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Abstract
Physiologically-based pharmacokinetic and cellular kinetic models are used extensively to predict concentration profiles of

drugs or adoptively transferred cells in patients and laboratory animals. Models are fit to data by the numerical optimisation

of appropriate parameter values. When quantities such as the area under the curve are all that is desired, only a close

qualitative fit to data is required. When the biological interpretation of the model that produced the fit is important, an

assessment of uncertainties is often also warranted. Often, a goal of fitting PBPK models to data is to estimate parameter

values, which can then be used to assess characteristics of the fit system or applied to inform new modelling efforts and

extrapolation, to inform a prediction under new conditions. However, the parameters that yield a particular model output

may not necessarily be unique, in which case the parameters are said to be unidentifiable. We show that the parameters in

three published physiologically-based pharmacokinetic models are practically (deterministically) unidentifiable and that it

is challenging to assess the associated parameter uncertainty with simple curve fitting techniques. This result could affect

many physiologically-based pharmacokinetic models, and we advocate more widespread use of thorough techniques and

analyses to address these issues, such as established Markov Chain Monte Carlo and Bayesian methodologies. Greater

handling and reporting of uncertainty and identifiability of fit parameters would directly and positively impact interpre-

tation and translation for physiologically-based model applications, enhancing their capacity to inform new model

development efforts and extrapolation in support of future clinical decision-making.
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Introduction

Physiologically-based pharmacokinetic (PBPK) models are

mathematical models that describe the kinetics and

dynamics of a transferred cell population (or a drug) in an

organism. Biokinetic modelling has existed since at least

1937 [1], when Teorell used physiological data to model

the kinetics of substances between the blood and various

organ compartments. Since then, these models have been

used in numerous studies to simulate the biodistribution of

drugs (for recent reviews, see [2–4]). Such calculations are

important for drug discovery, allowing the calculation of

metrics such as the total drug exposure in different patient

populations, and they are accepted and expected as sup-

porting information for clinical trials by both the US Food

and Drug Administration and the European Medicines

Agency. More recently, PBPK models have been gener-

alised to describe the movement of cells in the body, to

understand T-cell trafficking and to predict their localisa-

tion [5–11], or their interaction with solid and haemato-

logical cancers [12–15]. These models typically consist of

many compartments describing vascular, interstitial and

other spaces within various organs and tissues of interest.

The models require parameters that quantify the rates of

processes such as entry and exit from each compartment.

Fitting models to data requires optimisation of these

parameters. It is usually possible to fit equations closely to

data and provide a corresponding set of best fit parameters,
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but it is much harder to determine whether the solution is

unique or to quantify the uncertainty on fit parameters.

Simple curve-fitting or non-linear least squares techniques

provide the local covariance of the solution at the fit, but

this is not a substitute for parameter uncertainty and does

not reveal information about the existence of multiple

solutions with a similar fit, or about parameter identifia-

bility. We conducted a brief literature survey, selecting

some of the most cited references containing the term

‘‘PBPK’’ and published since 2010. Of 13 selected studies

[6–11, 14, 16–21], 9 of them used regression (giving no

estimates of parameter uncertainty), 3 used Monolix or

Adapt V (which can give estimates of uncertainty and

indications of identifiability issues through expectation-

maximisation, though no author commented on identifia-

bility), and 1 used an unspecified Markov Chain Monte

Carlo technique, but published no analysis of parameter

uncertainty or identifiability. For many intended applica-

tions, such as the calculation of the area under a curve, a

close fit to data is sufficient. A set of cubic splines can be

mapped to data and a mathematical model of the under-

lying biology is not required. However, PBPK is often

expected to provide supporting evidence to regulatory

bodies, for which understanding of the biology and how it

relates to observable outputs is desirable. To be able to

trust models and extrapolate their results, it is critical to

understand their behaviour, uncertainty and limitations. In

particular, it is important that estimated parameter values

are accurate or that their uncertainty is well-understood, if

these parameters correspond to important biological pro-

cesses such as drug clearance rates. In some cases, this

understanding is essential and it is insufficient to obtain a

‘‘good’’ fit to data, typically defined by a low scoring dis-

tance metric or a qualitatively close match between data

and model output. For example, when scaling model fits to

other populations, such as from an adult population to a

paediatric population or from a mouse model to humans,

one must understand which parameters would be expected

to change and must have accurate estimates of those

parameters, as a 50% change to an ‘‘incorrect’’ value of a

parameter may result in very different predictions to a 50%

change to a ‘‘correct’’ value. Another example is when

modelling an intervention that would be expected to

change a parameter value but where data are not available,

for example, as a reduction in egress rates from a site of

interest. The uncertainty in the change in an observable

outcome such as lesion sizes at a clinical endpoint would

be related to the uncertainty in parameter values. That

uncertainty can be determined by error propagation or by

collective fitting of many parameter sets that could be

consistent with available data. Notably, in the latter case,

output uncertainty can be constrained if the uncertainty in

groups of parameters is constrained, even if individual

parameters are uncertain [22]. A final example is when two

different models of the same biological system have

parameters that describe the same processes but with very

different values. Without analysing the model construction

or parameter fitting processes, one cannot know whether

the different parameter values are due to model assump-

tions or the existence of multiple parameter sets that give

similar model outputs.

