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Information spectra and optimal 
background states for dynamical 
networks
Delsin Menolascino  1 & ShiNung Ching1,2

We consider the notion of stimulus representation over dynamic networks, wherein the network states 
encode information about the identify of an afferent input (i.e. stimulus). Our goal is to understand 
how the structure and temporal dynamics of networks support information processing. In particular, 
we conduct a theoretical study to reveal how the background or ‘default’ state of a network with 
linear dynamics allows it to best promote discrimination over a continuum of stimuli. Our principal 
contribution is the derivation of a matrix whose spectrum (eigenvalues) quantify the extent to which the 
state of a network encodes its inputs. This measure, based on the notion of a Fisher linear discriminant, 
is relativistic in the sense that it provides an information value quantifying the ‘knowablility’ of an input 
based on its projection onto the background state. We subsequently optimize the background state and 
highlight its relationship to underlying state noise covariance. This result demonstrates how the best 
idle state of a network may be informed by its structure and dynamics. Further, we relate the proposed 
information spectrum to the controllabilty gramian matrix, establishing a link between fundamental 
control-theoretic network analysis and information processing.

In network science, considerable effort has been directed at structural analysis that reveals the interconnection 
architecture of engineered and biological networks1–6. While such analysis can illuminate intriguing and common 
architectural principles of complex systems, it alone cannot tell us the functionality of such architecture. In other 
words, to what end is the revealed structure useful? Our goal in this work is to analyze the relationship between 
structure, dynamics and function of (networked) systems. The specific notion of function that we consider is 
information coding, which has to do with how networks represent a stimulus or extrinsic input in a way that is 
useful for downstream processing (i.e., so that an agent can decode the identity of input stimuli based on a ‘read 
out’ of the state of the network). This sort of coding has been a topic of much interest in theoretical neuroscience, 
where understanding how networks of neurons represent stimuli is a foundational question7–9.

Of course, many general principles of information coding are known from communication theory10. However, 
it is not clear how principles of information transmission, coding/decoding and capacity are impacted when 
enacted over a networked system, especially one with continuous time dynamics. That is, what structure and 
dynamical aspects of a network make it a good information encoder? To this end, we principally address two 
questions: 1) What sorts of dynamics shape the input/output relationship of a network in a way which is effective 
in the Shannon sense (i.e. some, but not too much, redundancy to enable robust, efficient communication in the 
presence of noise)? It is especially unclear whether dynamical networks that do a good job encoding and/or pro-
cessing information are also those that are most responsive to their inputs in a control-theoretic sense. Hence the 
second question: 2) Is a network that is easily controlled by its inputs necessarily one that also effectively encodes 
information about those inputs? These two related questions constitute the primary focus of the paper.

We consider information processing defined in terms of the extent to which network states/outputs encode 
their respective inputs. Our particular focus is on the background state of a network and its ability to facili-
tate information extraction regarding other afferent inputs. Non-zero background states are frequently observed 
in natural dynamical systems. For example, in the study of brain networks the existence of a ‘resting state’ is 
well-established experimentally11–14. Our goal is to provide a theoretical framework with which we can better 
understand how non-zero resting states confer informational utility. Specifically, we will derive a background state 
that is optimal according to a novel information measure (also herein derived). In mathematical terms, suppose 
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that a stimulus u induces a network state xu. We will quantify the ‘knowability’ of u by comparing xu against a 
reference background state xref. The optimal xref can be interpreted as a ‘state of readiness’ at which the network 
may be sustained in preparation for activity to follow.

The information measure we employ is based upon the inner product 〈xref, xu〉, and is rooted in the method of 
Fisher linear discriminants15–17. This inner product, as is well-known, prescribes the projection of xu onto xref. For 
vectors of known magnitude, this projection gauges angular separation. Thus, essential characteristics of xu (and 
by extension, of u) can be gleaned in an easily codified and quantified manner. The potential informational value 
to be derived from a projection of xu onto xref, depends critically on the effective choice of the background state 
xref and uncertainty/noise. The choice of xref, in turn, depends largely on how a network responds to its inputs as a 
function of time (see Fig. 1). Noise and uncertainty, likewise, are impacted by the network dynamics.

