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The lung is a complex organ with a vast surface area whose main function is to release 
cellular waste to be exhaled and to replenish the supply of oxygen to the tissues of the 
body. The conduction of air from the external environment is not without risks, and the 
lung contains many specialized epithelial cell subtypes that are protecting the lung from 
foreign material and injury. Specialized cell subtypes are produced during lung devel-
opment in the fetus as well as postnatally and injury to them due to genetic disease, 
premature birth, or postnatal environmental injury may lead to devastating disease. 
Chronic diseases, such as bronchopulmonary dysplasia, cystic fibrosis, and pulmonary 
arterial hypertension, contribute significantly to morbidity and mortality worldwide, yet 
successful interventions are often limited. Stem/progenitor cells have emerged as a 
potentially new preventative or therapeutic option. They are generally defined by the 
ability to undergo self-renewal and give rise to more differentiated cells. They are import-
ant in the early development of embryonic structures and organ differentiation in utero. 
Postnatally, they function in continued growth, maintenance, and regeneration. Clinically, 
the immunomodulatory properties of some classes of stem/progenitor cells avoid the 
major obstacle of immunological rejection seen in organ transplantation and other cell 
therapies. This review highlights some known human progenitor/stem cells and the most 
recent advances in stem cell therapies both in  vivo and in  vitro to prevent and treat 
pediatric lung disease.

Keywords: stem cells, lung, developmental biology, therapeutics, lung diseases

LUNG DEVELOPMENT

The lung develops through five stages in the human (Figure 1), and a multitude of genes and tran-
scription factors are involved in the mediation of each phase. In the embryonic phase, endoderm, 
specifically anterior endoderm, gives rise to the lung, which begins with the formation of a groove 
in the ventral lower pharynx, which then buds to form the true lung primordium. (1). The interac-
tion between the epithelium and mesenchyme is critical in this early stage (2). Septation of the 
tracheoesophageal tube separates the respiratory tree from the gastrointestinal tract. Transcription 
factors are important in this process and are activated early in lung progenitor cells (3).

http://www.frontiersin.org/Pediatrics
http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2016.00036&domain=pdf&date_stamp=2016-04-14
http://www.frontiersin.org/Pediatrics/archive
http://www.frontiersin.org/Pediatrics/editorialboard
http://www.frontiersin.org/Pediatrics/editorialboard
http://dx.doi.org/10.3389/fped.2016.00036
http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:martin.post@sickkids.ca
http://dx.doi.org/10.3389/fped.2016.00036
http://www.frontiersin.org/Journal/10.3389/fped.2016.00036/abstract
http://www.frontiersin.org/Journal/10.3389/fped.2016.00036/abstract
http://www.frontiersin.org/Journal/10.3389/fped.2016.00036/abstract
http://www.frontiersin.org/Journal/10.3389/fped.2016.00036/abstract
http://loop.frontiersin.org/people/105473/overview


Embryonic
0-8 weeks

Pseudoglandular
6-16 weeks

Canalicular
16-24 weeks

Saccular
24-36 weeks

Alveolar
36 to postanatal

Columnar cells

llec I epyt raoevlAsllec detailiC

Alveoar type II cell

Goblet cell

Basal Cell Clara cell

                                     Surfactant

FIGURE 1 | Schematic diagram of the complexity of the lung structure during human lung development.
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In the pseudoglandular stage, branching morphogenesis of 
the epithelium into the surrounding mesenchyme dominates and 
forms the entire air-conducting bronchial tree up to the terminal 
bronchioli. During this period, the developing epithelium begins 
to secrete fluid into the budding airways, which is important 
for the further growth of the primordial lung (4). Branching 
occurs within a preprogrammed set of rules and is governed 
by the balance of attraction and inhibition of FGF10 from the 
mesenchyme along with multiple other regulators (2). Embryonic 
stem/progenitor cell functions have been uncovered in the pseu-
doglandular stage, such as a multipotent progenitor population 
expressing the inhibitor of differentiation 2 (Id2) in the mouse 
(5). This transcriptional regulator is very strongly expressed in 
distal epithelial tips of the branching sites that are thought to 
give rise to both proximal conducting airway and distal alveolar 
epithelial cell types. Another lung progenitor cell, this time from 
the mesoderm, namely, cardiopulmonary mesoderm progenitor 
(CPP) cells, arises from the cardiopulmonary mesenchyme and 
gives rise to cardiomyocytes, endocardium, pulmonary vascular, 
and airway smooth muscle cells (6). Interestingly, CPP cells do 

not rely on parallel epithelial lung development for their growth 
as previously thought.

