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Abstract

Motivation: The increasing adoption of clinical whole-genome resequencing (WGS) demands for

highly accurate and reproducible variant calling (VC) methods. The observed discordance between

state-of-the-art VC pipelines, however, indicates that the current practice still suffers from non-

negligible numbers of false positive and negative SNV and INDEL calls that were shown to be en-

riched among discordant calls but also in genomic regions with low sequence complexity.

Results: Here, we describe our method ReliableGenome (RG) for partitioning genomes into high

and low concordance regions with respect to a set of surveyed VC pipelines. Our method combines

call sets derived by multiple pipelines from arbitrary numbers of datasets and interpolates ex-

pected concordance for genomic regions without data. By applying RG to 219 deep human WGS

datasets, we demonstrate that VC concordance depends predominantly on genomic context rather

than the actual sequencing data which manifests in high recurrence of regions that can/cannot be

reliably genotyped by a single method. This enables the application of pre-computed regions to

other data created with comparable sequencing technology and software. RG outperforms com-

parable efforts in predicting VC concordance and false positive calls in low-concordance regions

which underlines its usefulness for variant filtering, annotation and prioritization. RG allows focus-

ing resource-intensive algorithms (e.g. consensus calling methods) on the smaller, discordant

share of the genome (20–30%) which might result in increased overall accuracy at reasonable

costs. Our method and analysis of discordant calls may further be useful for development, bench-

marking and optimization of VC algorithms and for the relative comparison of call sets between dif-

ferent studies/pipelines.

Availability and Implementation: RG was implemented in Java, source code and binaries are freely

available for non-commercial use at https://github.com/popitsch/wtchg-rg/.

Contact: niko@wtchg.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Whole-genome resequencing (WGS) allows researchers to address a

broad range of clinical and research questions at comparably low

costs and with short turnaround times. For these reasons it is quickly

becoming a central tool for genomic medicine and the accurate call-

ing of small variants (SNVs and small INDELs) from WGS data

plays a central role in most analyses. The currently observed amount

of discordant variant calls between different state-of-the-art variant

calling (VC) pipelines, however, indicates that the current practice

still suffers from non-negligible numbers of false positives and nega-

tives (Li, 2014; Motoike et al., 2014; O’Rawe et al., 2013; Ratan

et al., 2013, 2015).

It was shown that false positives and negatives are strongly en-

riched among calls that are discordant between different VC pipe-

lines as these are often a consequence of imperfect data

interpretation by the applied bioinformatics pipelines (Li, 2014;

Motoike et al., 2014; O’Rawe et al., 2013). Consequently, one pro-

posed practice to improve overall VC accuracy is to apply multiple

VC pipelines to the same sequencing data and combine the results in

order to reach a consensus from multiple algorithms (Cantarel et al.,

2014; Gézsi et al., 2015). While this strategy may significantly

increase VC accuracy it also greatly increases analysis costs and

turnaround times which may be unfeasible in many real world situ-

ations. Nevertheless, such a consensus approach was used for the de-

velopment of first genome-wide benchmarks that enable us to

determine VC accuracy and reproducibility and thus pave the way

for systematically improving these measures (Goldfeder et al., 2016;

Highnam et al., 2015; Zook et al., 2014). Another proposed filtering

approach is to remove variants in particular genomic regions, e.g. re-

gions with low sequence complexity. These regions were shown to

harbour many false positive calls, mainly due to potential PCR and

realignment errors. Simply removing all variant calls in such difficult

regions is straightforward and did not compromise sensitivity sig-

nificantly in the author’s evaluation (Li, 2014).

The method presented in this paper tries to augment these on-

going efforts by analysing patterns of discordance between call sets

derived from the same sequencing data using different VC pipelines.

One specific question that motivated this research was whether low

call concordance is predominantly a property of the actual sequenc-

ing data quality or of the genomic location/context of the call in

question. The latter option would become manifest in recurrent re-

gions of discordance which would consequently allow us to predict

such regions for future datasets, at least if those were created by

comparable technology. Knowing genomic regions with high VC

concordance a priori saves the effort of analysing every WGS dataset

with multiple pipelines. Instead, one may either consider only the

(reliable) calls in concordant regions for downstream analysis or al-

ternatively concentrate additional efforts (e.g. multiple variant call-

ers) solely on the small discordant fraction of the genome, thereby

significantly reducing analysis and validation costs and times.

