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Almost 30 years after its initial discovery, infection with the human immunodeficiency virus-1 (HIV-

1) remains incurable and the virus persists due to reservoirs of latently infected CD4+ memory T-

cells and sanctuary sites within the infected individual where drug penetration is poor.

Reactivating latent viruses has been a key strategy to completely eliminate the virus from the host,

but many difficulties and unanswered questions remain. In this review, the latest developments in

HIV-persistence and latency research are presented.

Introduction

Before the introduction of highly active anti-retroviral
therapy (HAART), a diagnosis of HIV/AIDS would have
been a death sentence for most patients. However, modern
anti-retroviral regimes are able to preserve the health of the
patient and routinely reduce the plasma viral load to less
than 50 copies of HIV-1 RNA ml21 (Volberding & Deeks,
2010). Although HAART is very effective at blocking HIV-
1 spread within the body, it is not a cure, as viral loads
readily rebound when treatment is interrupted (Chun et al.,
1999; Davey et al., 1999). Furthermore, ultrasensitive
detection assays have shown that in most HAART-treated
patients, a low-level viraemia of less than 5 copies ml21

persists even after years of therapy (Chun et al., 2005;
Palmer et al., 2008; Tobin et al., 2005). This low-level
persistent viraemia is a major obstacle to the complete
elimination of HIV-1 from the body.

HAART cannot fully restore the health of an infected
individual. Long-term-treated HIV-1 patients have reduced
lifespans and increased susceptibilities to non-AIDS related
conditions such as cardiovascular disease, cancer, liver and
kidney dysfunctions as well as neurological decline, which
may be a consequence of the toxicity of the drugs or the
chronic inflammation caused by HIV-1 infection (Deeks,
2011; d’Arminio et al., 2004). The financial cost of life-long
treatment, especially in resource-poor settings, is prohibi-
tive (Hecht et al., 2010). Until the discovery of an effective
vaccine, or other interventions that can halt the continuing
spread of HIV-1, it will become increasingly difficult for
high disease burden countries in the developing world to
control the epidemic using only current anti-retroviral
regimes (Lewin et al., 2011). Thus, an effective cure of
HIV/AIDS would not only alleviate the suffering of the
millions of infected persons, it may be the only way to
check the progress of the HIV-1 epidemic. In this article,
we provide an overview of HIV-1 latency and address some
of the major gaps in our understanding of the phenom-
enon. We examine recent advances in translational research

aiming to find a sterilizing (complete eradication of the
virus) or a functional (virus replication is on-going but
does not lead to clinical problems) cure.

The question over the source of the persistent
viraemia

The half-life of the HIV-1 virion in the plasma is very short
(Ho et al., 1995; Ramratnam et al., 2000) and it is generally
believed that the persistent viraemia is either the result of the
reactivation of latently infected resting T-cells or on-going
virus replication in ‘sanctuary’ sites within the body (Lewin
et al., 2011; Palmer et al., 2011). The existence of a latently
infected population of CD4+ T-cells was first indicated by
the discovery that the number of cells expressing HIV-1
mRNA in vivo was lower than the number of cells carrying
proviral DNA (Schnittman et al., 1989). Subsequent studies
have demonstrated that a small number (approx. one
million cells) of resting CD4+ T-cells in HAART-treated
individuals harboured replication-competent latent viruses
that could be reactivated by stimulation of the cells with
mitogens (Chun et al., 1995, 1997; Finzi et al., 1997). While
dormant, the virus is hidden from the host immune
response and it has been shown that the decay rate of these
latently infected resting CD4+ T-cells is very low, requiring
an estimated period of 73.4 years for complete eradication
using the current anti-retroviral regime (Siliciano et al.,
2003). Alternatively, on-going low-level virus replication
may be responsible for the persistent viraemia. Persistent
virus production has been found within sanctuary sites such
as the central nervous system (Canestri et al., 2010; Churchill
et al., 2006; González-Scarano & Martı́n-Garcı́a, 2005), the
gastrointestinal tract (Chun et al., 2008) and the male and
female genital tract (Halfon et al., 2010; Launay et al., 2011).
Recent studies have indicated that anti-retroviral drug-
penetration is site- and compound-specific, and drugs that
penetrate poorly may allow virus replication at that site even
when plasma viral load is below 50 copies ml21 (Best et al.,
2012; Di Mascio et al., 2009; Else et al., 2011; Halfon et al.,
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2010; Kwara et al., 2008; Launay et al., 2011). Since the rate
of reactivation of latent viruses in resting T-cells is unknown
in vivo (Siliciano & Siliciano, 2010), it is unclear whether it
occurs frequently enough to maintain the low-level viraemia
that is detected in patients. Thus, the most probable origin
of the low-level viraemia may be the sanctuary sites where
productive infection is expected to be occurring constantly.

In order to determine the contribution of each of these
factors to the low-level viraemia in the body, phylogenetic
studies were performed on the viral sequences isolated from
the residual viraemia. The results were contradictory: while
some studies showed a lack of evolution among the
sequences found, suggesting that the progeny virions came
from one stable reservoir among CD4+ T-cells (Bailey et al.,
2006; Joos et al., 2008; Ruff et al., 2002), others found viral
sequences that were not detected among the resting T-cell
population, indicating another cellular source for the
residual viraemia (Bailey et al., 2006; Brennan et al., 2009;
Sahu et al., 2009). Another indication of on-going productive
infection would be if treatment intensification (the addition
of a fourth anti-retroviral to the standard three-drug regime)
reduced the basal level of viraemia further. The majority of
treatment intensification studies using the HIV-integrase
inhibitor Raltegravir (RGV) showed no significant reduction
of the residual plasma viraemia (Dinoso et al., 2009b; Gandhi
et al., 2010; Hatano et al., 2011; McMahon et al., 2010).
However, in one study RGV increased the number of ‘2-LTR
(long terminal repeat) circles’ found in the PBMCs of 29 % of
the treated subjects (Buzón et al., 2010). Since RGV blocks
the integration of linear viral DNA from a productive
infection and encourages the formation of 2-LTR circles
(Middleton et al., 2004; Svarovskaia et al., 2004), these data
indicate the presence of an on-going infection. In a separate
study, intensification with RGV reduced unspliced HIV-1
RNA within the ileum, but caused no significant reduction in
plasma viraemia (Yukl et al., 2010), illustrating the possibility
of on-going infection occurring in a compartment other than
the blood (Table 1).