The formulation of a continuous-time dynamical (networked) system with afferent input is fundamentally 
aligned with analysis from control theory. A key aspect of our results will be the derivation of a Fisher information 
matrix, u, associated with the above inner product. As we will see, the spectrum of u  quantifies the extent to 
which different afferent inputs produce different state representations. It turns out that this information spectrum 
has a particular statistical relationship with a traditional element from control theory, the controllability gramian 
matrix18. This is perhaps intuitive since the control gramian is mathematically equivalent to the covariance of a 
network in response to white noise, a key source of uncertainty (and, thus, information loss). We will formalize 
this relationship in our results.

Assessment of information propagation through noisy networks has been a topic of increasing interest, and 
while there are many contexts for which such analyses are relevant, quantifying the information-carrying capac-
ity of (real and/or artificial) neural networks has been an especially active research area8,9,19,20. For example, in 
Zylberberg et al.9, linear Fisher information is evaluated for a two-layer feedforward network in which a scalar 
signal is distributed to first-layer nodes and then propagated to the second layer via a weighted matrix, with noise 
corrupting the output of both layers. The amount of information available about the stimulus, they observe, is 
dependent on the noise covariance structure at each layer, and on how these covariances relate to one another 
and to the direction of signal propagation (i.e. the tuning curve). However, the network considered in this work is 
static, so that input-output relationships are fully determined by network structure alone (i.e. there is no recurrent 
modulation of the signal, though noise does play a role, obviously).

In contrast, Ganguli et al.8 quantify the stimulus-encoding capacity of a linear dynamical network, again 
employing linear Fisher information theory. Here, the stimulus is presented as a pulse at a specific time, the 
‘memory trace’ of which is preserved by the network over time to an extent depending on the network’s topology, 
and the statistical behavior of state noise.

Our work employs the dynamical framework of Ganguli et al.8, while considering multi-variate stimuli, akin 
to the ‘tuning curves’ of Zylberberg et al.9 In fact our framework allows for stimuli of arbitrary dimensions, 
although here we do constrain the inputs (stimuli) to be constant (for reasons addressed in the Discussion). Also 
our notion of how stimulus information is encoded is different. Specifically, we employ the inner-product based 
readout, facilitating a comparison between an output vector xu and a reference xref, as mentioned above.

Results
Problem Formulation and Preliminaries. Linear Dynamical Networks. Linear dynamics have been 
used to describe complex networks in several contexts21–23, with the caveat that such dynamics provide only local 
approximations of more complex, nonlinear regimes. Proceeding with this limitation in mind, we consider a 
linear dynamical system (network) with noise, of the form:

Figure 1. The optimal background state xref amounts to a Fisher linear discriminant, onto which state 
distributions (induced by inputs) are projected. In the case of Gaussian noise, uncertainty can be visualized in 
terms of ellipsoids (with principal axis vmax) about the mean. Since the networks are dynamic, the optimal xref 
will vary with time as the dynamics carry the states forward.
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where the n-dimensional state vector x’s recurrent dynamics are described by adjacency matrix ∈A n nx , input 
matrix ∈B n mx  mediating the m-dimensional input u, taken here to be constant (see Discussion), and 
zero-mean gaussian noise w(t), which has covariance matrix Σw. We point out the fact that the term dynamical 
network is used here to imply time-evolution in the network states, as opposed to a time-varying vector field; that 
is, A is constant. We wish to consider the linear Fisher information regarding u given the inner product of the 
state x(t) (which varies in time) and a reference background xref. By basic linear system theory
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where Σ ∈ ×
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x( )  is a covariance matrix determined by the system dynamics.

Inner Product and Fisher Information. As we seek to quantify the extent to which the inner product of x(t) and 
xref encodes information about the input u giving rise to x(t), we employ the Fisher information matrix, denoting 
it u , which is given by
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where 〈x, xref〉 = xTxref and Σ〈 〉x x, ref
 denotes the variance of this inner product. The inner product can be interpreted 

in several ways, including as the correlation or contrast between two competing states. The Fisher information 
lower bounds the variance of an estimate of u based on measurement of the inner product.