Additionally, comparisons between datasets/studies would become

easier and more reproducible if restricted only to variants in con-

cordant regions. Above all, however, it would allow us to study re-

current regions of discordance in greater detail with the ultimate

goal of uncovering the underlying causes for VC artefacts therein

(cf. Li, 2014).

2 System and methods

Our method for calculating concordant and discordant regions in

the genome consists of two main stages (cf. Supplementary Fig. S1).

First, call sets for individual samples that were created with different

VC pipelines are joined into single VCF files by iterating over all

genomic positions with at least one non-filtered call in the input call

sets. Let Ci;j be the call sets for i 2 1; . . . ;N samples that were

derived using j 2 1; . . . ;M different variant calling pipelines. The

pipeline-specific call sets are joined into N single VCF files by iterat-

ing over all genomic positions with at least one non-filtered call in

any of the M input files.

For each such position we compare all called genotypes (in the

VCF GT field) and write a merged variant call to a new joined VCF

file Ji. A merged call is written as being ‘discordant’ (by using a re-

spective entry in the VCF FILTER field) if the called genotypes did

not match or if some call sets Ci;j did not contain a variant at this

position. Otherwise it is written as being ‘concordant’ (using a

‘PASS’ filter). As INDELs are sometimes not represented in the same

way or at the exact same genomic position by different VC pipelines

(e.g. due to different variant alignment strategies), we decided to

compare INDEL calls not simply by their coordinates but rather

considered them matched if their associated 50–30 genomic intervals

that were extended by l bases up-and downstream overlap between

the different call sets, cf. Figure 1. We set l¼5 in this study.

The joined call sets Ji are the input to the second stage of our al-

gorithm that calculates a concordance score sp for each polymorphic

position p in the input call sets Ci;j:

sp 2 ½�1;1� ¼ nc
p �wcþnd

p �wd

nc
p �wcþjnd

p �wd j where nc
p and nd

p are the numbers

of concordant respectively discordant calls in all Ji at this genomic

position p and wc > 0 and wd < 0 are configurable scoring

weights, cf. Figure 1. A straightforward interpretation of this scor-

ing schema is that negative scores correspond to ‘discordant’ pos-

itions, positive scores correspond to ‘concordant’ positions and

scores close to zero correspond to a ‘neutral state’ where a decision

could not be made due to contradictory or missing input data.

In a subsequent step, the concordance scores for all other gen-

omic position (i.e. all positions for which there is no call in any Ci;j)

is calculated by interpolation. For this, we consider genomic

Fig. 1. Concordance scoring example. The figure shows three call set groups

(grouped horizontal black lines) derived from three different VC pipelines.

The called genotypes of the individual calls are represented as follows: black

rectangles: homozygous variant calls; white circles: heterozygous variant

calls; shaded rectangles: INDELs. The letters y and n below each group indi-

cate genotypes concordance or discordance among the VC pipelines; p is the

index of the polymorphic positions; nc and nd are counts of concordant and

discordant decisions respectively; s is the calculated concordance score using

the weights wc ¼ 1 and wd ¼ �3. Note that position 4 shows a concordant

call because the extended INDEL intervals (indicated by arrows) overlap.

INDEL calls are also compared based on their called genotype
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windows of size 2 � xþ 1, centred on each position pk from the

ordered set of all polymorphic positions in Ci;j (we chose x¼1000

in this study). If the upstream polymorphic position pk�1 is con-

tained in this window then we linearly interpolate the score signal

between pk�1 and pk, otherwise we interpolate between pk � x and

pk with the score spk�x :¼ 0 set to zero (the ‘neutral state’). The same

is done for the downstream half of the window. An intuitive inter-

pretation of this interpolation step is that each actual data point ‘ra-

diates’ its score to its genomic neighbourhood with a strength that

decreases linearly with distance. The final result of our algorithm is

a genome wide concordance score signal as show in Supplementary

Figure S2. From this signal we simply derive concordant and dis-

cordant genomic regions using configurable score thresholds tc and

td respectively. A more detailed description of the individual algo-

rithmic steps and their implementation is given in the Supplement.