Most of the CD4+ T-cells in the body reside within the
gastrointestinal tract and the lymphatic tissues rather than

within peripheral blood (Mowat & Viney, 1997). In
contrast, the majority of studies on HIV-1 replication
dynamics and CD4+ T-cell depletion have been performed
in peripheral blood because it is the easiest compartment to
access. It has been shown that the gastrointestinal tract is
the major site of HIV-1 replication and CD4+ T-cell
depletion during all stages of HIV/AIDS (Brenchley et al.,
2004a; Chun et al., 2008), and that the destruction of the
CD4+ T-cell population within the gastrointestinal tract
leads to the translocation of microbial products to the
circulatory system and contributes to the chronic inflam-
mation and immune exhaustion that are associated with
HIV/AIDS (Douek et al., 2009). Thus, we may be
overlooking vital pieces of the jigsaw if we focus solely
on the peripheral blood compartment.

Apart from CD4+ T-cells, HIV-1 can also infect cells of the
monocytic lineage (Coleman & Wu, 2009; Gartner et al.,
1986; Le Douce et al., 2010). HIV-1 infection of macro-
phages tends to be less cytopathic than infection of activated
T-cells (Ho et al., 1986, 1995; Nicholson et al., 1986). Also,
infected monocytes can migrate to the central nervous
system and the gastrointestinal tract before maturing into
macrophages, potentially sheltering the virus from the full
potency of HAART (Le Douce et al., 2010). The contri-
bution of infected macrophages to HIV-related neurological
decline is well documented (González-Scarano & Martı́n-
Garcı́a, 2005). It is also well known that dendritic cells can
transport whole virions to lymph nodes where susceptible
activated CD4+ T-cells reside. Moreover, dendritic cells
themselves can become infected under certain circumstances
(Coleman & Wu, 2009). However, it is not clear whether
proviral clones or individual infected cells within the
monocytic population can survive for long enough to
function as long-lived latency reservoirs (Eisele & Siliciano,
2012). It is possible that within the safety of sanctuary sites
and with continuous replenishment of susceptible cells,
continuous productive infection may be maintained by
macrophages and dendritic cells. In addition it has been
proposed that infection of immature CD4+/CD8+ ‘double
positive’ thymocytes during thymopoiesis may generate a

Table 1. Summary of the evidence for and against the hypothesis that the persistent residual viraemia in HAART-treated patients
originates from a single source

Persistent viraemia originated from one source (resting T-cells) References

$ Viral genomes recovered from persistent viraemia show little variation Bailey et al. (2006); Joos et al. (2008); Ruff et al. (2002)

$ HAART intensification does not reduce residual viraemia Dinoso et al. (2009b); Gandhi et al. (2010); Hatano et al. (2011);

McMahon et al. (2010)

Multiple sources contribute to persistent viraemia

$ Persistent HIV-1 infection has been found within different parts of

the body

See text

$ Viral sequences distinct from those isolated from resting T-cells are found Bailey et al. (2006); Brennan et al. (2009); Sahu et al. (2009)

$ HAART intensification increased 2-LTR circles from PBMCs Buzón et al. (2010)

$ HAART intensification reduced HIV-1 RNA within the ileum Yukl et al. (2010)
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population of latently infected naı̈ve T-cells (Brooks et al.,
2001). Despite the continuing debate over the true origin of
the low-level viraemia, it can be agreed that a viable
therapeutic intervention to cure HIV/AIDS should involve
the elimination of all these proven and potential reservoirs.

Haematopoietic stem cells (HSCs) are a viral reservoir?

HSCs are a population of primitive, self-renewing pre-
cursor cells that reside in the bone marrow (Cabrita et al.,
2003). HSCs can proliferate and differentiate into all the
cell types found in peripheral blood. HSCs and other more
mature precursor cell types such as the multipotent
progenitor cells (MPPs) can express the HIV-1 receptors
CD4, CCR5 and CXCR4; thus in theory these cells can be
infected by HIV-1 (Alexaki & Wigdahl, 2008; McNamara &
Collins, 2011). However, whether this is the case in vivo is
controversial, with contradictory evidence emerging from
different studies (Davis et al., 1991; Folks et al., 1988; Neal
et al., 1995; Stanley et al., 1992).