The canalicular stage comprises the branching of the respira-
tory portion of the lung from the terminal bronchioli. These air 
spaces form an acinus comprising respiratory bronchioles and the 
alveolar ducts. In this stage, the capillaries invade the mesenchyme 
and begin to surround the acini. Type I and II pneumocytes 
appear, proliferate, and surfactant begins to be secreted. It is late 
in this stage when a preterm newborn has the capacity to survive 
with assisted ventilation in the extra uterine environment.

At approximately 25  weeks, whole clusters of sacs extend 
from the terminal bronchiole, defining the saccular stage. These 
saccules are coated with type I and II pneumocytes, and they 
are divided by primary septa, which are thick and contain two 
layers of capillaries. The interstitial space or matrix becomes rich 
with a variety of cell types as well as collagen and elastic fibers. 
Bipotential alveolar progenitors in the mouse develop into ATII 
and alveolar type I (ATI) cells but the signals and timing are still 
unknown as whether there is an equivalent progenitor in the 
human (7).
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The final stage beginning in the late third trimester is defined 
by the alveolarization of the lung. Secondary septa begin to form, 
and the basement membrane of the capillary endothelium and the 
saccular epithelium merge to form a thin barrier. A large number 
of small protrusions form along the primary septa, becoming 
larger and subdivide the sacculi into smaller subunits, the alveoli, 
which are delimited by secondary septa (8). This phenomenon 
continues well into extra uterine life.

Vascular development of the lung consists of vasculogenesis 
(de novo formation of the vascular plexus from mesodermal 
progenitor cells) and angiogenesis (sprouting of endothelial cells 
from pre-existing vessels to form new tubes) (9). Endothelial 
cells of the newly formed tubes recruit pericytes, which wrap 
around endothelial tubes and induce stabilization and maturation 
(10). Tight regulation of this interaction is required for normal 
vascular development, and disruption of this process may lead 
postnatal lung disease.

Finally, an integral part of the developing lung is the extracel-
lular matrix (ECM). This is a complex network of components 
that have a structural, biochemical, and mechanical function. 
In lung development, the ECM serves as a scaffold that directs 
cell migration and differentiation, becoming more complex with 
development (11). Any alterations in the structure of the ECM 
whether through premature developmental arrest or injury will 
greatly alter the function of the lung.

This complicated process of lung development has been well 
studied in animal models, and many of the genetic and molecular 
factors of the major stages, as well as some stem cell populations 
have been defined with respect to human lung development, 
although much is still unknown (12).

LUNG DISEASE RESULTING FROM 
DISRUPTED LUNG DEVELOPMENT

Bronchopulmonary dysplasia is the sequela of preterm birth. The 
hallmark of this disease is alveolar growth arrest and abnormal 
lung vascular growth (13). This alveolar growth arrest is both a 
product of the disruption of secondary septation formation as 
well as a matrix that has not been fully formed. The formation of 
the pulmonary capillaries destined to appose the alveoli is also 
stunted. The etiology is multifactorial including infection, hyper-
oxia, and volutrauma superimposed on an immature lung with 
decreased defenses (14). At a cellular level, these abnormalities are 
presumed to be due to defective elastogenesis and ECM remod-
eling (15), altered alveolar epithelial–mesenchymal interactions, 
and impaired development of lung microvasculature (16). These 
changes may have an effect on the intrinsic stem/progenitor cell 
populations, making it difficult to repair the fragile young lung.