From (3), and taking into account the independence of x and xref we have
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(where we have dropped dependence on t for notational convenience).
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Using the derivation given explicitly in the Methods section, we obtain the Fisher information matrix
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where Σx is the state covariance matrix as introduced in (2).
In seeking a holistic assessment of the matrix u, we employ the trace, which is the summed component-wise 

variance in our estimation of u. Since the u  is an outer product of two vectors (scaled by the denominator) we 
may express its trace as their scaled inner product:
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where dependence on t has again been made explicit.

Linear Dynamics and Noise Ellipsoids. Figure 1 provides a schematic of the problem formulation. Because our 
dynamics are linear, at any given time t the state of the network is a Gaussian random vector. The covariance 
of the state can be used to parameterize a quadratic form whose level sets constitute ellipsoids that encapsulate 
the mean. We denote the principal eigenvector of the covariance matrix as vmax. These ellipsoids capture the 
noise-driven uncertainty in the state. As we will soon see, the optimal xref amounts to a Fisher linear discriminant 
that best disassociates two competing state distributions (ellipsoids), each associated with a different stimulus. As 
the network dynamics carry these trajectories forward in time, the optimal xref will in general change.
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Network Parameterization, Actuated Nodes and Steady-State Assumption. We will focus our attention on net-
works that have a Barabási-Albert (scale-free) topology24. The off-diagonal elements of A are binary, while the 
diagonal elements are assigned large enough negative values to ensure stability (see Methods). The dynamics of 
such networks are asymptotically stable so that in the absence of stimuli and noise, all states return to the origin.

In our analysis we will vary the structure of how inputs impinge on network nodes. In particular, for an n 
node network, only nd ≤ n nodes will receive input. These actuated nodes are sometimes referred to as ‘driver’ 
nodes25–27. We will mostly consider the case when each actuated node recieves an independent input, so that

=










B

I

0 (11)
nd

where Ind
 is the identity matrix of dimension nd (the number of driven nodes).

We make the assumption that the noise covariance is always at steady-state. In concept here is that the dynam-
ics of the network are persistently excited by ongoing noise, while receiving stimuli in a temporally punctate 
manner. To be mathematically precise, under this assumption (2) becomes:
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Critically, we assume the pair A, B is controllable, so that the controllability gramian (precisely defined later) 
is full-rank. A final important assumption pertains to the specification of t. In cases when t is assumed to be at 
steady state, we set t = 10 (which we find is five times longer than the time-constant of our considered networks). 
In other cases, we will vary t to assess the role of dynamics.

An optimal reference state xref exists, maximizing information about u. We are interested, for 
the moment, in which choice of xref will maximize (10). That is, we seek to answer the question: Of all possible 
background states xref, which one will provide the most information about a stimulus u (with its resultant output 
x), given a readout of the inner product 〈xref, x〉. In order to find this ‘ideal’ reference stimulus, we transform (10) 
as follows:
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where LLT (L is lower-triangular) is the Cholesky decomposition of Σx.Continuing, we have
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where x* = LTxref. Therefore, for simplicity of notation letting S = L−1ΓBBTΓTL−T, we have the familiar Rayleigh 
quotient
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whose values lie in the range λ λ≤ ≤tr( )umin max and which achieves its extrema for =⁎
⁎x x min and =⁎
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where ⁎x min and ⁎x max are the eigenvectors of S associated with eigenvalues λmin and λmax respectively. We then 
make the reverse transformation

= − ⁎x L x (17)T
ref max

to obtain our ideally contrasting reference state. Mathematically (and as depicted in Fig. 1) xref is in fact the Fisher 
linear discriminant that best separates the induced state distributions associated with any two randomly chosen 
inputs.