If HSCs and other progenitor cells are proven to be latent
reservoirs of HIV-1, it would make the difficult task of
curing HIV/AIDS even more challenging as these cells are
very long-lived, can self-propagate and the provirus in
these cells may not be affected by HAART or any novel
therapies that target latently infected CD4+ T-cells.
Recently, it has been shown that CD34+ progenitor cells
(that include HSCs and MPPs) are susceptible to latent
infection ex vivo, and that integrated provirus was detected
among CD34+ cells from HAART-treated patients (Carter
et al., 2010). A follow-up study showed that only X4 or
dual R5/X4-tropic viruses could efficiently infect these
CD34+ progenitor cells (Carter et al., 2011). Furthermore,
this study also showed that human HSCs infected with a
GFP-reporter virus could be successfully engrafted into
irradiated non-obese diabetic (NOD)/SCID IL-2Rcnull
mice, leading to the detection of human leukocytes in the
peripheral blood that were carrying the reporter virus 14–
18 weeks post-engraftment (Carter et al., 2011). These
results indicate that infected haematopoietic progenitor
cells are a reservoir for HIV-1. However, other studies have
failed to detect HIV-1 amongst the FACS-sorted CD34+

progenitor cells of HAART-treated patients (Durand et al.,
2012; Josefsson et al., 2012) and it was suggested that the
positive selection of CD34+ cells by magnetic beads as used
in the studies by Carter et al. may be insufficient to remove
all the contaminating CD4+ T-cells. Also, are the results
from the engraftment experiment, which used a reporter
virus and a highly artificial small animal model, relevant to
the situation in the human body? The existence of an HSCs
reservoir remains a controversy and requires further study.

Latent HIV-1 infection of resting CD4+ T-cells

Although HIV-1 can persistently replicate within sanctuary
sites, improvements in drug penetration or HAART
intensification may overcome this barrier to eradication in

the future. However, enhancing the effectiveness of HAART
will not affect the latent viruses hiding within the resting
CD4+ T-cell populations of the body. Thus, the latent
infection within resting T-cells remains the biggest proven
obstacle to a sterilizing cure of HIV-1 infection. The
majority of the circulating CD4+ T-cells in the body at
any given time are in a resting state (Berard & Tough, 2002).
These cells are typically defined by the lack of activation
marker expression (CD25, CD69 and HLA-DR), as well as
the maintenance of the cells in the G0 phase (Chun et al.,
1997). They can be broadly divided into those that have not
undergone antigen-stimulated expansion (naı̈ve T-cells) and
those that have remained behind after the end of an immune
response (memory T-cells) (Berard & Tough, 2002). Among
infected resting T-cells, HIV-1 gene expression is largely
suppressed (Hermankova et al., 2003). However, some
transcription of HIV mRNA can be detected within the
resting T-cells of HAART-treated patients, although full
virus production is inhibited by inefficiencies at various
stages of the viral life cycle (Lassen et al., 2004, 2006; Vatakis
et al., 2010) (Fig. 1). Since most of these latently infected
resting CD4+ T-cells are CD45RO+ memory cells
(Brenchley et al., 2004b; Chomont et al., 2009; Chun et al.,
1997; Pierson et al., 2000), it is hypothesized that the
majority of the latently infected T-cells come from activated
CD4+ T-cells that were infected and then reverted back to a
resting memory state before the start of virus replication
(Han et al., 2007). Latent provirus can be maintained within
the memory T-cell population by the homeostatic prolif-
eration of the infected host cells, driven by IL-7 (Bosque
et al., 2011; Chomont et al., 2009).

Virus may infect resting T-cells directly and latent infection
of naı̈ve T-cells has been observed in patients, albeit at a
lower frequency than memory T-cells (Chomont et al.,
2009; Pierson et al., 2000). However, direct infection of
resting T-cells is very inefficient (Pierson et al., 2000;
Stevenson et al., 1990), with defects in reverse transcription
and delays in integration in comparison with infection of
activated CD4+ T-cells (Vatakis et al., 2007, 2009).
Recently, two studies have implicated the innate restriction
factor SAMHD1 in the inhibition of reverse transcription
in resting CD4+ T-cells. Initially shown to be absent in
transformed CD4+ T-cell lines, SAMHD1 was found to be
expressed in both resting and activated primary CD4+ T-
cells. In resting T-cells, SAMHD1 restricted reverse
transcription by depleting the cellular pool of dNTPs
(Baldauf et al., 2012; Descours et al., 2012). Nevertheless,
integration of the viral genome can still occur in resting T-
cells (Vatakis et al., 2009) and no method described to date
has been able to distinguish between latently infected
memory T-cells that were infected either during activation
or during quiescence (Vatakis et al., 2010). Furthermore, a
recent study showed that in patients receiving HAART
treatment, the amount of HIV DNA in memory T-cells
declined over time while the amount of HIV DNA in naı̈ve
cells remained constant, suggesting that direct infection of
resting T-cells may be replenishing the latent viral reservoir
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as the disease progresses (Wightman et al., 2010). These
observations are consistent with the finding that R5 tropic
viruses [which are associated with acute infection (Choe
et al., 1996; Feng et al., 1996; Zhu et al., 1993)]
preferentially infect CCR5-expressing memory T-cells
whereas X4 tropic viruses [which are associated with late
disease progression (Connor et al., 1997)] exhibit a
preference for CCR5- CXCR4+ naı̈ve T-cells (Bleul et al.,
1997; Ostrowski et al., 1999; Wu et al., 1997). The
stimulatory effects of HIV-1 gp120 may enable the direct
infection of resting T-cells by activating calcium flux and
NFAT signalling down the CCR5 signalling pathway, as
well as upregulating inositol triphosphate-mediated sig-
nalling and the expression of the IL-2 receptor (Cicala et
al., 2006; Kornfeld et al., 1988; Weissman et al., 1997).
Stimulation of CXCR4 signalling by HIV-1 gp120 induces
cytoskeleton-remodelling activity in resting T-cells,
increasing the efficiency of subsequent infection with
HIV-1 (Yoder et al., 2008). Thus, it is possible that the
direct infection of resting T-cells plays an increasingly
important role in maintaining the viral reservoir as the
disease progresses.

