identified as being
differentially methylated for birth-weight discordance (Chen
et al., 2016). This region covered two metabolism-associated
genes, CRYZ and TYW3. Genome-wide methylome profiling
in blood samples from adult MZ twins discordant for birth
weight did not reveal any differences in DNA methylation

patterns between twins, although particular sites displayed age-
associated intra-pair differential methylation in highly birth
weight-discordant twin pairs (Tan et al., 2014). The evidence
that life-course dynamics of epigenetic drift is largely dependent
from early-life programming events was also obtained from non-
MZ twin models. In analyzing results from seven twin and/or
family studies, Li et al. (2018) found that correlation in genome-
wide average DNA methylation levels is very high at birth and
remains high enough throughout life course in both twins and
non-twin first-degree relatives. On the basis of these data, the
authors concluded that genome-wide DNA methylation levels are
determined in utero by prenatal environmental exposures, and
these effects persist throughout life.

Quasi-Experimental Evidence
Research findings indicative of contribution of epigenetic
mechanisms to developmental programming of adverse later-
life health outcomes were also obtained in quasi-experimental
studies. Such research design (also referred to as “natural
experiment”) is defined as “naturally occurring circumstances
in which subsets of the population have different levels of
exposure to a supposed causal factor, in a situation resembling
an actual experiment where human subjects would be randomly
allocated to groups” (Last, 1995). The Dutch famine, that took
place in the German-occupied part of Netherlands in 1944–
1945, is the most studied in this respect. The signs of accelerated
aging were repeatedly reported in the cohort born during
this famine, including impaired physical function, lowered
cognitive performance, more atherogenic plasma lipid profile,
enhanced stress responsivity, increased risk for depression and
cardiometabolic disorders (Lumey et al., 2011; Roseboom et al.,
2011; Bleker et al., 2016), and also the enhanced mortality
rate (van Abeelen et al., 2012) at older ages. These adverse
health outcomes were accompanied by persistent epigenetic
changes. Whereas no association has been reported between
prenatal exposure to the Dutch famine and the overall level
of DNA methylation in adult life (Lumey et al., 2012), levels
of DNA methylation of particular genes have been strongly
associated with prenatal exposure to famine in the whole blood
samples from adult offspring. Among the genes found to be
differentially methylated between the famine-exposed subjects
and non-exposed control individuals, there were genes known to
be implicated in the development of cardiometabolic phenotypes,
such as IGF2 (Heijmans et al., 2008), and also GNASAS, IL10,
LEP, ABCA1, INSIGF, and MEG3 (Tobi et al., 2009). More
recently, differential methylation of genomic regions extended
along pathways associated with growth and metabolism was
observed in persons periconceptionally exposed to famine (Tobi
et al., 2014). Early, but not mid or late gestation, was identified
as a critical time window for inducing persistent changes in
DNA methylation profiles (Tobi et al., 2015). Even though it has
not been reported until now whether it is a correlation between
the DNA methylation and gene expression levels, the revealed
DNA methylation modification was clearly related to impaired
metabolic homeostasis in adult individuals who were prenatally
exposed to famine (Lumey et al., 2007; Tobi et al., 2018). Similar
results were obtained in studying long-term consequences of the
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FIGURE 1 | Hypothetical modes of life-course dynamics of epigenetic aging.
(A) premature epigenetic aging; (B) accelerated epigenetic aging; and (C)
slowed epigenetic aging. In all panels, red lines represent subjects exposed to
adverse early-life events and black lines represent unexposed subjects.

perinatal exposure to famine in rural Bangladesh. In this study,
those offspring who were exposed to famine perinatally were
demonstrated to be at higher risk of developing obesity and type 2
diabetes during adulthood in comparison with unexposed control
subjects. These health outcomes were associated with significant
differences in methylation levels in metastable epialleles such as
PRDM-9, VTRNA2-1, PAX8, near BOLA, near ZFP57, and EXD3
(Finer et al., 2016).

DEVELOPMENTAL ADJUSTMENT OF
EPIGENETIC CLOCK

Recently, DNA methylation has gained significant interest as a
powerful biomarker of aging allowing to quantify the individual
aging rate and inter-individual variations in functional decline
and timing of disease onset during the life course (Levine
et al., 2018). In particular, the multi-tissue algorithm developed
by Horvath (2013) allows to produce age estimates which
correlate with chronological age well above r = 0.90 for full
age range samples. Recent cohort studies indicated that ticking
rate of epigenetic clock, estimated by DNA methylation-based
methods, may be developmentally adjusted, and that individual’s
discrepancies between epigenetic and chronological age may
be programmed early in life. The supporting evidence for this
came mainly from cohort studies. In most of these studies, the
differences between actual chronological age and calculated DNA
methylation age have been estimated using Horvath’s method
(Horvath, 2013). For example, dependence of adult rate of
epigenetic aging (age acceleration, AgeAccel) from childhood
conditions was evaluated in the study by Simpkin et al. (2016).
AgeAccel was defined as residual from regressing epigenetic age
on actual age. The association between birth weight and AgeAccel
during adolescence was found in two birth cohorts in this study.
In analysis of the profiles of DNA methylation across five time-
points in mother-child pairs from a United Kingdom birth
cohort, adolescent AgeAccel was associated with maternal alcohol
consumption during pregnancy. In a subsequent longitudinal
study conducted with the same birth cohort, strong associations
between AgeAccel and several developmental characteristics
including height, weight, fat mass, and body mass index during
childhood and adolescence have been demonstrated (Simpkin
et al., 2017). An inverse association between pubertal tempo and

AgeAccel in girls was shown in the longitudinal Growth and
Obesity Cohort Study (Binder et al., 2018). Similar findings were
obtained in two Finnish follow-up cohorts where AgeAccel levels
were established in pre-adult life and remained unchanged during
the rest of the lifetime, even in oldest-old ages (Kananen et al.,
2016). On the basis of these findings, the epigenetic clock theory
of aging was recently proposed by Horvath and Raj (2018), which
postulated that epigenetic clock links developmental processes to
aging.