Most published PBPK modelling studies use techniques

that yield a fit and report that single fit. Parameter uncer-

tainty or the existence of multiple parameter sets with

similar outputs are rarely reported. In this study, we illus-

trate how these problems manifest in physiologically-based

modelling with three different data sets and three different

published models [5, 10, 14]. In each case, we produced or

used a ‘‘good’’ (close) fit to data, and used synthetic data

generated from the fit parameters to show that ‘‘good fits’’

may be misleading for some cases, as original parameters

are not necessarily recovered; parameters are not neces-

sarily identifiable. Even if accurate parameter values are

not required for a given reported study, published data or

parameter values are often utilised by other mathematical

modellers, and this may cause unknown uncertainty to be

carried forward into a new context. For each of the three

models considered here, we show how simple analyses can

indicate which parameters may be uncertain after a ‘‘good’’

simple fit is obtained, and under which conditions this will

occur for a given parameter. We then show how selected

Bayesian techniques are better suited for uncertainty and

identifiability analysis, and advocate for studies which

make use of such or related techniques that better charac-

terise the parameter space and to report the insights from

these extra analyses where possible. Our objective is to test

the extent to which PBPK models are identifiable and

discuss the consequences for the field. It is well-known that

Bayesian techniques are superior for detailed analysis of

parameter fitting and identifiability, but the issue is rarely

discussed in physiologically based studies and its conse-

quences not widely considered. Likewise, the ‘sloppiness’

(lack of uniqueness of particular parameters or parameter

combinations) has been previously discussed by authors

such as Gutenkunst et al. [22] and others [23–26]. Guten-

kunst et al. concluded that modellers should utilise col-

lective fits of an ensemble of parameter values and to focus

upon predictions, not parameter values. However, there are

scenarios in which particular parameter values are required

or expected, scenarios in which parameter uncertainty is

unexpected (multiple parallel organs with ‘‘only’’ one

parameter each) or in which parameter uncertainty could be

confined to particular parameters, in which cases compu-

tationally intensive collective fits of parameter ensembles

to all source data are not necessary or more beneficial than

simpler techniques. There is a great body of literature on
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parameter identifiability in biological and pharmacokinetic

models (for example, [27–34]). Here, we show that even

relatively simple physiologically-based models can yield

unidentifiable parameters and discuss simple techniques

that can indicate which parameters are affected and

potential reasons for it. Though we use three models as an

example and focus on cellular kinetics, the mathematics of

cell and drug kinetics are often theoretically equivalent in

physiologically based models. Uncertainty and identifia-

bility are critical for all physiologically-based models, and

more widespread use and reporting of them would greatly

enhance confidence in parameter fits from physiologically-

based models, potentially improving their reproducibility

and utility for translating their parameters into new

settings.

Methods

Model by Brown et al. (2021)

Data

The model was fit to lymphocyte localisation data from the

literature, originally published by Smith et al. [35]. The

authors introduced radiolabelled lymphocytes into rats and

recorded the radioactivity in different organs as a function

of time up to 24 h, which is used as a proxy for lymphocyte

localisation. The aim of the study was to determine which

factors influence lymphocyte migration patterns. They

considered the type/source of antigen that the cells are

specific for, the places the cells were activated, the lymph

nodes they were extracted from and the size of the cells

(whether they were effector cells or not). There are several

data sets, of which we used one: where lymphocytes were

extracted from mesenteric lymph nodes after the donor rat

was exposed to environmental antigen.

Model

A set of linear ordinary differential equations (ODEs) were

developed to describe the circulatory system and the

migration of cells in and out of the blood, as previously

described [5]. The equations for organs with no special

(circulatory) features are,

Vo
dCo

dt
¼ BoðCh � CoÞ;

~Vo
d ~Co

dt
¼ eoBo Co � lo ~Co

� �
;

ð1Þ

where Vo, Co and Bo are the vascular volume, vascular

concentration and blood flow of/to organ o, ~Vo and ~Co are

the interstitial volume and concentration of/in organ o, eo is

the proportion of cells that extravasate out of the organ

vasculature rather than returning to circulation, and eolo is
the rate at which cells leave the interstitial space of the

organ via lymphatic vessels. Similar equations can be

formed to capture details of the spleen, mesenteric organs,

liver, lymph nodes and pulmonary circuit, as presented in

Fig. 1. An equation for the heart acts as a mass balance

term, receiving blood returning from the vasculature and

lymph returning from lymph nodes.

Initial estimates for parameters

Fitting this model to data is made more efficient by

selecting initial estimates for parameters that are close to

the best fit values. These initial values were generated with

the following analytical estimates,

e0o �
~NoðtÞ � ~Noð0Þ
Bo

R t

0
CoðtÞdt

l0o �
Co

~Co

;

ð2Þ

where ~No ¼ ~Vo
~Co. The estimate for l0o is to be used as

t ! 1, but the estimate for e0o must be used as close to

t ¼ 0 as possible, as the right-hand side is time-dependent

and neglecting l in its definition quickly becomes inac-

curate with t[ 0. Current parameter estimates (eno; l
n
o) can

be used to gain an improved estimate (enþ1
o ;lnþ1

o ) using,

enþ1
o �

~NoðtÞ � ~Noð0Þ
Bo

R t

0
CoðtÞ � lno ~CoðtÞ
� �

dt

lnþ1
o �

R t
0
enoBoCoðtÞdt� ~NoðtÞ � ~N0ð0Þ

� �

enoBo

R t

0
~CoðtÞdt

;

ð3Þ

where the data or an estimate of the data can be used to

provide values for ~No, Co and their integrals. Both of these

equations are modified for organs such as the liver or

lymph node. Fitting was ultimately performed using

curve_fit or basinhopping from the SciPy library in

Python [36], and organs were iteratively fit-one-at-a-time.

The exact strategy is detailed in Online Appendix

Section A.2.

Scoring a fit

We made use of the curve_fit or basinhopping

algorithms in the SciPy library in Python [36]. curve_-

fit’s default method is the Levenberg-Marquardt algo-

rithm, which was used in this study. basinhopping uses

an algorithm designed by David Wales and Jonathan

Doye [45]. It is similar to simulated annealing with a
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Metropolis criterion; repeated cycles of local minimisation

followed by random hops with an acceptance criterion. The

local minimisation can use one of several methods, and

Sequential Least Squares Programming was used in this

study.

The metric for scoring data was a simple sum of square

of the differences between model estimates and data over

each organ and time point. Throughout this study, we refer

to ‘‘good’’ and ‘‘bad’’ fits. Quantitatively, a ‘‘good’’ fit is a

low score, which is a small value of the sum of squared

differences between model estimates and data. More often,

references to a ‘‘good’’ fit in this study are simply how

close model estimates and data appear to be, by qualitative

inspection.