Idiopathic pulmonary arterial hypertension (IPAH) is a rare 
disorder of unknown etiology clinically defined by raised pul-
monary artery pressures involving pathological changes in pre-
capillary pulmonary artery. Although there has been significant 
progress to improve the morbidity and mortality of this disease, 
it remains a serious condition, which is extremely challenging to 
manage (17).

These diseases have been a focus of human stem cell treatment 
and will be highlighted below.

STEM/PROGENITOR CELLS IN 
HOMEOSTASIS/INJURY REPAIR

Although stem cells/progenitors are important in the develop-
ment of the lung, they also play an important role in lung 
regeneration and repair. Human tissue regeneration via native 
or recruited stem cell populations involves several mechanisms, 
which are regionally distinct and dependent on the type of injury 
(18). Constantly renewing organs, such as the hematopoietic 
system, have stem cells that are unspecialized, have a low rate of 
division, and are located in specialized “niches” (19). The lung is 
an organ that is slow to regenerate but can initiate rapid repair 
after injury. It is postulated that there are niches in the lung that 
house quiescent progenitor cells that have the potential to self-
renew and generate progeny to regenerate the lung epithelium 
specific to that location (Figure 2) (20). In the proximal airway, 
located in the gland duct and on the surface in the intercarti-
laginous zone, are basal cells, which are multipotent stem cells 
in the tracheobronchial region that can both self-renew and give 
rise to ciliated and secretory lineages during postnatal growth, 
homeostasis, and repair following damage to the epithelium (21). 
Non-ciliated secretory Clara cells (or Club cells) and variant 
Clara cells, which are located at the bronchiolar–alveolar duct 
junction and associated with the neuroepithelial body, give rise 
to ciliated and secretory cells (22, 23). A small number of cells in 
the bronchioalveolar duct junction (BADJ) co-express SCGB1A1 
(a Clara cell marker) and Surfactant protein C (SFTPC), a protein 
that is expressed by ATII cells in the alveoli. It has been proposed 
that these “dual positive” cells are bronchioalveolar stem cells 
or BASCs (24), which apparently give rise to bronchiolar and 
alveolar cell types in culture. In the peribronchial region, basal 
cells appear during repair and proliferate in the distal lung, giving 
rise to functional alveoli (25).

Finally, ATII cells in the alveoli give rise to ATI cells although 
the rate of conversion depends on whether the cells are in steady 
state (slow rate) or during repair after injury (fast rate) (18, 26). 
Although more is known of the stem cell niches and cell popula-
tions in the mouse lung, there have been some advances in the 
human lung as well. Investigators have discovered c-Kit+ cells in 
human lungs that are undifferentiated, self-renewing, clonigenic, 
and multipotent in  vitro. C-kit is a transmembrane tyrosine 
kinase receptor for stem cell factor (SCF) and has a diverse range 
of biological functions including cell proliferation, differentia-
tion, migration, and survival (27). Injection of the c-kit+ cells into 
a mouse model of focal lung injury regenerates lung components 
as diverse as bronchioles, alveoli, smooth muscle, and pulmonary 
vessels (28). This is the first evidence of a “lung stem cell” that 
can regenerate both endodermal and mesenchymal cell lineages, 
although these findings have been disputed (29). It has been 
challenging to define the properties of lung stem/progenitor cells 
due to the lungs complexity and diversity of cell types as well as 
the slow turnover of the respiratory epithelium. The regenerative 
capacity of many of these cells is also not solely determined by 
their intrinsic potential. The microenvironment of their specific 
niche, including the ECM, accessory cells, and many signaling 
factors, are also important regulators (30, 31) and warrant further 
investigation.
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FIGURE 2 | Schematic diagram of the microenvironmental niches that may contain lung stem/progenitor cells.
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Various stem/progenitor cells that function in lung repair 
reside in other areas of the body and are recruited in times of 
injury and inflammation. Cells from the bone marrow, blood, 
adipose tissue, placenta, and umbilical cord have been shown 
to structurally engraft in the airway (32, 33) as well as the pul-
monary vasculature. Another potential mechanism is that bone 
marrow-derived cells are recruited to the lung upon injury and 
exert their regenerative effects via a paracrine function (34, 
35). One population is the mesenchymal stromal cells (MSCs). 
These cells are multipotent and have a diverse but restricted 
ability to differentiate to a specific lineage. They appear to func-
tion in a paracrine manner with minimal engraftment, interact 
with the innate and adaptive immune systems (36, 37), and 
aid in lung repair and regeneration via secretion of cytokines 
and growth factors to restore alveolar epithelial and endothelial 
permeability (38–41). Chang et  al. (42) used a hyperoxia rat 
model of BPD to determine the best administration route of 
human cord blood-derived MSCs. They exposed rat pups to 
95% oxygen from birth and at day 5 delivered the MSCs either 
intratracheally or intraperitoneally. They showed that the 
intratracheally transplanted MSCs were better in preventing 
alveolar growth arrest and alleviating fibrotic changes in the 
lungs of oxygen challenged rat pups than the intraperitoneally 
administered cells. These finding have been corroborated by 
Zhang et al. (43) using a similar hyperoxic BPD model. They 
treated the rat pups with bone marrow-derived MSCs 7 days 
after the hyperoxic insult and saw a decrease in alveolar 
apoptosis. They concluded that the MSC’s protective function 
was due to stimulation of mediators that participated in tissue 