The molecular mechanisms of latency in HIV-1 infection
have been reviewed extensively (Coiras et al., 2009; Colin &
Van Lint, 2009; Marcello, 2006; Marsden & Zack, 2009;
Richman et al., 2009; Siliciano & Greene, 2011). In general,
HIV-1 latency may be divided into pre-integration or post-
integration latency. Pre-integration latency refers to the
partial or complete inhibition of the viral life cycle before
the integration of the virus into the host genome (see
above). Most of the HIV-1 DNA found in resting T-cells is
unintegrated (Chun et al., 1997; Sloan & Wainberg, 2011).
Although it has been shown that linear unintegrated viral
DNA within resting CD4+ T-cells is able to complete

integration after the activation of the cell (Bukrinsky et al.,
1991), pre-integration latency is not thought to be relevant
to the establishment of the reservoir of latently infected
resting T-cells due to the labile nature of viral DNA in the
cytoplasm of the cell (Pierson et al., 2002). Accordingly, the
unintegrated viral DNA may no longer be replication
competent after a protracted period inside the host cell
(Han et al., 2007; Zhou et al., 2005). Post-integration
latency is the failure of expression of the viral genome
after it has been integrated into the host genome. While
less than 0.05 %, or approximately 106 to 107 cells, carry
integrated provirus, it is these integrated proviruses that
are thought to constitute the latent viral reservoir (Chun
et al., 1997).

Even after a successful integration event, there are still
multiple barriers to productive HIV-1 replication within
resting CD4+ T-cells (Fig. 1). Although HIV-1 genomes
are generally integrated into genes that are actively
expressed within resting T-cells (Han et al., 2004), viral
gene expression may be downregulated by promoter
occlusion (if the provirus is integrated in the same
orientation as the host gene) (Greger et al., 1998) or by
collisions between RNA Pol II molecules that are travelling
in opposite directions (if the provirus is integrated in the
opposite orientation as the host gene) (Han et al., 2008).
Two nucleosomes, named nuc-0 and nuc-1, are frequently
associated with the HIV-1 59LTR and regulate the basal
transcriptional activity of the viral genome by controlling
the access of transcription factors to the LTR (Verdin et al.,
1993). The remodelling of the nucleosomes is regulated by
the acetylation status of their constituent histones, which is
in turn controlled by enzymes such as histone acetyltrans-
ferases and histone deacetylases (Van Lint et al., 1996). This
allows the manipulation of HIV-1 transcriptional activity
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Fig. 1. A summary of the multiple obstacles
blocking productive HIV-1 infection of resting
CD4+ T-cells. Inhibition of virus replication
occurs at multiple steps during the viral life
cycle. Transcription interference refers to
promoter occlusion and the collision of RNA
polymerases that hinder efficient viral gene
expression.
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by pharmacological means, potentially leading to a viable
method to eliminate the virus reservoir from resting CD4+

T-cells (see Novel drug discovery). The presence of cellular
transcriptional repressors, for example YY1 and LSF, as well
as the methylation of the two CpG islands at the HIV-1
transcription start site, can recruit histone deacetylases to the
HIV-1 LTR and reinforces latency (Blazkova et al., 2009;
Coull et al., 2000; Kauder et al., 2009), while the binding of
the transcription factor NF-kB stimulates proviral reactiva-
tion by recruiting histone acetyltransferases to the LTR and
initiating early HIV-Tat production (Lusic et al., 2003;
Williams et al., 2007). The lack of NF-kB, as well as
transcription factors NFAT, SP-1 and AP-1 prevents the
synthesis of Tat and the subsequent Tat-dependent, high
level viral gene expression (Coiras et al., 2009; Mbonye &
Karn, 2011; Williams & Greene, 2007). The transcriptional
activity of Tat is highly dependent on interacting with the
cellular factor P-TEFb, which triggers effective RNA Pol II
elongation (Parada & Roeder, 1996), and the negative
regulation of P-TEFb activity in resting T-cells further
impairs the expression of HIV-1 genes (Ghose et al., 2001).
Tat also interacts with several other cellular factors such as
the histone acetyltransferases p300 and P/CAF to promote
transactivation of viral genes (Benkirane et al., 1998). The
acetylation of the RelA subunit of NF-kB by p300 increases
its transcriptional activity (Chen et al., 2002) and this is
countered by the cellular deacetylase SIRT1 (Yeung et al.,
2004). SIRT1 activity is in turn blocked by HIV-1 Tat (Kwon
et al., 2008). In addition, it has been demonstrated that HIV
Tat and Rev transcripts are retained in the nuclei of resting
CD4+ T-cells (Lassen et al., 2006) and that numerous host
microRNAs can directly or indirectly downregulate HIV-1
gene expression, contributing to the maintenance of proviral
latency (Chiang & Rice, 2012).

Due to the involvement of so many cellular factors, it has
been proposed that there are different degrees of latency
within the T-cell population, depending on the cell type
and the extracellular environment (Pace et al., 2011). A
recent in vitro study of HIV-1 latency using a central
memory T-cell model system has shown that IL-7-driven
homeostatic replication of infected cells can induce partial
virus reactivation, while stimulation of the T-cell receptor
signalling pathway with anti-CD3/anti-CD28 antibody
induced full reactivation (Bosque et al., 2011). This
supports the hypothesis of a dynamic reservoir of infected
T-cells at various levels of cellular and viral activation.