Timescales associated with parameters

By considering the timescale on which vascular and

interstitial compartments of the model (Eq. 1) reach equi-

librium, we can derive characteristic timescales for each

parameter and organ:

seo ¼
Vtot

eoB0
o

slo ¼
~Vo

eoloB0
o

;

ð4Þ

where Vtot is the total blood volume and B0
o is the effective

blood flow to organs, modified for organs such as the liver

or lymph nodes. These expressions can be used to deter-

mine whether a given set of parameter values would lead to

significant changes in model outputs on the timescale of the

data, and thus whether the parameter values are likely to be

accurately fit. For example, if the timescale associated with

epulmonary circuit is shorter than available data, then all entry

into the pulmonary circuit localisation would occur before

the first data point, and it might be expected that this

parameter will not be accurately fit or that it is

unidentifiable.

Models published by Ganusov and Auerbach
(2014) and Singh et al. (2020)

We repeated our analyses on the models published by

Ganusov and Auerbach [10] and Singh et al. [14]. The

methods and results are similar to those for the model by

Brown et al. and are recapitulated in the appendices.

Structural identifiability

A prerequisite for practical identifiability (also known as

deterministic identifiability) is structural identifiability.

This issue is explained and addressed in Online Appen-

dix A.1. The three models presented in this work are

structurally identifiable as long as localisation in each

compartment is observed. Previous authors have discussed

structural identifiability in PBPK models at length, see

[37, 38].

Generation of synthetic data

Synthetic data was generated for all three models in order

to test fitting procedures. A set of parameters were chosen

and used to run the model, and the output at several time

points was used to define synthetic data. The set of

parameters used to generate the data was subsequently used

as a ground truth, against which least-squares best fit

parameters could be compared. When required, noise was

added to the synthetic data by multiplying every data point

with Gaussian random variates drawn from a distribution

with mean 1 and standard deviation r, where r determines

the strength of the noise. Typically, r ¼ 0:1 was chosen.

This was chosen to be relatively small, yet sufficiently

large to cause parameters to become unidentifiable.

Heart
tissue

Pancreas

Stomach

Small
intestine

Liver

Spleen

Large
intestine

Pulmonary
tissue

Kidney Adipose Skin

Red
marrow

Thymus

Lymph
nodes

Pulmonary
circuit

Fig. 1 A visual summary of Brown et al’s model of the circulatory

system [5]. Solid and dotted lines represent blood and lymph flow,

respectively. Cells flow from the heart to each organ, from which a

proportion enters the interstitial space. Cells from the interstitium

flow via the lymphatics back to the heart. A tumour (‘‘tmr’’) can be

represented by choosing a tumour bearing organ (the skin in this

example) from which proportions of its volume and blood supply are

occupied by the tumour (Color figure online)
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Strictly, a truncated Gaussian should be used to prevent

measurements becoming negative, but this was not used

here, as synthetic data was only generated once, and we

explicitly confirmed no negative data was used. With a

mean of 1.0 and standard deviation of 0.2, the cumulative

distribution function of the Gaussian distribution at zero is

2:9� 10�7.

Sensitivity analyses

Local sensitivity analyses were used on least-squares best

fits of the model to data, to determine which parameters

have the strongest influence on each model output, and thus

are most likely to be well-fit. Here, local sensitivity is

defined as the change in score (sum of squared differences

between the data and the estimate) after a 1% change in a

given parameter. To analyse the relative impact of

parameters on each data curve (organ compartment), the

scores are subsequently normalised such that their sum is

1.0 for each data curve. This allows comparison of influ-

ential parameters across different organs; a parameter that

has the highest relative influence on at least one organ

compartment is likely to be better fit than otherwise.

Analogous results could be obtained with a more sophis-

ticated global sensitivity analysis over limited parameter

ranges. The weakness of assessing uncertainty using local

sensitivity analyses is that they cannot estimate uncertainty

due to the existence of multiple solutions (minima in

parameter space), for which a Bayesian approach or a

global sensitivity analysis may be more appropriate. In

particular, a parameter that has a large influence on data

may still be poorly fit if it is compensating for other

parameters that are poorly fit, particularly if it has an

influence on multiple organ compartments.

Bayesian techniques

As a direct comparison to the simple curve-fitting approach

and uncertainty analysis described above, we used a Mar-

kov Chain Monte Carlo technique to fit models to data. The

fit was obtained by assuming that noise is Gaussian and

directly proportional to the data, using three Markov chains

with random start positions, a burn-in of 1000 samples and

repeated cycles of 5000 iterations per chain. Cycles were

repeated until a target R̂ of 1.1 was reached (where R̂

denotes the ratio of the variance between chains to the

variance within chains, equal to 1.0 for well-mixed, sta-

tionary chains. See [39] for its definition). The analysis was

implemented in PINTS [39] with the Haario Bardenet

Adaptive Covariance Monte Carlo method. We used the

standard deviation of parameter values over the endpoint of

the three Markov chains as a measure of parameter

uncertainty on our best fit and used density plots of the last

cycle (last 5000 iterations) of each Markov chain to visu-

ally inspect the nature of the uncertainty or

unidentifiability.

Results

Fitting a PBPK model to data

Linear systems describing the circulatory system, such as

Eq. 1, can be easily fit to data. A least-squares best fit was

found for the presented system to data published by Smith

and Ford [35], through the procedure described in Online

Appendix Section A.2. The results are shown in Fig. 2. The

fits to most organs are qualitatively good, matching the

time course of the data. The range of parameter values

corresponding to good fits is more difficult to evaluate. A

measure of uncertainty can be obtained from the local

covariance of the fit’s score against parameters, but this

does not quantify uncertainty due to valid parameter values

elsewhere in parameter space (for example, if the best fit

for a model f(x) occurs at x ¼ 0:5, but another valid fit can

be found at x ¼ 2:0). To evaluate how accurate we expect

these fits to be, we need to make use of synthetic data for

which we know the true parameter values.