We evaluated our approach by calculating a set of concordant re-

gions from N¼219 WGS datasets that were subjected to M¼3 dif-

ferent VC pipelines using samtools (SAMT, Li et al., 2009), GATK

haplotype caller (GATK, DePristo et al., 2011) and platypus (PLAT,

Rimmer et al., 2014). Details about the datasets and pipelines used

are given in the Supplement. We tried several scoring schemas (data

not shown) and finally picked one that minimizes the number of

false-positives by setting wc¼1 and wd ¼ �3 �wc ¼ �3 (see discus-

sion below). As we wanted to evaluate our tool as a binary classifier,

we set tc¼ td which resulted in a genomic partition (RG) of concord-

ant and discordant regions that covers the whole genome.

3 Results

We conducted three different evaluation experiments for measuring

the performance of our method.

3.1 First experiment
In the first experiment, we conducted i ¼ 1; . . . ; 215 evaluation runs

and for each selected a random subset of size i from our WGS co-

hort. These subsets were used as training data whereas the remain-

ing datasets were interpreted as ground truth. For each dataset, we

considered the chr20 portion of the three pipeline-specific call sets

and used our method to calculate partitions of concordant regions

that were then evaluated as binary classifiers against the ground

truth. We calculated accuracy, sensitivity and specificity of the re-

sulting partition and plot the results in Figure 2a. The whole experi-

ment was repeated 10X to avoid random artefacts. The main goal of

this first evaluation experiment was to check the robustness of the

RG algorithm. As expected, the calculated partitions become more

accurate with increasing numbers of training datasets. The satur-

ation of the curves (after about 10%, i.e. about 22 datasets in our

cohort) can be explained by the rapidly decreasing number of add-

itional data points that are added once all common polymorphic

positions were covered. Eventually, our binary classifier reaches

high values for precision (> 99%) and specificity (> 97%) while

showing slightly worse sensitivity (> 93%) which can partially be

explained by the scoring schema used. Most importantly, the

observed accuracy profiles can only be explained with high

(a)

(d) (e)

(b) (c)

Fig. 2. Statistics and evaluation results. (a) Results for evaluation experiment 1. The performance metrics shown were calculated by splitting the chr20 call sets

from the described 219 WGS datasets into two random subsets and using one for training RG and the other as ground truth. The x-axis plots the percentage size

of the training set. For each training set size we repeated the experiment 10X to avoid random artefacts. The plotted solid line corresponds to the mean value of

the respective measure, the light-coloured corridor depicts the standard deviation. (b) Results for evaluation experiment 2. Accuracy

(Acc ¼ ðTP þ TNÞ=ðTP þ TN þ FP þ FNÞ), false discovery rate (FDR ¼ FP=ðFP þ TP Þ) and negative prediction value (NPV ¼ TN=ðTN þ FNÞ) boxplots for the vari-

ous partition sets were calculated by using 34 independent WGS samples as ground truth. A complete set of performance metrics is given in Supplementary Fig

S4. (c) Venn diagram showing the overlaps between four genomic partitions. The numbers show percentages of covered genomic positions that are considered

reliable. 2.1% of the human reference genome (excluding assembly gaps) is not covered by any of the sets. (d) Bar plot showing the percentage of the human

genome considered to be reliable/concordant per partition. (e) Results for evaluation experiment 3. The bar plot shows the precision for classifying heterozygous

CHM1 calls as false positives. All call set labels are explained in the main text. Here, the combined RGþUM75 partition as well as other RG derived set show low

and constant false-positive rates of around 5-7%, by this outperforming other methods such as GIAB or PLAT about 3-4X
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recurrence of concordant/discordant genomic regions meaning that

concordance is predominantly determined by genomic position and

not the actual read data/qualities in our cohort.