An area of research which has, as yet, escaped the attention
of the HIV-latency field is the molecular mechanism
behind CD4+ T-cell quiescence. It has been known for
some time that the quiescence state is actively maintained
by factors such as LKLF, Tob, Foxo3a and Foxj1 (Coffer &
Burgering, 2004; Tzachanis et al., 2004; Yusuf & Fruman,
2003). The role of these factors in HIV-latency has been
explored by few laboratories so far (Haaland et al., 2005;
van Grevenynghe et al., 2008) and further research may
provide new insights into the mechanism of latency as well
as potential therapeutic targets.

In vitro and in vivo models of latency

The latently infected CD4+ T-cell population within the
patient is very small, thus making ex vivo experiments very
difficult. The use of in vitro and in vivo models of latency
has been and will continue to be vital to the understanding
of HIV-1 latency and drug discovery. Early studies of
lentiviral latency using cell lines such as ACH-2, U1 and J-
Lat showed the involvement of host cytokine signalling
pathways and chromatin reorganization in modulating
latency (Folks et al., 1987, 1989; Jordan et al., 2003), but
their transformed nature means their responses to treat-
ments may not be physiologically relevant. For example, in
the latently infected J-Lat cell line, HIV-1 preferentially
integrates near the heterochromatin where transcriptional
activity is low (Jordan et al., 2003). However, this
preference is not observed within the latently infected
resting CD4+ T-cells from HAART-treated patients, rather
the provirus overwhelmingly favours integration into
active transcriptional regions (Han et al., 2004; Schröder
et al., 2002).

Most of the current in vitro models of HIV-1 latency
involve the use of primary cells (Yang, 2011). These
experiments are technically challenging, often taking weeks
or months to complete in order to mimic the transition of
activated T-cells to quiescent memory T-cells in vivo
(Marini et al., 2008). Generating enough cells for experi-
ments, especially in high-throughput screening of com-
pounds, is another problem. Strategies such as the
transduction of a survival gene into primary cells (Yang
et al., 2009), using low levels of cytokines such as IL-2 or
IL-7 (Bosque & Planelles, 2009; Marini et al., 2008) or co-
culture with a feeder cell line (Sahu et al., 2006; Tyagi et al.,
2010) have been described. Protocols to directly infect
purified resting T-cells ex vivo have also been developed.
To overcome the inefficient nature of infecting resting T-
cells, methods such as spinoculation (O’Doherty et al.,
2000) or stimulation with the chemokines CCL19 and
CCL21 (Saleh et al., 2007, 2011) were used. The pros and
cons of these in vitro model systems have been reviewed
elsewhere (Pace et al., 2011; Wightman et al., 2012; Yang,
2011). Any model of latency would have to balance
multiple conflicting demands such as maintaining the
viability of the cells, while preserving a resting state and
allowing viral integration without stimulating full-blown
virus replication. A further complication is the fact that
there are multiple types of cells that can be latently
infected, such as central memory T-cells, transitional
memory T-cells and naı̈ve T-cells (Chomont et al., 2009;
Wightman et al., 2010); any future treatments to reactivate
the latent proviruses would have to be effective in all of
these subsets of latently infected T-cells.

Non-human primates, in particular rhesus macaques
infected with the simian immunodeficiency virus (SIV) or
chimeric SIVs containing HIV-1 reverse transcriptase have
been used to model HIV-1 latency in HAART-treated
patients (Dinoso et al., 2009a; North et al., 2010; Shen et al.,
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2003). The major advantage of using non-human primates is
that the locations of the persistent viral reservoirs mirror
those in humans (North et al., 2010), which allows
comparative in vivo studies. Also the progression of SIV in
macaques resembles HIV-1 infection in humans, with
distinctive acute and chronic phases of infection that may
lead to immunodeficiency (Hirsch et al., 1996). However,
there are significant differences between SIV infection of
non-human primates and HIV-1 infection in humans. For
example, the residual viraemia for SIV in rhesus macaques
during chronic infection is higher than the levels seen in
humans (Brenchley & Paiardini, 2011). The progression to
AIDS appears to be more rapid in rhesus macaques than in
humans (North et al., 2010). In African green monkeys or
sooty mangabeys, although high levels of virus replication
are observed during the chronic phase of infection, this is
not accompanied by the destructive chronic immune
activation seen in rhesus macaques or humans (Brenchley
& Paiardini, 2011; Chahroudi et al., 2012). Also different
strains of SIV can produce different pathologies in the same
host (Hirsch et al., 2000).

The complexity of finding the correct host and SIV strain
combination that mimics HIV-1 latent infection most
closely, together with issues such as ethical concerns and
high cost have led to the development of other, non-primate
animal models for HIV-1 infection such as humanized SCID
(SCID-hu) mouse models (Boberg et al., 2008; Brooks et al.,
2001; Van Duyne et al., 2009). SCID-hu mice are created by
transplanting SCID mice with human fetal thymus and liver
tissues or peripheral blood lymphocytes to form SCID-hu
Thy/Liv and SCID-hu PBL mice, respectively (Van Duyne
et al., 2009). For example an in vitro model of latently infected
immature CD4+/CD8+ thymocytes has been generated
using SCID-hu Thy/Liv mice (Brooks et al., 2001; Burke
et al., 2007). A major drawback of using SCID-mouse-
based models is the failure to fully reconstitute the human
immune system within the transplanted animals (Rossi
et al., 2001; Van Duyne et al., 2009). Further improve-
ment to efficiency of engraftment was achieved with the
generation of the NOD/SCID mouse model (Hesselton et al.,
1995) and later with the double knockout of the common
cytokine receptor cC and the recombinase activating gene 2
(Rag2) (Goldman et al., 1998). The transplantation of human
CD34+ stem cells into Rag22/2cC2/2 mice leads to the
development of a functional model of the human immune
system in the bodies of the mice (Traggiai et al., 2004) and
forms the basis of a recent murine model of HIV-1 latency
that contains infected resting T-cells in the peripheral blood
and lymphoid tissues (Choudhary et al., 2009; 2012). Viable
small animal models are vital in the preclinical evaluation of
latency reversing therapies, especially if they can replicate
latent infection compartments other than peripheral blood.