Fitting to synthetic data with known parameters

We generated synthetic data from the model (Eq. 1) using

the procedure described in Sect. ‘‘Generation of synthetic

data’’. In order to test the identifiability of the ODE model

Fig. 2 Least-squares best fit of the trafficking ODEs (Eq. 1) to data by

Smith and Ford [35], in which lymphoblasts extracted from mesen-

teric lymph nodes of the rat were radiolabelled and tracked in

recipient rats over 24 h with eight time points per organ, assuming

that all cells are initially in the blood. Scatter points and bars are

respectively the originally published data points and their standard

errors. Lines are the model outputs (Color figure online)
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(whether a given output can be mapped back to a set of

parameters), we fitted the model to this synthetic data

without using our knowledge of the true parameter values

and compared the obtained fits to the true values. These

results are displayed in Fig. 3, showing that the data fits

exactly (sum of squares between data and estimate of

10�4), and most fit parameters matched the true values,

except for the extravasation probability for the pulmonary

circuit (eLungPC). This may be because the timescale on

which this parameter influences localisation in the pul-

monary circuit is shorter than the first data point, see Sect.

3.4.1.

Fitting synthetic data with fewer data points

Following the successful fit to a dense synthetic data set,

we investigated how few data points were required for the

correct parameter values to be recovered from the synthetic

data. Results are shown in Fig. 4. With as few as three data

points (selected to maximise time between points) per

organ after the initial, all fitted parameter values but the

extravasation probability in the pulmonary circuit are very

similar to their true values. When only two data points after

the initial were used, then many parameter values become

inaccurate, likely because the transient, short-term beha-

viour of the model is no longer captured by the data.

Fitting noisy synthetic data

Models that are theoretically identifiable, or identifiable

with perfect data, may not be identifiable in practice or

with noisy data. We multiplied the synthetic data with

Gaussian noise of mean 1.0 and standard deviation r ¼ 0:1

and fitted the trafficking ODE model to the noisy data with

the same procedure as before. The results are shown in

Fig. 5. The fit to the noisy data is qualitatively good, but

many parameter values are now much less accurate.

‘‘Standard deviations’’ corresponding to the main diagonal

of the covariance of parameter fits are plotted around the

mean of each parameter, but these ranges do not always

overlap with the true parameter value. They correspond to

how the fit score changes with parameter value locally,

which does not directly account for how much of parameter

space gives a good fit, nor for the existence of multiple

solutions. They thus may be a poor estimate of parameter

uncertainty.

To further explore uncertainty in parameter fits, we

performed a local sensitivity analysis on the model at the

best fit (least-squares) parameter values. The results are

shown in Fig. 6; the left panel shows the fractional change

in the fit score (sum of square of differences between

estimate and data) for each organ after each parameter is

changed by 1%. The right panel shows the same data

normalised by organ, so that the relative importance of

each parameter to each organ can be more clearly seen. If

the localisation of cells in each organ depended only on

parameters for that organ, then the only bright colours

would be on the main diagonal of each plot. However, off-

diagonal cells are sometimes as bright as the diagonal. For

example, the rows for both parameters for the liver have

some brightness for many organs, indicating the influence

of the liver parameters on all data. The rows for the lung

blood supply’s parameters are almost completely dark,

indicating little impact on localisation in any organ. This is

Fig. 3 Least-squares best fit of the trafficking ODEs (Eq. 1) to eight

synthetic data points plus initial conditions per organ produced by the

same model, assuming that initial conditions are that all cells are

initially in the blood. A Localisation predicted by the model against

time. Scatter points (circles) indicate synthetic data. Lines indicate the

output of the best fit. B A comparison of the ‘‘true’’ values used to

generate the synthetic data (crosses) with the best predicted values

(circles). The values of l are plotted on the y-axis against the values

of e on the x-axis. Lines show projections of the local covariance of

the fit score against parameter estimates (Color figure online)

544 Journal of Pharmacokinetics and Pharmacodynamics (2022) 49:539–556

123



Fig. 4 Least-squares best fit of the trafficking ODEs (Eq. 1) to

synthetic data produced by the same model, as in Fig. 3, but with

fewer synthetic data points. A, B Fits with 3 data points after the

initial. C, D Fits with 2 data points after the initial, in which

parameter estimates begin to get less accurate (Color figure online)

Fig. 5 Least-squares best fit of the trafficking ODEs (Eq. 1) to eight

synthetic data points plus initial conditions per organ produced by the same

model, as in Fig. 3, but with Gaussian noise. Noise was added by

multiplying all synthetic data by random Gaussian variates with mean 1.0

and standard deviation 0.1. Fit quality appears qualitatively similar (A) but
parameter values are fitted much less accurately (B) (Color figure online)
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likely due to the fact that the pulmonary circuit and lung

blood supply both correspond to the same data (observed

localisation in the lungs), and because the dynamics in the

lung occur on a short timescale (see Sect. ‘‘Timescales of

different parameter values’’). These plots give us an indi-

cation of which parameters have little impact on the model

fit and so may have inaccurate values, but this too is only a

local estimate.

Timescales of different parameter values

If the least-squares best fit of the model to noisy, synthetic

data is plotted on the same axes as the output corre-

sponding to the true parameter values, they may be nearly

visually indistinguishable and appear to give equally good

fits to the data. However, if the timescale of the output is

extended beyond the data, the estimates may begin to

diverge. This is shown for the fit from Fig. 5 in Fig. 7. This

is a consequence of the timescales on which different

organs approach their steady state localisation, in turn due

to their parameter values. By calculating the equilibrium

timescale for extravasation and return for each organ

(Eq. 4), we obtain another indicator of the quality of fit for

each parameter. The parameter values and equilibrium

timescales for the vascular compartments (determined by

e) and interstitial compartments (determined by l), corre-
sponding to the least-squares best fit, are shown in Fig. 7C.

The timescales indicate that eLymphNodes, eLungPC, lS:Intestine,
lLungBS and lSkin may be inaccurately plotted. In fact, these

are the least accurately fit parameters by their fractional

difference from the true values. The local sensitivity

analysis (shown in Fig. 6) indicates that the small intestine,

liver, lung blood supply, skin, lymph nodes and lung pul-

monary circuit may be poorly fit. This list indeed includes

the poorly fit parameters, but also parameters which were

better fit. This analysis suggests that the timescale on

which dynamics occur in each compartment, and the

dependence of parameter values on these, can strongly

influence the identifiability of individual parameters. In

particular, if dynamics occur on a timescale much faster

Fig. 6 Local sensitivity analysis of the final least-squares best fit to

data shown in Fig. 5. Brighter colours indicate higher sensitivity. The

top two panels show extravasation rates e and the bottom two panels

show return fractions l. Rows correspond to parameter values and

columns to different data curves; for example, the last column of the

left panels shows that the fit to blood data is most sensitive to the

return fraction of cells from the liver. The left two panels show

unmodified sensitivity (fractional changes in score). The right two

panels are normalised by the sum of changes for each data curve

(columns on the figure), so that the most sensitive parameter for any

particular data curve can be seen more clearly. Note that column and

row names need not match; there is data for blood localisation and

explicit model parameters for the pulmonary circuit, but not vice

versa (Color figure online)
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than the first data point, or much slower than the final data

point, the corresponding parameters may not be

identifiable.