repair. Thebaud’s group (34), using the same BPD rat model, 
showed that human umbilical cord-derived MSCs partially 
prevented and rescued lung function and structure, although 
cell engraftment was low. Postulating a paracrine effect of 
MSCs, they derived MSC conditioned media, which after 
infusion into the hyperoxia exposed animal, showed similar 
therapeutic benefits as the cells themselves. They also looked 
at the lungs of these rats 6 months after the intervention and 
showed a persistent improvement in lung capacity and lung 
structure. Kourembanas’ group evaluated the pulmonary 
abnormalities in BPD. They found that a single dose of MSC 
conditioned media in hyperoxia-exposed newborn mice 
reversed the hyperoxia-induced parenchymal fibrosis, partially 
reversed alveolar injury, normalized lung function defined as 
airway resistance and dynamic lung compliance, fully reversed 
the moderate right ventricular hypertrophy, and attenuated 
peripheral pulmonary artery muscularization associated with 
hyperoxia-induced BPD (44). There are many investigators 
studying the biology of MSCs on lung injury, and for a full 
review of animal models of BPD and therapeutic use of MSCs 
please, see the review by O’Reilly et al. (45).

Endothelial progenitor cells (EPCs) come in two flavors: 
“early” EPCs, which have hematopoietic surface markers, secrete 
pro-angiogenic factors, and have limited differentiation ability; 
“late” EPCs [or endothelial colony-forming cells (ECFCs)] that 
have no hematopoietic surface markers, do not secrete pro-
angiogenic factors, make endothelioid tubes in  vitro, grow late 
in culture, and are important in replacing damaged endothe-
lium (46). These cells exert their therapeutic effects via direct 
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differentiation and engraftment into the vasculature of the lung 
and secretion of factors that mobilize endothelial and progenitor 
cells. Kung et al. (47) seeded adult peripheral blood ECFCs onto 
acellular human skin and transplanted the celluarized skin scaf-
folds into immunocompromised mice. They formed functional 
human endothelial cell vessels, which had anastomosed with the 
circulation of the mouse. Shepherd et al. (48) compared umbili-
cal cord blood-derived ECFCs, adult peripheral blood-derived 
ECFCs, or human umbilical vein endothelial cells (HUVECs) 
in a similar model. The umbilical cord blood-derived ECFCs 
exhibited a greater human vessel density than the other ECFCs. 
These studies show that ECFCs represent a promising source for 
vascular regeneration.