HYPOTHETICAL CONSIDERATIONS

Based on the conceptual frameworks and research findings above,
it can be assumed that life-course dynamics of epigenetic aging
can depend on early-life events and that the mode of this
dependence can be different depending on the stage affected and
on the type, duration and intensity of exposure. Most data on this
relationship correspond to common intuitive notions. Adverse
environmental exposures early in life can result in an elevated
rate of accumulation of epimutations without accelerating the
rate of epigenetic aging. This may increase intercept parameter
without changing the slope parameter in the linear regression
model describing this relationship (“premature epigenetic aging,”
Figure 1A). Inappropriate developmental programming due to,
e.g., mismatched epigenetic adaptation, may cause increase in
slope (“accelerated epigenetic aging,” Figure 1B).

Some findings on long-term consequences of early-life
programming events are, however, counterintuitive and
require additional assumptions. For example, in analyzing
the deceleration of the old-age mortality rate observed
across developed countries over the second part of the XXth
century, Yashin et al. (2001) suggested that some centenarians
paradoxically come from an initially frail part of the cohort. The
authors hypothesized that more vulnerable (and likely more
labile) organism can better improve its stress reactivity than more
robust (and rigid) one. This can result in survival advantages
to originally more vulnerable organisms at older ages. The
evidence for this assumption also comes from studies conducted
to test hygiene hypothesis proposed by Strachan (1989) to
explain the link between the lack of microbial exposure due to
overhygienic conditions in childhood and high risk of allergic
and autoimmune disorders in later life. The overhygienization
is becoming increasingly widespread in modern world, and it is
believed to cause increased antibiotic resistance and permanently
increasing number of persons with weakened immunity in
developed societies (Bloomfield et al., 2016). Although lack
of microbial exposure may not be the only causal factor, the
assumptions of this hypothesis have been repeatedly confirmed
through both observational and experimental studies (Maia
Rda and Wünsch Filho, 2013). Under-using of immune system
early in life can likely cause not only atopic conditions, but
also autoimmune states (Kramer et al., 2013). The latter seems
especially important since immunosenescence are regarded now
as one of the leading processes underlying aging. Importantly,
although inflamm-aging is traditionally regarded as leading
cause of most age-related disorders, such strictly negative
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interpretation of immunosenescence is challenged now by
many immune-gerontologists. Age-associated immune changes
are increasingly considered as adaptive or remodeling rather
than solely detrimental (Fulop et al., 2018). Despite the
fact that these immune changes can obviously cause various
pathological conditions, these alterations may potentially
contribute to developing extended longevity phenotypes. It is
even suggested by the authors that without the presence of
the immunosenescence/inflamm-aging, human longevity would
be substantially shortened (Fulop et al., 2018). An important
point in the context of the topic discussed is that complex
interactions between immune and epigenetic pathways likely play
an important role in these effects (Grolleau-Julius et al., 2010;
Jasiulionis, 2018). Given the fact that these processes can have
a significant impact on epigenome, they may likely decelerate
the epigenetic clock-ticking rate by increasing the intercept
parameter and by decreasing slope value (“slowed epigenetic
aging,” Figure 1C), even though initial level of accumulation of
epimutations could be higher in early-life exposed population
than in unexposed one. Interestingly, in the study by Marioni
et al. (2018), epigenetic age was shown to be increasing at a
slower rate than chronological age across life course, especially
in the oldest population. The selection bias in which healthier
individuals are more likely to reach older ages was proposed to
explain these results by the authors. The individual induction
due to epigenetic adaptation might, however, be an alternative
explanation. For a definitive conclusion, nevertheless, more
thorough research is required.

CONCLUSIVE REMARKS

Research in the field of gerontology has traditionally focused
on later stages of the life cycle. There is, however, increasing
evidence that the rate of age-related functional decline and

risk for aging-associated diseases can largely depend on
developmental conditions. Growing awareness of the of
developmental programming in the pathogenesis of adult-life
chronic pathological conditions and unraveling the mechanisms
involved led to rising interest in research in this area. The
developmental programming processes would likely be of
particular importance in modern developed societies due to
significant lifestyle changes (westernized diet, sedentary behavior,
etc.), which can often conflict with adaptive epigenetic strategies
programmed during development.

Two important points follow from these considerations
for future research and practical applications. First, further
development of epigenetic methodology will provide an
opportunity to identify individuals at risk for developing
certain age-related pathological condition due to early-
life malprogramming long before the clinical manifestation
of the disease. Second, since epimutations, unlike genetic
mutations, are potentially reversible, they may be corrected by
specific nutritional and/or pharmacological interventions. The
implementation of such epigenome-targeted interventions would
allow to influence life-course dynamics of epigenetic age and slow
down the ticking rate of the epigenetic clock to delay or decelerate
the aging-related processes.
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