3.2 Second experiment
In the second evaluation experiment, we tried to measure how ro-

bustly we can apply a pre-calculated genomic partition to a different

cohort and compared the results to similar approaches. For this, we

first calculated a genome-wide genomic partition from all 219 WGS

datasets mentioned above (RG) and then calculated an alternative

genomic partition from 34 independent WGS datasets that were

used as ground truth set in this experiment. These 34 datasets were

mapped with a different read mapper but variants were called using

the same VC pipelines as for the RG set (see Supplement for more

details). We then measured how well we could predict concordant/

discordant variant calls in these data using our genomic partition

RG as well as four comparable sets of genomic regions that were

proposed for filtering variants, namely the ‘reliable regions’ from

the Genome-In-A-Bottle project (GIAB; Zook et al., 2014), the ‘con-

fident regions’ from Illumina’s Platinum project (PLAT; http://

www.illumina.com/platinumgenomes/), a set of low-complexity re-

gions that was recently suggested for variant filtering (LCR; Li,

2014) and a set of (yet unpublished) genomic regions from the same

author (UM75; Heng Li, personal communication). We also derived

a set LCR100 by extending each low complexity region in LCR by

100bp upstream and downstream and a set RG-UM75 that com-

bines the two respective partitions. We furthermore created two

derived genomic partitions (RG-LCR-HD and RG-LCR100-HD)

from our RG set by excluding all LCR or LCR100 regions and all

genomic windows that showed high density (HD) of discordant

calls. For this, we iterated over all variant calls in our 219 WGS

datasets and counted the number of (stretches of) discordant calls

that were interrupted by (stretches of) concordant calls within a gen-

omic window that started 1000 bp upstream and ended 1000 bp

downstream of the respective call. We then created a genomic parti-

tion by merging all such genomic windows that contained at least

10 such counts (see Supplement for further details). The respective

genomic coverages of all used genomic partitions are depicted in

Figure 2d.

We plotted accuracy, false discovery rate (FDR) and negative

prediction value (NPV) in Figure 2b. The Figure shows that our

method achieves the highest accuracy of all compared sets while

showing the lowest FDR which is what we optimized for with the

chosen scoring schema. Removing LCR and HD regions or regions

from the UM75 set from our partition may further lower the FDR,

however, at the costs of reduced accuracy. Our method shows the

second-highest NPV, only slightly behind LCR, demonstrating that

it also harbours less false negatives (i.e. true concordant calls that

were classified as being discordant) than most other approaches (cf.

Supplementary Fig. S4).

3.3 Third experiment
In our final evaluation experiment, we measured the performance of

our genomic partition for predicting potential false positives/se-

quence artefacts. Following along the lines of Li (2014) we used

variant calls derived from a WGS dataset of the CHM1hTERT

(CHM1) cell line for this evaluation. As CHM1 is assumed to be

haploid we considered all heterozygous variant calls as false posi-

tives. We downloaded the call sets from this publication that were

prepared using two different mappers (bowtie2 [bt2] and bwa mem

[mem]) and three different variant callers (FreeBayes [fb], GATK

HaplotypeCaller [hc] and Platypus [pt]), extracted all heterozygous

calls with a quality>30 and measured the precision of different

genomic partitions to classify them as false positives (Fig. 2e).

The RG-derived partitions clearly outperform all other partitions in

this evaluation, reaching > 95% precision when LCR, HD and/or

UM75 regions are subtracted.

3.4 Supplementary analysis of discordant positions
Finally, we comprehensively analysed all variant positions that we

found in the 219 WGS datasets by calculating various statistics and

present the results in the Supplement. Table 1 contains a summary

of our findings and provides references to the respective supplemen-

tal Figures that show the data. In particular, our sequence context

analysis (Supplementary Section 6.1) confirms that discordant calls

Table 1. This table summarizes the results of several statistics for discordant calls derived from over 34 million polymorphic genomic pos-

itions in the described 219 WGS datasets

Discordant variant positions. . . SNV INDEL Figure

Variant calling and cohort related Are less abundant in the cohort Yes No S7

Show less classification agreement (more intermediate scores) Yes Yes S10

Have less contributing datasets in the cohort No No S11

Have lower variant qualities Yes Yes S17

Potentially violate Hardy-Weinberg equilibrium more often Yes n/a S19

Are more often multi-allelic Yes n/a S22a

Genomic location related Are more abundant in low-mappability regions Yes Yes S14