Previous results9 have shown that an optimally informative ‘signal direction’ in a non-dynamical feedforward 
network is one which align with the principal axis of the noise covariance ellipsoid. Similarly, with our dynamical 
setup, we decided to explore the optimal xref qualitatively by examining to what extent it aligns with the principal 
axis of the noise covariance ellipsoid (vmax of Σx in (10)). The results are shown in Fig. 2. We notice in Fig. 2 that 
the ideal xref changes its orientation relative to vmax as a function of nd. This orientation is virtually uncorrelated 
with network size and is very predictable, as we ran 30 network realizations for each n, nd pair and found little 
variability. We hypothesized that this was due to prioritization of the fidelity of the portion of xref corresponding 
to actuated nodes, which would explain why relatively under-actuated networks showed greater overall angular 
divergence between xref and vmax. This is indeed the case, as shown in Fig. 3. We first examined actuated nodes, 
then non-actuated nodes, by segmenting xref and vmax into the first nd elements (Fig. 3(a)), then the last n − nd 
elements (Fig. 3(b)). Clearly, the actuated part of xref is required to be much more similar to the corresponding 
part of vmax than is true for the non-actuated part.
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Aside from the dependence of the optimal xref on input structure (particularly nd), we also analyzed how the 
orientation of xref, relative to vmax, changes with time. Since, as mentioned above, we are working in a dynamical 
regime, a time-dependent analysis is straightforward. To this end, we evaluated the orientation of xref, relative to 
vmax, at several time points, using the same methodology employed above, with the results shown in Fig. 4. We 
see that the orientation of xref relative to vmax does indeed change with time, apparently smoothly, and that xref 
becomes more similar to vmax as time advances. This is especially true for fully- or nearly fully-actuated networks, 
but is generally true for all input scenarios.

Thus, the optimally contrasting background/reference state is fundamentally dependent on the input structure 
of the network and the time evolution of network dynamics.

An optimal reference input uref exists, maximizing information about u. We expanded our inquiry 
to analyze admissible reference inputs uref which could give rise to an optimally contrasting state xref. More gener-
ally, we asked: Of all possible stimuli, does there exist a best one uref, resulting in an output xref , that provides 
information about all others. In this formulation, xref  is not longer unconstrained, but rather is determined by:

= Γx Bu (18)ref ref

Using (18), we can find the optimal reference stimulus via a similar sequence of steps as in the previous sub-
section, defining
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where LLT (L is lower-triangular) is the Cholesky decomposition of BTΓTΣxΓB, which is positive-definite (a 
requirement for this decomposition) since covariance matrix Σx is inherently positive-definite and thus can be 
Cholesky decomposed into Σ ΣL LT , so that the matrix BTΓTΣxΓB can be written QQT for Q = BTΓTLΣ and is thus 
positive-semidefinite, while the full-rank condition of Q ensures positive-definiteness.

d

(b)

(a)

d

Figure 2. Fidelity of optimally contrasting reference state xref to system noise covariance decreases 
monotonically with nd. Shown is how xref aligns with the principal eigenvector (denoted vmax) of noise 
covariance matrix Σw. μCos(θ) is the mean, over 30 network realizations, of the cosine of the angular difference 
(θ) between xref and vmax. Error bars are standard deviations. 30 realizations were evaluated for (a) identity and 
(b) random B matrices.



www.nature.com/scientificreports/

6SCientifiC RepoRtS |         (2018) 8:16181  | DOI:10.1038/s41598-018-34528-y

Defining Su ≡ L−TBTΓTΓBBTΓTΓBL−1, we arrive at
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where ⁎umin and ⁎umax are the eigenvectors of Su associated with eigenvalues λmin and λmax, respectively. We then 
make the reverse transformation = − ⁎u L uT

ref max to obtain our ideally contrasting reference input.

(a)

(b)
d

d

Figure 3. Actuated nodes of the ideal background (xref) are ‘required’ to be aligned with noise; non-actuated 
nodes are not. Shown is alignment of xref with principal noise covariance direction vmax (as in Fig. 2); here xref 
and vmax are partitioned so that (a) reflects only actuated and (b) only non-actuated nodes. μCos(θ) is as in Fig. 2, 
again for 30 network realizations.

d

Figure 4. The ideal contrast becomes more aligned with noise covariance as time progresses. Shown is the 
time-evolution of the relative orientation between the optimally contrasting state xref and the principal noise 
eigenvector vmax. At lower values of T, xref is nearly orthogonal to vmax, while as T gets larger, xref becomes much 
more aligned with vmax, although this alignment approaches a limit, which also varies monotonically with nd.
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We pause for a moment to consider the significance of this ‘optimal’ uref (i.e. the eigenvector of Su which opti-
mizes (21)). The existence of such an optimum means that for a given network, there is one input whose induced 
state best contrasts those of all other inputs.