Amniotic fluid stem cells (AFSCs) have been used since the 
late 90s in animal models to study their function in a variety of 
organ systems. Human AFSCs are fetal-associated cells that are 
multipotent and can differentiate into all germ layers and can 
be easily and ethically obtained from amniocentesis specimens. 
Intratracheal injection of human AFSCs into a rabbit model of 
congenital diaphragmatic hernia showed improved lung density 
and function (49). Carraro et  al. (33) injected human AFSCs 
locally to the murine distal lung and saw integration into the 
epithelium and expression of the early lung marker NKX2-1. 
After oxidative injury, the injected cells expressed both NKX2-1 
and SFPTC (ATII cell marker). These same investigators deduced 
that the hAFSCs attached within the ATII wound and expedited 
repair through the secretion of cytokines. The damaged milieu 
also allowed healing through the differentiation of these cells into 
distal alveolar epithelium (50). Although no clinical trials using 
hAFSCs in lung disease have been done, they show promising 
future use.

Human amnion epithelial cells (hAECs) are found in the 
lining of the placenta and are able to develop into all the germ 
layers, possess regenerative and anti-inflammatory properties, 
and display low immunogenicity. Many animal models of lung 
injury have been used to study the effects of these cells. Hodges 
et al. (51) looked at three groups of lambs, and evaluated their 
lung injury after being ventilated in utero alone or with intra-
venous and intratracheal administration of hAECs at 110 days 
of gestation. The lambs were replaced into the womb, and 
after a week, removed and evaluated. The investigators found 
that the stem cells mitigated ventilation-induced lung injury, 
engrafted onto the lung and differentiated into ATI and ATII 
cells. Vosodoganes et  al. (52) showed in an intrauterine LPS-
induced model of lung inflammation in fetal sheep that hAECs 
significantly attenuated the fetal pulmonary inflammatory 
response after being administered intravenously, but that they 
did not improve lung structure. Other investigators studying the 
anti-inflammatory effect of hAECs on bleomycin-treated mice 
confirmed that hAEC’s attenuated the inflammatory response 
and improved lung function (53, 54). Murphy et al. (55) found 
that hAECs formed three-dimensional structures, expressed the 
CFTR gene and protein after culture in Small Airway Growth 
Medium (SAGM) and possessed functional iodide/chloride 
[I(−)/Cl(−)] ion channels. This showed that hAECs may be a 
new source for the development of a cellular therapy for cystic 
fibrosis.

These cells have not yet been used in clinical trials due to 
the  lack of large scale production of clearly defined amnion 
epithelial cells.

CLINICAL APPLICATION OF STEM/
PROGENITOR CELLS IN PEDIATRIC  
LUNG DISEASE

Animal models have been important in elucidating many of the 
potential repair mechanisms of a variety of stem/progenitor cells 
but, even without knowing all underlying mechanisms or risks, 
their clinical application for use in BPD and other pediatric lung 
diseases has exploded.

Mesenchymal stromal cells can be obtained from multiple 
tissues of the body in adults as well as children and large supplies 
are known to come from the products of pregnancy includ-
ing cord blood, placenta, and amnion. Cord blood MSCs are 
generating a lot of interest since they can be obtained without 
ethical constrictions, can be easily harvested, and are superior 
in their healing capabilities than adult bone marrow cells (56). 
Their widespread use in clinical trials has also been due to their 
immunomodulatory behavior. MSCs express low levels of major 
histocompatibility complex (MHC) class I molecules and no 
MHC class II molecules, allowing them to be poorly immuno-
genic. They also do not express costimulatory molecules involved 
in the activation of T cell for transplant rejection (57). All these 
characteristics have been delineated in both adult and fetal MSCs 
and make them strong candidates for cellular therapies. Clinically, 
MSCs have been used successfully in many disease processes, but 
in the lung, a phase II trial for moderate to severe COPD (58) 
showed no therapeutic effect, although it was not powered for 
clinical efficacy. In patients that received the MSCs, there were 
no changes from baseline except a decrease in CRP, a marker of 
inflammation, and there were no harmful side effects that differed 
between the two groups. In preterm infants with BPD, a phase 
I trial in Korea evaluated the safety and the efficacy of human 
umbilical cord blood-derived-mesenchymal stromal cell (hUCB) 
treatment in premature infants with BPD. Intratracheal MSC 
transplantation was performed in nine preterm infants, with a 
mean gestational age of 25 weeks. BPD severity was lower in the 
transplant recipients, and rates of other adverse outcomes did not 
differ between the comparison group and transplant recipients. 
They concluded that intratracheal transplantation of allogeneic 
hUCB-derived MSCs in preterm infants was safe and feasible, 
and warranted a larger and controlled phase II study (59). Other 
pulmonary diseases in which these cells are currently being inves-
tigated clinically are asthma, idiopathic pulmonary fibrosis (IPF), 
and bronchiolitis obliterans syndrome (BOS) (60). The barriers of 
clinically using MSCs include not knowing the safest and effica-
cious route, optimal dose, and the incomplete understanding of 
mechanism of action. These cells are also heterogeneous, and a 
well-defined clinically validated product is not available.