The feline model of HIV-1 latency

Feline immunodeficiency virus (FIV) was discovered in
1986 in California (Pedersen et al., 1987). Both HIV-1 and

FIV target activated CD4+ T-cells (Yamamoto et al., 1988;
Zagury et al., 1986), but whereas the primary receptor for
HIV-1 is CD4 (Dalgleish et al., 1984), the primary receptor
for FIV is CD134 (OX40) (Shimojima et al., 2004). HIV-1
utilizes CCR5 and CXCR4 as its secondary receptors (Choe
et al., 1996; Deng et al., 1996; Feng et al., 1996), while FIV
uses CXCR4 alone as its sole secondary receptor (Willett
et al., 1997). FIV is transmitted mainly by biting
(Yamamoto et al., 1989) and causes clinical signs in cats
that are similar to AIDS in humans (Ackley et al., 1990;
Barlough et al., 1991; Novotney et al., 1990).

Since FIV has a similar cell tropism to HIV-1, it is expected
that the host response to FIV and its pathogenesis will be
comparable to HIV-1. Cats mount both humoral and
cytotoxic T-cell responses to FIV infection (Beatty et al.,
1996; Egberink et al., 1992; Flynn et al., 2002). However,
the hosts usually fail to clear the infection and may
succumb to immunodeficiency. The mechanisms of
pathogenesis of HIV-1 and FIV are remarkably similar.
Both viruses cause massive depletion of the gastrointestinal
tract CD4+ T-cell population (Brenchley et al., 2004a;
Howard et al., 2010). The low fidelity of the HIV-1 and FIV
reverse transcriptases results in the generation of a diverse
pool of viral variants within the host, encouraging immune
escape (Bebenek et al., 1993; Hosie et al., 2011; Kraase et al.,
2010; Mansky & Temin, 1995). All of these factors promote
chronic immune activation, eventually leading to the
breakdown of the host immune system (Douek et al.,
2009; Tompkins & Tompkins, 2008).

Previous studies of FIV in cats have shown that activated
(CD4+ CD25+) and resting (CD4+ CD25–) CD4+ T-cells
from peripheral blood can be latently infected ex vivo and
that FIV replication can be reactivated by the application of
ConA or IL-2 (Joshi et al., 2005, 2004), mirroring the crucial
role of IL-2 in productive infection with HIV-1 (Oswald-
Richter et al., 2004). In a separate study, cats challenged with
a low-dose exposure to FIV-infected T-cells showed an
aviraemic infection, and when cells from multiple tissues
were stimulated by PMA, FIV gp120 production was
detected (Assogba et al., 2007). More recently it has been
shown that FIV establishes a latent infection within activated
and resting T-cells of cats during the asymptomatic phase of
infection, similar to the latent infection of the resting T-cell
population by HIV-1 in humans (Murphy et al., 2012).
These cells contained detectable FIV DNA but no FIV RNA.
Furthermore, virus replication from these latently infected
cells could be reactivated ex vivo by the mitogens PHA and
PMA as well as the histone deacetylase inhibitor SAHA
(McDonnel et al., 2012) (see Novel drug discovery). These
findings support the proposal of using FIV-infected cats as
an alternative small animal model for HIV-1 latency.

Stem cell transplantation and gene therapy
approaches to curing HIV/AIDS

Recently, a HIV-1-positive patient who developed acute
myeloid leukaemia was apparently cured of HIV-1
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infection after receiving an HSC transplant from a donor who
was homozygous for the CCR5 D32 allele (Hütter et al.,
2009). The patient underwent intensive chemotherapy and
radiotherapy to prepare for the transplant, which presumably
also eliminated almost all the infected CD4+ T-cells within
the body. In addition, the patient developed graft-versus-host
disease after transplantation, indicating that the transplanted
cells had replaced the host immune system. HAART
treatment was then stopped and in the follow-up study the
patient was shown to remain free from the virus (Allers et al.,
2011). To subject otherwise healthy HAART-treated patients
to this potentially lethal procedure is ethically question-
able and practically not viable, especially in resource-poor
settings. However, this unique case has raised an interesting
question regarding the kind of intervention necessary to clear
the body of HIV-1: was the cure achieved by the intensive
chemotherapy and radiotherapy or by the transplant of the
D32 HSCs, which gave rise to HIV-1 resistant CD4+ T-cells?
Treatment of HIV-1-positive lymphoma patients with
autologous stem cell transplants failed to eliminate the virus
from the body (Cillo et al., 2012), which indicated the
presence of residual virus or infected cells within the
extracted autologous cell population or within the host. It
also demonstrated the need to make the host CD4+ T-cells
immune to HIV-1 infection before transplantation.