Fitting synthetic data with data unrecorded in some organs

Data of the localisation of cells in an organism is typically

measured only in a subset of organs, rather than in every

organ. We investigated whether fitting a single pair of

parameters to organs for which localisation was not

recorded strongly impacts parameter estimates for the

organs under investigation. A fit to such synthetic data

without noise is shown in Fig. 8. The fits look perfect, but

several parameter values are far off from their true values,

and a local sensitivity analysis shows that the liver domi-

nates local changes in the score for most organs. A time-

scale analysis shows that some of the worst-fit parameters

are those whose equilibrium timescales are outside of the

range of data, as before, but in this instance the lymph

nodes parameters are also poorly fit. These results suggest

that censoring some organs from the data, in which local-

isation is not insignificant, may cause compensatory

changes in estimated parameter values for measured

organs.

Fitting synthetic data from a system with fewer organs

We have also tested a smaller system of ODEs to determine

whether parameters are easier to determine with fewer

organs. We created trafficking ODEs akin to Eq. 1 in which

the only organs with blood flow are the stomach, small

intestine and lymph nodes, then created synthetic data.

When synthetic noise is added to the data, however,

parameters are still not identifiable; parameters that are

very different to the true values produce fits that are as

good as the true fit by eye, as shown in Figure 9. A local

A B

C

Fig. 7 A Least-squares best fit of the trafficking ODEs (Eq. 1) to eight

synthetic data points plus initial conditions per organ produced by the

same model, with data multiplied by Gaussian noise (mean and

deviation of 1.0 and 0.1), as in Fig. 5. Plotted on the same axes is the

ODE solution resulting from the true parameters. Visually, they are

nearly indistinguishable. B The same fit extended out to a much

longer timescale, on which the true solution and the best fit become

marginally distinguishable. C Ratios of predicted extravasation rates e
and return rates l to their true values, and the corresponding vascular

and interstitial equilibrium timescales calculated from Eq. 4. High-

lighted values are earlier than the first data point (30 min) or greater

than the final time point (24 h) (Color figure online)
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sensitivity analysis indicates that stomach return rate

dominates other parameters. Despite this, even the stomach

parameters are not well-fit. A timescale analysis shows

that, as before, the timescale for equilibrium of the other

two compartments lies far outside the timescale of the data.

This suggests that a close relationship between organ

A B C

D

Fig. 8 A Least-squares best fits of the trafficking ODEs (Eq. 1) to

eight synthetic data points plus initial conditions per organ without
noise as in Figure 3, but with all organs not listed in the table removed

from the data after production. B Least-squares best fit parameter

values versus ‘‘true’’ values. Many parameters have very inaccurate

values. C Local sensitivity analysis for these parameter values, as

described in Figure 6. D Timescales associated with fit parameters, as

described in Fig. 7C (Color figure online)

A B C

D

Fig. 9 Least-squares best fits of the trafficking ODEs (Eq. 1) to eight

noisy synthetic data points plus initial conditions per organ. Noise

was generated by multiplying data by a Gaussian of mean 1.0 and

standard deviation 0.1. Rather than removing existing organs from

data, this plot corresponds to synthetic data acquired from an ODE

system in which only the three displayed organs exist. Parameter

values still do not always fit. Explanations for each figure panel areas

in Fig. 8 (Color figure online)
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compartments prevents identification of physiological

parameters, even for small systems, if data on an appro-

priate timescale is not available.

Open loop modelling, where the concentration in the

blood compartment (arterial supply) is used as a forcing

function for an organ compartment, can be used to focus

modelling on a single organ with one or two parameters.

The analysis of the ODE system with fewer organs sug-

gests that, because organ compartments are not completely

independent, the parameters obtained from open loop

modelling may not be equal to the parameters for the same

compartment in the full organ system.

Fitting synthetic data with some parameters fixed

We tested whether parameters are identifiable if other

parameters are held fixed. We fixed all values of e to the

true values used to produce synthetic data, and fitted the

remaining values l after the data had been multiplied by

Gaussian noise (mean and deviation of 1.0 and 0.1), as

before. Results are shown in Fig. 10. Though fits to the

synthetic data look good by eye, the values of l are far

from their true values for most organs, and a local

sensitivity analysis indicates that the score is most sensitive

to changes in e, not l. A timescale analysis shows that the

poorly-fit parameters once again have equilibrium time-

scales far outside the range of the data. This suggests that,

even with known or assumed values of parameters,

remaining physiological parameters may still not be

accurately fit.

Bayesian Computation

To demonstrate how a Bayesian approach may better

identify poorly fit, non-identifiable or sub-optimally fit

parameters, we used a Markov Chain Monte Carlo tech-

nique [39] to fit synthetic data to the trafficking ODEs

defined in Eq. 1. As described in Sect. ‘‘Bayesian tech-

niques’’, we fit the model to data by repeating cycles of

5000 iterations for each of three Markov chains until R̂ fell

below 1.1 (see Sect. ‘‘Bayesian techniques’’ and [39] for its

definition), starting from Gaussian priors around initial

estimates. For Eq. 1, this required a total of 440,000

samples per chain. Results are shown in Fig. 11.