Angiogenesis is crucial for normal postnatal alveolar develop-
ment (61). EPCs and ECFCs are circulating peripheral cells that 
travel to ischemic sites and augment angiogenesis via paracrine 
effects (62, 63). Experimentally, a depletion of EPCs in the blood, 
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TABLE 1 | Pediatric clinical trials using a variety of stem/progenitor cells for the treatment of pulmonary diseases.

Disease Stem cell Phase Route Outcomes Author/trial

BPD hUCB-derived MSCs I Intratracheal Lower BPD severity Chang et al. (59)
BPD hUCB-derived MSCs II Intratracheal Recruiting NCT01897987
BPD hUCB-derived MSCs I/II Intratracheal Recruiting NCT02381366
Bronchiolitis 
obliterans

Mesenchymal stromal cells I IV Active NCT01175655

IPAH Autologous endothelial 
progenitor cells

I IV Significant improvements in exercise capacity,  
NYHA functional class, and pulmonary hemodynamics

Zhu et al. (66)

hUCB-derived MSCs, human umbilical cord blood-derived mesenchymal stem cells.
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bone marrow, and lungs of neonatal mice was detected after 
exposing mice to hyperoxia, but there was a twofold increase of 
EPCs in the lungs of adult mice exposed to hyperoxia, suggesting 
the migration of these cells to the lung for repair (64). This was not 
consistent in human babies (65). Thirty-six preterm neonates at 
risk of lung injury were evaluated for serum levels of EPCs, and it 
was found that levels of EPCs did not affect the risk of developing 
BPD. Follow-up blood draws at 36 weeks postmenstrual weeks 
showed that the levels of the EPCs were preserved after delivery. 
Another group of investigators studied ECFCs in the cord blood 
of 98 preterm babies for the proportion of circulating cells at birth 
and up to a week after, using flow cytometry (63). They found that 
ECFCs in cord blood were lower in infants who later developed 
BPD. This was felt to contribute to the vascular immaturity seen 
in this disease.

Human trials have been performed to examine whether 
exogenously transplanted EPCs to patients with vascular lung 
disease are beneficial. Zhu et al. (66) used autologous EPC trans-
plantation in children with IPAH. Thirteen children received 
IV autologous EPCs and after 12 weeks, showed improvements 
in exercise capacity and pulmonary hemodynamics. Although 
this was just a pilot study, the clinical use of EPCs in childhood 
IPAH seems safe and feasible. A Canadian phase I study using 
EPCs transfected with endothelial nitric oxide synthase in seven 
patients has recently been completed (NCT00469027), and the 
final results are pending. Clinical use is hampered by the lack of 
large-scale production of clearly defined EPCs and ECFCs, and 
their method of action is even less understood than MSCs.

Table 1 summarizes the clinical applications of the various cell 
types in pediatric lung disease.

IN VITRO STEM CELL-DERIVED 
LUNG CELLS

Human embryonic stem cells (hESC) and induced pluripotent 
stem cells (hiPSCs) are pluripotent cells that can be differenti-
ated into any tissue in the body. They are naturally derived from 
human embryos (hESC) (67) or derived from differentiated 
tissues such as skin or blood after transfection with a specific set 
of transcription factors (hiPSCs) (68). Both cell types are easy 
to maintain in culture and can be produced in large quantities 
for clinical application. By recapitulating lung development in 
culture, these cells can be coaxed into differentiating into the 
vast array of epithelia subtypes although lung generation from 
stem cells has lagged behind other tissue types (12). There are 