The CCR5 D32 mutation abrogates infection of CD4+ T-
cells by R5 HIV-1 viruses (Dean et al., 1996), the strains
most frequently associated with early stage infection and
which are transmitted preferentially between individuals
(Margolis & Shattock, 2006). Thus, the nascent CD4+ T-
cells from the transplant would be resistant to new infection.
Disruption of the CCR5 gene has no apparent undesirable
effects on the normal functioning of HSCs (Bai et al., 2000;
O’Brien & Moore, 2000). Various techniques have been
developed to disrupt the CCR5 gene ex vivo, including the
use of CCR5-specific siRNAs, ribozymes, intrabodies and
zinc-finger nucleases (ZFNs) (Anderson et al., 2007; Bai
et al., 2000; Holt et al., 2010; Kumar et al., 2008; Swan et al.,
2006). Each of these treatments has been tested in mouse
models and led to the production of modified HSCs which
give rise to CD4+ T-cells that are resistant to R5 HIV-1
infection. ZFNs, which are engineered endonucleases
containing zinc finger domains that recognize specific
DNA sequences (Urnov et al., 2005), have also been used
to disrupt the CCR5 gene in CD4+ T-cells in a mouse model
of HIV-1 infection (Perez et al., 2008). More recently, ZFNs
targeting CD4+ T-cells have been successfully tested in a
phase I clinical trial, in which the treatment was well
tolerated by patients, the modified CD4+ T-cells were able
to persist in the body and there were improvements on the
CD4+ T-cell count and CD4+:CD8+ T-cell ratio (June
et al., 2012). ZFNs that can disrupt the CXCR4 gene in
CD4+ T-cells have also been developed and it has been
demonstrated that they confer resistance to cells against the
X4-tropic HIV-1 strains associated with late-stage infection
(Wilen et al., 2011; Yuan et al., 2012). Combining the
disruption of CCR5 and CXCR4 may provide a viable gene

therapy approach to a functional cure, in which the patient’s
CD4+ T-cells are made resistant to HIV-1 ex vivo and are
reintroduced back into the body. There may still be residual
viraemia but the virus would not cause disease after the
withdrawal of HAART. Potential problems with the use of
the ZFNs include the possibility of non-specific cleavage of
host DNA (Gabriel et al., 2011; Pattanayak et al., 2011) and
the possibility of adverse effects from disrupting CXCR4,
which has not been well studied at the time of writing.

Novel drug discovery

The main strategy that is currently being pursued by many
laboratories to eradicate HIV-1 from the body is to
reactivate the latent virus reservoir within resting CD4+ T-
cells (Marsden & Zack, 2009; Richman et al., 2009). Early
attempts at reactivation using powerful cytokines such as
IL-2 and TNF-a stimulated virus production (Chun et al.,
1998) but also caused dangerous side effects such as the
non-specific, global activation of T-cells (Prins et al., 1999).
In contrast, the cytokine IL-7 has also been shown to have
potent anti-HIV latency effects without inducing T-cell
activation (Levy et al., 2009; Scripture-Adams et al., 2002;
Wang et al., 2005). IL-7 is well-tolerated in vivo (Levy et al.,
2012) and it has been used in a clinical trial to reduce the
latent reservoir size (ERAMUNE 01, due to finish in
January 2013. http://clinicaltrials.gov). However, a poten-
tial problem with the use of IL-7 to deplete the latent
reservoir is that at low concentrations, IL-7 can promote
the survival or induce the homeostatic proliferation of the
latently infected memory T-cells without triggering activa-
tion of the virus, thus inadvertently expanding the reservoir
of infected cells (Chomont et al., 2009; Marini et al., 2008).

Compounds that stimulate protein kinase C and NF-kB
such as the phorbol ester prostratin and 5-hydroxy-
naphthalene-1,4-dione (5HN) have been shown to reacti-
vate latent infection in vitro (Kulkosky et al., 2001; Yang
et al., 2009). Intriguingly, prostratin also has anti-HIV-1
replication effects (Biancotto et al., 2004; Rullas et al.,
2004) and a similar dual effect of the compound on FIV
replication has been described in vitro (Chan et al., 2013).
Histone deacetylase inhibitors such as valproic acid and
suberoylanilide hydroxamic acid (SAHA or Vorinostat)
have been shown to reverse HIV latency by remodelling the
HIV-repressive nucleosome nuc-1 (Archin et al., 2009;
Contreras et al., 2009; Van Lint et al., 1996; Ylisastigui et al.,
2004). SAHA is a selective class I and II histone deacetylase
inhibitor and is approved as a clinical treatment for
cutaneous T-cell lymphoma. It has been used in a number
of ex vivo and clinical studies of the latent reservoir (Archin
et al., 2012; Shan et al., 2012). However, further research is
required to investigate fully the long-term side effects of
SAHA in terms of its potential as a mutagen and its ability
to reactivate other latent viruses (Archin et al., 2012; Kerr
et al., 2010; Wightman et al., 2012). Using a siRNA screen,
a novel HIV replication-inhibiting host factor has been
identified recently (Zhu et al., 2012). This factor, named
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bromodomain containing 4, can be inhibited by a small
molecule known as JQ1 (Filippakopoulos et al., 2010) and
JQ1 has been shown to have HIV-1 latency reversing activity
by several laboratories (Banerjee et al., 2012; Li et al., 2013;
Zhu et al., 2012). Other compounds and small molecules
that have been shown recently to reactivate latent HIV-1
infection include a bacterial protein named HIV-1-react-
ivating factor (Wolschendorf et al., 2010), the aldehyde
dehydrogenase inhibitor disulfiram (Xing et al., 2011) and a
number of quinolin-8-ol derivatives (Xing et al., 2012).
Curiously, a recent clinical trial has demonstrated that
intensification of HAART with the CCR5 antagonist
Maraviroc (MVC) caused a reduction in the size of the
latently infected T-cell reservoir (Gutiérrez et al., 2011). The
mechanism behind this effect of MVC is unknown, but the
binding of MVC to CCR5 may lead to the stimulation of cell
signalling analogous to the stimulation of the other major
HIV-1 co-receptor, CXCR4, by the binding of HIV-1 Env
(Wu & Yoder, 2009; Yoder et al., 2008). If the findings of this
study are confirmed, a new way of reactivating latently
infected cells may have been identified. Moreover, it has
been shown recently that fever enhances the activity of Tat, a
phenomenon mediated by the heat-shock protein Hsp-90
(Roesch et al., 2012). Using a J-Lat model, this study
demonstrated that although hyperthermia by itself cannot
reactivate latency, it can enhance the reactivation effect of
other treatments such as the co-cultivation of the J-Lat cells
with IL-2 supplemented PBMCs (Roesch et al., 2012). This
suggests that the artificial induction of fever may be used to
boost the effectiveness of any future latency reversing
therapies.