Panel A shows true parameter values (used to generate

the synthetic data) against best fit parameters and their

A B C

D

Fig. 10 Least-squares best fits of the trafficking ODEs (Eq. 1) to eight

noisy synthetic data points plus initial conditions per organ as in

Fig. 5, but with e fixed to true values. Noise was generated by

multiplying data by a Gaussian of mean 1.0 and standard deviation

0.1. Fits to l are still not perfectly accurate. Explanations for each

figure panel are as in Fig. 8 (Color figure online)
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standard deviations, calculated from the final parameter

values in the three Markov chains. Unlike in previous plots,

these standard deviations typically do overlap the true

values. Panels B and C show density plots of parameter

values sampled in the last cycle of the MCMC fit, i.e. the

last 5000 iterations of each Markov chain or 15,000

parameter sets in total, for extravasation rates (panel B) and

return rates (panel C). Some parameter densities are highly

peaked (indicating a good fit) and others are not (indicating

an unidentifiable or poorly fit parameter). Panels D and E

show the density plots from the last 5000 samples of each

chain separately, for the spleen extravasation rate (panel D)

and lung blood supply return rate (panel E), showing how

densities for well- and poorly-fit parameters differ.

Other models

To discount the possibility that the lack of identifiability is

a feature only of the model described in Eq. 1, we repeated

the above analyses on the models published by Ganusov

and Auerbach [10], and by Singh et al. [14]. These results

are shown in the appendices. As with the Brown et al.

model, both models produce close fits to synthetic data

with parameter values different to those used to produce

the synthetic data. That is, both models have practically

unidentifiable parameters.

Discussion

Physiologically-based pharmacokinetic (PBPK) models are

used extensively in academia and in industry to model the

distribution of drugs and their dynamical effects on the

Fig. 11 The distribution of parameters produced by fitting the ODE

system in Eq. 1 to eight noisy synthetic data points plus initial

conditions per organ, using adaptive covariance Monte Carlo [39].

Noise was generated by multiplying data by a Gaussian of mean 1.0

and standard deviation 0.1. A Best fit parameter values (crosses x) and

the true values (circles o) for each fit. Standard deviations (vertical

lines) are calculated across the final value of the three Markov chains.

B, C Density plot of values of e (panel B) and l (panel C) across the
last 5000 samples of every Markov chain. Dashed lines indicate true

values of parameters. D, E Density plots for the values of espleen and

lLungBS in the last 5000 samples of each Markov chain in turn. Dashed

lines indicate true values of parameters. The top and bottom half of

each panel shows the same density plot on different axes ranges; the

top half shares axes limits with B and C. The spleen density has a

much narrower peak than the lung blood supply density (Color

figure online)
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body. Increasingly, such models are used for cellular

kinetics, to study the distributions of cells such as CAR T-

cells. Kinetic models are often linear and are relatively

simple to fit to data. However, the circulatory system is

highly connected, resulting in parameters for one organ

compartment having a non-negligible impact upon the data

fits to other organs. Different sets of parameter values can

therefore produce qualitatively similar fits. When parame-

ter values are unimportant compared to the fit itself, this is

not a problem, but where some biological meaning is

sought from the parameter values, this may lead to incor-

rect interpretations, and when fits to different data sets,

patient populations or timescales are to be compared,

additional analysis may be required to establish confidence

in predictions. We have demonstrated this problem with

three published physiologically-based models of cellular

kinetics, each of which give visually good fits to data and

were fit for their purposes. For each case, we showed how

synthetic data made from known parameter values can be

perturbed with random multiplicative Gaussian noise, and

how this noise prevents accurate recovery of the original

parameters (Sect. ‘‘Fitting noisy synthetic data’’, Online

Appendix Sections B.1, B.2). The fundamental reason for

this is that the sum of the squared differences between the

noisy data and the true data becomes similar to the dif-

ference between non-optimum solutions and the data, in

turn due to these non-optimum solutions being too quali-

tatively similar to the true solution, despite the different

parameter values. A plot of fit score as a function of

parameter value would reveal regions of parameter space

that have the same or a lower score than the true solution,

i.e. that parameters are practically unidentifiable. This

problem is easy to visualise for models with one to three

parameters, as shown in [40]. Another issue with fitting

systems with many parameters is that similar solutions can

have parameter values that are very far apart in parameter

space, separated by large potential barriers (poor solutions)

that make crossing from a non-optimum solution to a better

solution difficult. This is particularly relevant for physio-

logically based models, which require many parameters:

typically, one or two per organ in a system of ten or more

organs of interest. Many parameter fitting techniques can-

not adequately handle the high dimensionality of such

systems. A crude Latin Hypercube with n evenly spaced

values in each of p parameters requires np evaluations of

the model. If a given physiologically-based model contains

10 organs with unknown parameters, and two parameters

per organ, then just three values per parameter would

require 320 ¼ 3:5� 109 evaluations, which would require

110 years if each evaluation took one second.

The most common tool used to fit PBPK models to data

are simple curve-fitting techniques (9 of 13 from a

selection of recent, highly cited studies [6–11, 14, 16–21]),

which are prone to returning non-optimum solutions in

systems with many parameters. For the three models pre-

sented in this study, localisation within an organ is pri-

marily sensitive to that organ’s own parameters (by global

sensitivity analysis; data not shown), so it is possible to fit

parameters to data one-organ-at-a-time (among other

strategies; see Onine Appendix Section A.2). Whilst this

strategy leads to a good fit in most cases, parameters are

even more vulnerable than normal curve-fitting approaches

to becoming trapped in local minima, as a better solution

might require a change to multiple organs’ parameters. If

changing the parameters for any single organ would result

in a worse solution, then this strategy will not be able to

reach the better solution. This can potentially be remedied

by strategies such as scaling all extravasation or return

rates by the same factor after the organ-specific fit cycle or

fitting the n most altered parameters to the data as a group,

but this problem cannot be completely overcome as long as

parameters are fit in isolation to other parameters.

These problems aside, in the absence of noise, the true

parameter values could be recovered with all three models.

However, multiplying by a Gaussian of mean 1.0 and

standard deviation of 0.1 results in least-squares best fits

that look qualitatively similar to the data and the true

solution, but with different parameter values. As already

stated, this is because the noise is a similar size to the

difference between optimum and non-optimum solutions.

Of the three models presented, the one published by Singh

et al. [14] was slightly more robust to noise. Parameters

could be recovered until the standard deviation of the noise

Gaussian reached 0.2, because there were fewer organs and

only one parameter per organ, making non-optimum

solutions further from the optimum than the other models.