many protocols for differentiating stem cells into lung cells, 
but the induction of definitive endoderm from the stem cell is 
mostly achieved with a high concentration of activin A, a known 
signaling molecule in early lung development. Anterior foregut 
endoderm is then derived using a combination of small molecules 
and cytokines (69). These cells are then exposed to a variety of 
cytokines in order to reach a lung progenitor phenotype, express-
ing the transcription factor NKX2-1, the first transcription factor 
signaling the appearance of lung progenitor cells (70). Longmire 
et al. (71) used Nkx2-1–GFP reporter mouse ESCs to sort out the 
Nkx2-1-positive cells, and after treating them in culture, there 
was expression of both proximal and distal lung cell markers. 
Multiple researchers have then exposed human lung progenitor 
cells to a cocktail of exogenous signals in a variety of culture con-
ditions and were able to show markers expressing basal, ciliated, 
and mucus cells (72), distal ATI and ATII (70), mature ciliated 
epithelium using airway liquid interface (ALI) culture (73), and 
three-dimensional spheroids expressing multiple lung subtype 
markers, both proximal and distal (74). Ghaedi et al. (75) went 
a step further and seeded SPC+ ATII cells derived from hiPSCs 
onto a decelluralized lung matrix onto which they adhered and 
proliferated. The Otts lab recently reported the regeneration of 
functional pulmonary vasculature by repopulating the vascular 
compartment of decellularized rat and human lung scaffolds with 
human cells (76).

The clinical application of these stem cell-derived lung cells 
into injured lung tissue has many possibilities, including correct-
ing the genetic mutations in patient specific cells, and eventually 
replenishing the injured lung with the corrected cells, without 
immunologic rejection, although this still has a long way to go. 
Safety, mode of delivery, efficiency, large scale production, and 
purity have to first be evaluated in animals successfully. One strat-
egy that has been evaluated in the mouse and human respiratory 
system is decellularization using the intact acellular matrix of the 
lung as a base for fresh lung progenitors. Recently, Shojaie et al. 
(77) evaluated the role of the lung ECM in differentiating stem 
cell-derived definitive endoderm into mature airway epithelia. 
Clinically, a Swedish group decellularized an adult human donor 
trachea, which was then colonized by epithelial cells and mesen-
chymal stem cell-derived chondrocytes. This graft was then used 
to replace the recipient’s left main bronchus. At the 5-year follow-
up, the tissue-engineered trachea was patent, well vascularized, 
completely recellularized with respiratory epithelium, and had 
normal ciliary function and mucus clearance. No stem cell-related 
teratoma formed, and no anti-donor antibodies developed (78). 
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Another group, led by Di Coppi, treated a pediatric patient with 
congenital tracheal stenosis with a decellularised cadaveric donor 
tracheal scaffold and seeded it with bone marrow mesenchymal 
stem cells. The graft revascularized within 1 week after surgery, 
the patient had a normal chest CT scan and ventilation–perfusion 
scan after 18 months after surgery, and at 2-year follow-up, he had 
a functional airway (79).

Once the derivation of mature and functional lung epithelial 
cells that mirror their in vivo counterparts is possible and the best 
route and both short- and long-term safety are guaranteed, these 
patient-specific derived lung cells can potentially be used clini-
cally to populate severely injured lung tissue in various pediatric 
diseases, without the immunologic and ethical burden of lung 
transplantation.

CONCLUSION

In conclusion, although the field of stem cell lung biology is 
expanding rapidly and animal models of various pediatric lung 
diseases are providing insight to other molecular mechanisms 

of lung injury, these diseases remain a chronic burden on the 
child despite symptomatic therapy. Evidence has shown that 
damage to endogenous stem cells may be contributing to the 
risk and etiology of the disease, and exogenously administered 
stem cells may offer new possibilities in preventing or curing 
these diseases. Continued work in stem cell biology, lung devel-
opment, and the underlying disruption of normal development 
will add to our knowledge, and when applied clinically, will 
provide us with successful protocols to finally prevent or treat 
these diseases.
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