Are less covered Yes Yes S15

Are closer to adjacent INDELs Yes Yes S16

Are closer to INDEL locations in the cohort Yes Yes S16

Are less abundant in genes/exons Yes Yes S20

External DB related Are less abundant in dbSNP Yes Yes S8

Have allele frequencies that correlate worse with population AFs Yes yes S12

Are considered less deleterious by CADD Yes n/a S18

Sequence context related Are enriched in annotated LCR Yes Yes S20

Show reduced Ts/Tv ratios Yes n/a S22ff

Are enriched in AT rich regions Partially Partially S23ff

Show reduced sequence context complexity Yes Yes S23ff

A more detailed discussion of these data is given in the Supplement.
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are located predominantly in regions with low sequence complexity

and that their context composition differs significantly from con-

cordant variants which could be utilized for the further characteriza-

tion of problematic DNA regions and the improvement of variant

filtering strategies. Note that our results are in good concordance

with recently published research on sequence characteristics and

polymorphism rates in the human genome, cf. Aggarwala and

Voight (2016); Sahakyan and Balasubramanian (2016).

4 Discussion

Although germline variant calling is considered a solved problem by

many, researchers still observe low overlap between different state-

of-the-art VC pipelines and tools. This discordance between differ-

ent methods not only hinders data comparison, integration and re-

producibility; it also indicates non-negligible numbers of false

positives and negatives that are introduced due to differing interpret-

ation of sequencing data by current VC pipelines. This stands in con-

trast to the increasing demands for highly accurate and reproducible

VC sets from WGS experiments, in particular in clinical environ-

ments (Koboldt et al., 2010; Taylor et al., 2015; The Genome of the

Netherlands Consortium, 2014). With WGS now rapidly entering

the clinic, VC discordance could become a serious concern for the

emerging field of precision medicine and related areas.

Our evaluation of deep WGS data provides strong evidence that

VC concordance for such datasets depends predominantly on gen-

omic context rather than on quality properties of the actual sequenc-

ing data. This enables the a priori calculation of genomic partitions

with high variant calling concordance that can then readily be applied

to additional data analysed by the same pipeline. Our method differs

from comparable previous efforts in that it incorporates data from

many different WGS datasets, thereby capturing more of the data’s

variance. It is applicable to arbitrary variant sets (note, however, that

the current version of RG supports only diploid genomes) and can

thus be used to calculate high-concordance regions in a large range of

scenarios. Our evaluation confirmed that our classifier improves with

more training data which means that we can expect even higher accu-

racies when applying RG to larger cohorts such as the recently

sequenced set of 10,000 human genomes (Telenti et al., 2016) or the

emerging 100,000 Genomes dataset. On the other hand, we reached

high performance measures after only about 20 datasets which makes

RG also applicable to small and medium sized cohorts.

The genomic partition created by our method naturally depends

to some extent on the used technology to create the sequencing data,

the employed VC pipelines, the configured parameters (mainly scor-

ing schema and interpolation window size) and also on the data it-

self. However, as shown in this study, the influence of the actual

sequencing data is much smaller than we initially expected. Also, al-

though not thoroughly evaluated in this study, we found evidence

that our genomic partition is quite robust with respect to slightly dif-

fering VC pipelines. Experiments 2 and 3 demonstrate that a parti-

tion that was derived from a different cohort can be used to

accurately predict regions of discordance/unreliable VC in data that

were created using different read mapping and variant calling algo-

rithms. This may render RG a useful tool for the comparison and in-

tegration of data from different studies that was analysed using

various bioinformatic pipelines or even sequencing technologies.

Besides applying the same RG partition on data from multiple co-

horts, one could also easily intersect RG partitions calculated from

the individual cohort data to calculate shared regions of

concordance.

Genomic partitions such as the one presented in this study allow

us to focus on the ‘hard to call’ fraction of the genome where current

VC algorithms are often in disagreement and where false positives

and negatives accumulate. This enables the concentration of avail-

able resources on the small part of the genome that cannot be

confidently genotyped by a single method, e.g. by applying compu-

tationally intensive consensus calling algorithms that do not scale to

the whole genome (cf., Cantarel et al., 2014; Gézsi et al., 2015;

Goode et al., 2013). Alternatively, users may decide to simply ignore

calls in such error-prone regions. Filtering WGS call sets with our

genomic partition is straightforward and can effectively reduce false

positive calls without risking many false negatives. This might be

particularly interesting in clinical scenarios as it reduces validation

costs and shortens turnaround times. The relevance of this is under-

lined by our supplementary data analysis that shows, in accordance

with recently published results by (Goldfeder et al., 2016), that a

considerable fraction of discordant calls are found in genomic re-

gions of high clinical interest (genes and exons). Furthermore, our

analysis provides additional evidence for the potential pollution of

public annotation databases (such as population allele frequency

databases, cf. Fig. S9) with false positives.