The optimally contrasting input targets specific nodes in a concentrated manner, but not nec-
essarily nodes of highest degree. We sought to characterize the ‘optimally informative’ uref by exam-
ining its entries (recall that we are in the domain of constant inputs) as they relate to the connectivity degree of 
actuated nodes. Clearly, uref has cardinality nd (see (11)). Since, then, there is a one-to-one relationship between 
the nd entries of uref and the driven nodes, we are able to learn about which nodes may be specially ‘targeted’ by 
an optimally contrasting uref. Intuition would suggest that the targeted nodes would simply be the hubs, that is, 
that the higher the degree of a node, the higher the value of the corresponding entry of uref. This is borne out in 
simulation, but to an extent which varies consistently with network size (n) and nd. Examining Fig. 5, we see that 
for larger networks wherein all nodes are controlled, nearly all of the large entries of uref are concentrated toward 
nodes in the top 5% by degree ranking (i.e. the hubs), while as we control fewer nodes, a majority of the large 
entries are directed toward the hubs, but this majority becomes smaller as nd decreases. Also, looking at the differ-
ent network sizes, we see that, in general, larger networks show a more pronounced ‘targeting’ of the hubs, while 
in smaller networks the hubs are still targeted but to a lesser extent. It should be pointed out that uref is unitary, 
meaning there is an essential trade-off between how much energy can be focused on hubs and how much can be 
focused elsewhere (as is easily seen in Fig. 5), so that in very hub-oriented scenarios (i.e. large networks with high 
fraction of controlled nodes), uref is nearly a standard basis vector, while in smaller networks wherein fewer nodes 
are controlled, uref is more homogenous.

For comparison’s sake, we ran simulations with randomly connected (Erdös-Rènyi (ER), with 0.5 edge prob-
ability) instead of scale-free networks. These networks were also undirected and rendered stable by the same 
method (described in Methods). We did use small (<0.1) positive edge weights, rather than unitary weights, for 
these networks to render their analysis more numerically tractable. We see in Fig. 6 that the optimal uref also tends 
to target nodes of higher degree in random ER networks, but to a much lesser extent than for scale-free networks. 
We hypothesize that this is because the degree distribution for scale-free networks is given by a power-law, which 
means there are many nodes of very low degree, and a few of very high degree. ER random networks have a bino-
mial degree distribution, with more nodes of average degree and none of very high degree. Thus, it may be less 
crucial for the input to target the higher-degree nodes in ER random networks, simply because the higher-degree 
nodes are not much higher-degree nodes. In the ER random networks, we see a skewing of the values of uref which 

Figure 5. The optimally contrasting input uref targets network ‘hubs’, but to a degree which varies with nd. 30 
networks were realized with for each size (n) and driver node (nd) combination. For a given network size, the 
graph shows the mean (μi) of the squared entries of the (normalized) optimal uref. The entries of uref are sorted 
according to the degree of targeted nodes (abscissa is a percentile, binned in increments of 5%, so that each bi 
represents 5% of the nodes). Note that when n = 100 and =n n

d 10
 there are twice as many bins as controlled 

nodes, hence the duplicity of values.

n=100n=400 n=200

Figure 6. Same setup as in Fig. 5, but simulations are run for randomly connected (Erdös-Rènyi) networks 
(edge probability p = 0.5). Note the much smaller range of values on the vertical axis when compared with 
Fig. 5. Nodes of high degree (‘hubs’) are targeted, but to a lesser extent than for the scale-free networks. 
Skewness of the graphs is inversely related to nd; that is, it is less necessary to target hubs for more fully actuated 
networks, until at nd = n, uref is essentially uniform.
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is inversely correlated with nd. That is, for less-actuated networks, the hubs tend to be more targeted, while for 
more fully-actuated networks, this targeting becomes less pronounced until at the limiting case (nd = n), the 
entries of uref are all nearly identical.

Information Spectra (of Su) are Sensitive to Network Parameterization. We now turn our atten-
tion to the problem of comparing different networks according to their information capacity, as quantified by u. 
For this we examine the information capacity by varying uref in (21), where the intuitive strategy is to let ⁎u  range 
over the eigenvectors of Su. Thus, a holistic characterization of tr( )u  is provided simply by the eigenvalue spec-
trum of Su (recall that (21) takes on the value λi, the ith eigenvalue, when uref is the ith eigenvector), heretofore 
termed the information spectrum of a network.