However, this was with the caveat that several parameters

had to be given fixed values. The absence of blood data in

their publication leads to degeneracy in the transmigration

rates, as any transmigration rates that lead to entry into

organ compartments on a fast enough timescale yield the

same interstitial localisation profiles at later times, as long

as the relative transmigration rates remain the same.

Without blood data to fit the magnitude of transmigration

rates, data fitting is more complicated and can result in

local solutions that are significantly worse than the least-

squares best fit, but separated from it by high potential

barriers. To remedy this, we fixed the same parameter

values that Singh et al. fixed to literature values, originally

due to an absence of data for those organs. We then set the

mean value of initial estimates of parameter values to be

the same as the mean of the fixed values. The constrained

parameter values may result in initial parameter estimates

being closer to the region of parameter space that contains
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the optimum fit than otherwise, and might have made

model fitting more robust to noise.

Since non-optimum solutions are selected due to their

score (sum of square of differences between the estimate

and the data) being similar to the size of the noise, a system

with fewer organs might be fit more robustly and the

parameters might be more identifiable. Results in this

manuscript show that this is only true to an extent. When a

system that only has three organs is used to create synthetic

data, multiplicative Gaussian noise still resulted in incor-

rectly fit parameters (Fig. 9). Synthetic data produced from

the model implemented by Singh et al. was much more

robust to Gaussian noise, but this was due not only to the

smaller number of organs, but that there was only one

parameter per organ, and because the fit was seeded with

several fixed parameter values, which influence the possi-

ble values of other fit parameters.

A similar concern is whether assumptions made about

parameters for which organ data is missing have large

impacts on other parameter values. We censored some of

the organs from the synthetic data (i.e. some of the cell

localisation was unaccounted for) before repeating the data

fitting process. When a single pair of parameters were

assigned to ‘other’ (non-data) organs, least-squares best fit

parameter values for several organs deviated from correct

values to compensate, even in the absence of noise (Fig. 8).

This indicates that when significant amounts of localisation

are unaccounted for in a modelling study, parameter values

obtained from the data may not be trustworthy.

Since parameters only become non-identifiable in the

presence of noisy data for these models, it could be the case

that having a greater number of data points would improve

parameter identifiability. As before, this is only true to an

extent. More data points means that a curve that passes

close to all of them is more likely to follow the trajectory of

the true solution. In addition, the existence or absence of

data on the timescales of equilibrium for various organ

compartments allows or prevents accurate fitting of the

corresponding parameters. However, the fundamental rea-

son for non-identifiability of parameters is not the noise,

but that qualitatively similar solutions can be obtained with

very different parameter values. Real-world data is unlikely

to produce data curves that exactly correspond to model

outputs (i.e. it is unlikely that a given PBPK model is

perfect), and so the difference between the data and a given

model output will in general be much greater than the small

differences between these similar solutions. In other words,

identifiability of parameters will typically be much worse

for fits to real data than to synthetic data as presented here.

Thus, even with very rich data, parameters are likely to

continue to have multiple possible fits.

The obvious remedy to this issue is to calculate uncer-

tainty in all parameter estimates. For non-Bayesian, simple

curve-fitting techniques, one can obtain ‘uncertainties’

from the main diagonal of the local covariance matrix of

the fit score to changes in parameters. Here, the fit score is

the sum of squared differences between the data and the

solution. As indicated by examples in this study, the

‘uncertainty’ obtained from the local covariance represents

the local gradient of the score to each parameter, not the

actual parameter uncertainty. It does not necessarily over-

lap the true parameter value, because the true parameter

value may be in a very different region of parameter space

and the score might be robust to small, local changes in the

estimated parameter value. A local sensitivity analysis can

give a hint to which parameters have little impact upon the

fit and so may not have their true values, but this too is a

local estimate with the same weaknesses as use of the local

covariance.

A more useful indicator of whether a parameter might

be poorly fit to data is the timescale to equilibrium in some

compartment associated with it. If such a timescale is much

shorter or much longer than that of available data, then

changes in this parameter value will have little impact on

the fit to the data. This analysis is still not infallible, as

some parameters that have influence on multiple data

curves might take an ‘incorrect’ value to better fit all data

curves, or to compensate for other incorrect parameter

values. The importance of equilibrium timescales is best

illustrated by extending fits to data out to longer timescales.

Curves with different parameter values that look similar on

one timescale may become distinct on a different time-

scale, as shown in Fig. 7. Data on this timescale would be

better able to differentiate between the two parameter

values. Consideration of the timescale or timing of bio-

logical mechanisms is relevant to optimal design of

experimental measurements. Depending on the experiment

and the model, parameters may be more identifiable and/or

the model may be more informative if the density of

measurements match the timescales of the dynamics driven

by the parameters of interest. In some cases where physi-

ologically-based pharmacokinetic models are used, all that

is required is a good fit to data, not perfect parameter

values. However, these models are often extrapolated to

different timescales or different populations. This example

makes clear that extrapolation to other timescales would

produce different answers with different sets of parameter

values that otherwise gave very similar fits to data. If the

new timescale is very short, it might also be the case that

ODEs become inappropriate as cells redistribute among

organs, because ODEs assume an exponential distribution

in cell residence times within organs. Similarly, extrapo-

lation to another population (such as a paediatric popula-

tion) may require scaling of particular parameter values,

but if these are not fit with a unique value, such scaling

might not be meaningful, or appropriate. In other studies of
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physiologically-based pharmacokinetic models, the models

are intended to be exploratory simulations that draw upon

several in vivo and in vitro sources of data, and are not

fitted to data. In this case, parameter identifiability is not as

simple to verify without generating synthetic data, but

would cause many of the same problems: several sets of

parameter values may yield the same output. If the quali-

tative behaviour of the model is the only important output,

then identifiability is not a concern, but if parameter values

have important biological meanings, are to be scaled to

other populations or timescales, or are reported and sub-

sequently used by others, then even in this case, it is

important that parameter uncertainty and identifiability are

explored.