Most importantly, however, such genomic partitions may help in

identifying the underlying causes for false positives and negatives

and consequently improve the VC accuracy of existing tools.

Variant call sets are currently filtered mainly by per-variant quality

values that are calculated from a mix of sequence dependent (e.g.

per-base quality values) and location-dependent (e.g. read mapping

qualities) features. The supplemental analysis of our genomic parti-

tion shows that quality values work well yet are not perfect for sepa-

rating concordant and discordant calls. As we and others showed

that false positives are strongly enriched among discordant calls, we

conclude that current variant quality values are also limited in filter-

ing those. Augmenting the location-dependent features that are al-

ready considered by current quality value calculations, we

identified/confirmed several cohort-wide properties (such as distance

to cohort-wide INDEL locations, transition/transversion ratios, or

AT- enrichment in the sequence context) that seem to differ substan-

tially between concordant and discordant variant calls. These fea-

tures show considerable variance among datasets and neither

feature alone seems sufficient for the accurate prediction of concord-

ant of discordant calls. Our method captures this variance by inte-

grating the decisions from multiple algorithms across multiple

datasets, and in this regard it is not surprising that it substantially

outperforms previous works that were derived from single datasets

(GIAB reliable regions, Illumina Platinum regions) or single

sequence-dependent features (LCR).

Our findings are consistent with previously reported causes for

artefacts such as PCR errors, alignment errors in repetitive regions

and around INDELs but also the incompleteness of the used refer-

ence genome. Actually we expect the fraction of discordant regions

to decrease when using the latest version of the human reference

genome which would reduce the number of artefacts stemming from

copy number variations (CNV) or missing paraloguous sequences,

cf. Pickrell et al. (2011); Li (2014); Miga et al. (2015). Particularly,

regions with low sequence complexity were reported to be major

sources of variant calling errors and our analysis largely confirms

this yet shows that call discordance is not restricted to such regions.

By combining our partition with LCR annotations and regions of

high discordance density we were able to reach high and constant

precision for filtering false positive calls, outperforming GIAB,

PLAT and LCR 3-4X.
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Unannotated copy number variations (CNVs) are another likely

source of discordant variants. The used UM75 partition was created

by integrating regions of low read mapability and/or low sequence

complexity with regions that are enriched with ‘aberrant’ variant

calls. The latter were computed by clustering regions with negative

inbreeding coefficients in 1000 Genomes Project phase III data (see

Supplement for details). By doing this, UM75 excludes regions that

are likely mis-assembled in the human reference genome or are en-

riched with common CNVs in the 1000G data. Such regions are

likely to harbour many false-positives in the experiment 3 data (but

also the other evaluation data) and UM75 thus complements our

genomic partition well as demonstrated by the good results when

combining both sets.

5 Conclusion and perspectives

In this work we presented a first straight-forward method for calcu-

lating genomic partitions that are likely to harbour concordant/dis-

cordant variant calls in WGS resequencing experiments when

applying different VC pipelines. Our method can be applied to arbi-

trary VC pipelines and the resulting genomic partitions can be used

for variant filtering, annotation and prioritization or for focusing

computational resources on hard-to-analyse regions of the genome.

It may further be useful for the development, benchmarking and op-

timization of VC algorithms and pipelines with the goal of improv-

ing their accuracy and for the relative comparison of VC results

across different studies and pipelines. A limitation of the current

study is that it was conducted only with deep WGS data from a sin-

gle sequencing technology and it is yet unclear whether the results

are reproducible with other kinds of sequencing data.

Possible future work includes the investigation of this matter, the

comparison of somatic variant callers (that show even less concord-

ance in current studies, cf. Alioto et al., 2015) and the improved ex-

plicit integration of identified features with high classification value

into our method. We furthermore plan to further analyse the se-

quence context around discordant variants and integrate our gen-

omic partitions with other data, such as structural variation data

and recombination hotspot annotations.
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