We obtained a distribution of information spectra for several network parametrizations. We here restricted 
our attention to steady state characterizations. Each distribution amounts to an empirical probability distribution 
of the eigenvalues of Su over (random) network realizations. We assumed used zero-mean, unit-variance, uncor-
related noise (i.e.   = = ∀iww w w[ ] [ ] [ ] 0i j i j , ∈ …j n{1, , }, i ≠ j and  = ∀ ∈ …i nww[ ] 1 {1, , }i i ), though sim-
ilar results were obtained for correlated noise.

Figure 7(a) depicts the information spectra for several fractions of actuated (driver) nodes (aggregates over 
several values of n). A first observation is the presence of a small, secondary mode to the right of the principal 
mode. This secondary mode reflects the presence of a few particularly salient inputs that most informatively cor-
relate with all others. It is notable that this mode, which represents the largest eigenvalue of Su, systematically 
decreases with smaller values of nd. Certain intuition about these observations can be deduced from the rich body 
of work on spectra of random matrices. One such spectral characterization28 shows that the principal eigenvalue 
of the adjacency matrix (here denoted A) for undirected, binary scale-free networks (such as those used for our 
simulations, with the exception that the diagonal of our A is adjusted, as described in Methods, to ensure stability) 
approximates n

1
4 , where n is the number of network nodes. Further, recent work29 has shown that this maximum 

eigenvalue, for weighted scale-free networks with expected degree distributions, varies monotonically with the 
maximum node degree. Maximum degree, in turn, increases dramatically as n increases, because of the preferen-
tial attachment-based network creation algorithm30. Thus we would expect the spectrum of Su, and in particular 
its principle eigenvalue, to depend on effective network size, which itself depends on nd (see (11), and note the 

Figure 7. (a) Information spectra as function of number of actuated nodes (distributions aggregated over 
n = 100, 200, 300, 400). Spectra consist of a primary mode and a smaller secondary mode. (b) Spectra of the 
controllability gramian for different fractions of actuated nodes. As noted in previous work, these spectra 
display an increasing number of modes as nd decreases. The principal mode is inset. Comparing to the 
information spectra in (a), we see that information spectra show marked similarity to first mode of control 
spectra, and both spectra reveal outlying, small modes corresponding to easiest (control) and most informative 
(information) directions.
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effect of B on (20)). This makes sense intuitively, as well: We would expect higher-dimensional input spaces to 
admit a richer set of encoded representations.

Further, as nd decreases, the distribution of the main mode becomes broader and more entropic. No additional 
modes or ‘humps’ appear as nd varies, a point we will return to shortly.

Information Spectra are Related to the Controllability Gramian. As noted previously, the infor-
mation spectrum is fundamentally time-varying (governed by the network dynamics, driven by the input in 
question). We were particularly interested in the relationship between the information spectrum and that of the 
controllability gramian matrix

∫ τ=








τ τ− −tW BB( ) e e d ,
t t T tA A

0

( ) ( )T

which also fundamentally characterizes the input-output relationship of a linear (networked) system. Indeed, it is 
well known that in the limit as → ∞t , the gramian is exactly equivalent to Σx, i.e., the denominator of u. Thus, 
we sought to compare the information spectrum to that of W(∞).

The gramian matrix has been a pivotal entity in the analysis of linear systems and similarly modeled net-
works31–33, including certain types of brain networks12,34. Recent theoretical work24 has characterized the nature 
of the infinite-time gramian spectrum as a function of the number of driven nodes (nd). It is shown there that for 
small fractions of driven nodes the spectrum manifests a series of modes or ‘humps,’ over which eigenvalues are 
randomly distributed (over network realizations). As is well known in linear systems theory, the magnitude of a 
gramian eigenvalue determines the minimum input energy needed to reach the unit hypersphere in the direction 
of its associated eigenvector. Thus, the principal mode of the gramian spectrum describes those directions that 
are ‘easiest’ to induce.