An even better estimate of the identifiability of param-

eters in a given fit can be obtained from a profile likeli-

hood, which quantifies the marginal probability of

generating data of interest given the chosen model and

variable parameter values. This is more computationally

expensive than local sensitivity or timescale analyses, but

gives a true estimate of uncertainty, as opposed to the local

covariance of the fit score against parameters. It was not

shown here, in lieu of Markov Chain Monte Carlo, which

yields similar uncertainty estimates and can additionally be

used to fit data from scratch. Profile likelihoods, through

the likelihood function, are closely related to a class of

techniques that is one of the best suited for exploring

parameter spaces with multiple local minima: Bayesian

inference. Bayesian inference algorithms include Approx-

imate Bayesian Computation (ABC), Markov Chain Monte

Carlo or Stochastic Approximation Expectation Maximi-

sation (SAEM), the latter of which is utilised by com-

mercial solutions such as Monolix and Adapt V. However,

though more efficient than other techniques, Bayesian

techniques still become inefficient as the dimensionality of

the parameter space becomes large, and selection of priors

can have a large impact on parameter fits. For example,

Gaussian priors far away from the global optimum may

result in the global optimum not being found, and wide

uniform priors may make fits converge very slowly. Effi-

cient handling of the ‘curse of dimensionality’ is an active

field of research, both in Bayesian and frequentist contexts

[41–44]. We fitted the trafficking model presented in Eq. 1

using Adaptive Covariance Monte Carlo implemented in

PINTS [39], as detailed in Sect. ‘‘Bayesian Computation’’.

We iterated three Markov chains with random initial

starting points until the variation between the chains

became similar to the variation within the chains. The

standard deviations of our best fit parameters were then

calculated across the final values of the three chains. As

these represent actual variation in possible solutions, we

would expect this measure to more reliably capture

uncertainty in parameters than local covariance of the fit

score, and the error bars plotted in Fig. 11B do indeed

overlap the true values. Density plots obtained from a

Bayesian technique are also useful in analysing fits, as the

existence of multiple minima or non-identifiable parame-

ters can be quickly verified. Figure 11D, E shows density

plots of the last 5000 iterations of each Markov chain for

two parameters. The extravasation rate into the spleen,

panel D, has a well-peaked distribution and we would

expect a good fit for this parameter. The return rate from

the lung, panel E, has a heavy tail towards the right-hand

side of the plot, and a plot of all iterations from each chain

(not shown) indicates the presence of multiple minima.

Supplementary Figure S4E shows an additional case,

where density is uniform everywhere, for a parameter that

is completely unidentifiable. Though we made similar

inferences from the fits and local sensitivity analyses made

in Sect. ‘‘Fitting noisy synthetic data’’, they were made

with less precision and confidence than from Bayesian

results. We could not be sure if the simpler fit obtained was

a global minimum, whereas the use of multiple Markov

chains allows simple verification of the number of minima

(if any) present.

Though it is not a surprising result that Bayesian tech-

niques are better at quantifying parameter uncertainty, we

have demonstrated that such techniques are useful, if not

required, in the analysis of PBPK models. However, much

of the literature of physiologically based models does not

make full usage of Bayesian techniques, likely due either to

large numbers of model parameters, or because authors

need close fits to data but not accurate parameter values.

This may, however, influence conclusions or analysis from

other models. For example, mathematical modellers inter-

ested in the same biological system may search the liter-

ature for useful data or parameters and make use of the

values without understanding the uncertainty or identifia-

bility in the original model, or the original work might be

extended or applied to a new context that is parameter-

dependent. Other authors, such as Gutenkunst et al.

[22–26], have suggested alternative approaches such as

finding the ensemble of all parameters sets that fit the data,

and presenting the mean and confidence intervals of results

from these parameter sets as the model output, as in a

virtual patient/subject population. As argued in our intro-

duction, this may not always coincide with the study aims,

an estimate of the uncertainty on particular parameters may

sometimes be desirable (rather than results), and such an

approach may nonetheless require Bayesian techniques,

which can be used to report on parameter identifiability and

uncertainty as we have suggested.
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Conclusions

Physiologically-based pharmacokinetic models are used

extensively in academia and industry to fit concentration

profiles of drugs or cellular therapeutics to data. The fits

obtained from such models can be used to calculate

quantities such as the area under the curve, in turn used for

quantities such as the overall exposure to a drug. Such

quantities are independent of the parameter values used to

obtain the fit. However, other useful quantities depend

directly on parameter values, such as half-lives in partic-

ular compartments, or the scaling of model behaviour to

other populations. In this study, we have explored whether

parameters used to generate synthetic data are practically

identifiable (also known as deterministically identifiable)

and can be recovered when noise is added to the data. We

have found that physiologically-based systems are highly

interlinked, and often yield disparate sets of parameters

that produce very similar fits to the data. We verified this in

three different ODE systems. When fits are imperfect or

data is noisy, these fits cannot be visually distinguished,

even with large difference in parameter values. Sets of

parameter values may be separated by large potential

barriers (i.e. regions of parameter space with a poor fit to

data), and physiologically-based models usually have large

numbers of parameters due to the number of organs

involved. These problems make traversal of parameter

space inefficient and difficult and frustrates quantitation of

the uncertainty on parameter values. Acquisition of data at

different timescales may allow one to differentiate between

similar fits, if parameters have impacts on the model that

are not already on the timescale of existing data, but this is

not always feasible. We showed that global sampling of a

model’s parameter space with techniques such as Markov

Chain Monte Carlo may be necessary to give reliable

estimates of parameter uncertainty and identifiability. In

particular, parameter estimates obtained from physiologi-

cally-based models may often not be the global optimum or

may be one of several similarly well-fitting optima, even

when the model fits exceptionally well to data. Such

parameters values should be treated with caution, particu-

larly under extrapolation to applications in different pop-

ulations or model systems. To remedy this issue,

uncertainty and identifiability of parameters should be

quantified more carefully across the PBPK literature, and

efficient sampling techniques, such as Bayesian methods,

should be utilised to explore parameter spaces and return

regions of parameter space that fit data, rather than point-

estimates. More widespread reporting of parameter uncer-

tainty analysis and regions of parameter space that fit data

would have a positive impact on model interpretation,

translation and confidence in results, aiding development of

future models and their role in supporting clinical decision-

making.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s10928-

022-09819-7.
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