Borrowing from the concept of HAART, a combination of
different latency reversing agents may be used synergis-
tically to enhance the effect of reactivation therapies
(Burnett et al., 2010; Deeks et al., 2012; Reuse et al.,
2009). The number of compounds identified is likely to
increase thanks to on-going and future high-throughput
screens that look for molecules which can stimulate latent
HIV-1 to reactivate. One novel screening method described
recently can measure the expression of cell-associated viral
RNA among latently infected T-cells as soon as the cells are
extracted from the patient without the need for further co-
culturing (Archin et al., 2012). Using this assay, an increase
in viral RNA can be demonstrated amongst the resting T-
cells from patients after being treated with a single dose of
SAHA. However, an important caveat to this type of
experiment is that stimulation of viral transcription, viral
protein synthesis or even virion production may not
necessarily lead to the destruction of the latently infected
cell (see below).

Stimulation of latent virus replication may not
lead to the depletion of the viral reservoir

It has been assumed that once the latent provirus is
reactivated inside a resting T-cell, the cell would die by
HIV-induced cytopathic effects or be killed by the host

immune response (Richman et al., 2009). However, this view
has recently been challenged (Shan et al., 2012). Stimulation
of resting CD4+ T-cells from HAART-treated patients with
the SAHA did not reduce the size of the latent reservoir (Shan
et al., 2012). Furthermore, latently infected resting T-cells
reactivated by SAHA were killed neither by viral cytopathic
effects, nor by autologous CD8+ T-cells isolated from the
same patients. Only after antigen-specific stimulation of the
autologous CD8+ T-cells was efficient killing of the SAHA-
reactivated, infected resting CD4+ T-cells restored. The
transduction of the survival gene Bcl-2 into the resting T-cells
during the establishment of the latent infection assay, as well
as the use of modified reporter viruses may have increased
the survival rate during the study. However, reactivation by
SAHA of the latent wild-type virus within unmodified resting
T-cells isolated from patients also did not lead to a
contraction of the latent virus reservoir. These findings
showed that any future therapeutic regime to eliminate the
latent reservoir would require the boosting of anti-HIV
cytotoxic T-lymphocyte (CTL) responses, which would likely
be in a state of exhaustion after years of chronic activation
(Trautmann et al., 2006). In addition to stimulating the
CD8+ T-cells with viral antigens and cytokines, inhibiting
the function of immunoregulatory molecule such as PD-1
may be another option for the restoration of full CTL
function in the patient against HIV-1 (Eichbaum, 2011).
Also, it is known that resting T-cells are less vulnerable to cell
death compared with their activated counterparts (van
Leeuwen et al., 2009). Would the use of drugs that stimulate
cellular activation, such as prostratin, lead to the death of the
reactivated infected T-cells? Alternatively, is it possible to use
novel technologies such as nanoparticles (Peer et al., 2007),
intrabodies (Pérez-Martı́nez et al., 2010) or RNA aptamers
(Burnett & Rossi, 2012) to target the reactivated infected T-
cells for destruction (Fig. 2)?

Another observation that may be a cause for concern
among the ever growing literature on latency-reversing
compounds is that even the most promising molecules
such as prostratin, SAHA and JQ1 cannot reliably stimulate
productive infection from all HAART-treated patients’
samples, despite being very successful in reactivating latent
viruses from in vitro models (Contreras et al., 2009;
Kulkosky et al., 2001; Zhu et al., 2012). The variable
performances of these compounds may be due to sampling
errors as a result of the fact that there are so few latently
infected cells within the patient (hence the need for in vitro
model systems), or the underlying activation status of the
cells, as in the case for prostratin (Chan et al., 2012;
Kulkosky et al., 2001). Alternatively, this may indicate that
the current in vitro models does not represent all the subset
of CD4+ T-cells that are latently infected. Also can we
assume that our current methods of handling CD4+ T-
cells accurately reproduce in vivo conditions? Nevertheless,
the potential for false negatives and false positives in the
current assays demands further research into the basic
molecular biology of HIV-1, T-cell biology and improve-
ments to existing HIV-latency models.
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Conclusion

After more than two decades of research we are only
beginning to appreciate the full complexity of the problem
of HIV-1 persistence and latency. Recent research suggests
that there are multiple reservoirs of replication-competent
virus which contribute to viral persistence. To achieve a
sterilizing cure of HIV-1 requires significant disruption or
even elimination of all these reservoirs. In addition, there are
still many unanswered questions regarding HIV-1 latency
remaining. For example, what is the source of the persistent
low-level viraemia? What is the contribution of direct
infection of resting T-cells to the overall size of the viral
reservoir? Can gene therapy lead to a functional cure of HIV-
1? How do we eliminate the infected T-cells once they are
reactivated? Research into novel small animal models of HIV-
1 latency such as the Rag22/2cC2/2 mouse or FIV-infection
of cats may speed up the drug development process but their
relevance to the clinic needs to be established. Further research
into these issues is needed urgently in order to stop the global
HIV/AIDS epidemic, which continues to be a serious global
threat to public health almost 30 years after its discovery.
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