Figure 7(b) depicts the gramian spectrum for the same networks as in Fig. 7(a) (i.e., with varying fraction of 
actuated nodes). The aforementioned modes are readily evident. What is notable from this figure is the corre-
spondence between the information spectra to the two rightmost modes of the gramian spectrum (that is, the 
principal mode and the much smaller mode at far right). In interpreting this result, it is important to note that the 
information and gramian spectra are of different dimensions ∈− tW( ( )f

n n1 x  while ∈S )m m
u

x . This is because 
the information spectrum captures only constant inputs, thus for a fixed time the state is restricted to an 
m-dimensional subspace. In this sense, we postulate that the principal mode of the gramian spectrum corre-
sponds not simply to the ‘easiest’ to reach directions, but also those associated with constant (m-dimensional) 
inputs.

Let us now seek to understand this numerical correspondence between control and information, shown in 
Fig. 7, at a conceptual level. What does it mean that the easiest directions of control (quantified by the largest 
eigenvalues of W−1) and network information (quantified by u ) show such similarity? We hypothesize that this 
correspondence may be indicative of an underlying link between controllability metrics and information-based 
analyses, generally. Indeed, this is not a novel idea; the mathematical basis for this link has been explored35,36 in 
contexts different, but related, to ours. We can summarize the essence of these discussions, as it relates to our 
formulation, simply by noting that u  depends fundamentally on a derivative of the state (to be more precise, an 
inner product of two states) with respect to u. Thus, when system dynamics are such that incremental changes 
made to u result in large changes to the state, informational value is increased. This information is, to some extent, 
a measure of network sensitivity to its inputs, and sensitivity to inputs is, of course, exactly what controllability 
analysis quantifies.

Discussion
We developed an analysis to quantify the amount of information about an input u that can be gleaned from the 
contrast/correlation between its induced state xu and a reference or background state xref. Our analysis shows 
that there exists an optimally informative xref in this context. This theoretical result reinforces intuition about 
how proper choice of a contrasting background might enable more rapid decoding and subsequent processing 
of input stimuli. We showed that the orientation of xref relative to the principal axis of noise covariance decreased 
monotonically with increasing fraction of nodes actuated and that this separation also decreased over time, but to 
an extent limited by nd This dynamical relationship between the informational optimum and the noise covariance 
is complementary to results based on static models9.

We expanded our inquiry to examine the uref which would give rise to xref. We found that the optimal uref 
tends to target network hubs, but in a way which varies consistently with number of nodes driven nd (See Fig. 5). 
We then derived an information spectrum that characterizes the full encoding capacity (in terms of inner prod-
uct readout) of inputs. We showed that this spectrum has nuanced dependency on network size and fraction 
of driven nodes, with the presence of a low-dimensional set of inputs to which networks appear particularly 
well-tuned. Further, we reconciled the information encoding of a network with its control-theoretic properties, 
which characterize how the ‘energy’ of an input allow for the state space to be traversed. Our results suggest that 
inputs that produce ‘easy’ state excursions–recall that these inputs are postulated to be constant or near-constant 
(see Section)–are also those that are well-encoded.

It may reasonably be asked why we have chosen inputs to be constant in the overall paradigm. At a conceptual 
level, our information analysis is fundamentally predicated on the derivative ∂〈 〉

∂
x x

u
, ref . That is, we seek to quantify 

the extent to which changes in the projection of system state x onto background xref reflect incremental changes 
in u. In the case of a constant u, this is readily interpreted – it quantifies the ability to deduce changes in the input 
composition. However, interpretability is more problematic for a time-varying u(t). What does it mean to make 
an incremental change in the function u(t)? Is the relevant change spatial (composition) or temporal? In this 
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sense, because we are dealing with a variational problem in infinite-dimensional function space, intuition is 
difficult.

This argument can be seen mathematically. Examining (3), we see that taking a derivative with respect to u(t) 
presents us with the task of taking the derivative of one function of t ( 〈 〉tx x[ ( ), ]ref ) with respect to another 
function (u(t)). Thus, u  would become dependent on u′(t). But we conduct our analysis with respect to the 
objective of learning about u from a ‘readout’ of only the projection of x(t) onto xref. To assume a knowledge of the 
time derivative of u(t) changes the setup completely. One way around this dilemma would be to project u(t) onto 
a set of orthogonal basis functions (a Fourier basis, for example). If we denote a vector of basis functions (trun-
cated so as not to be infinite) as h(t), we can approximate (almost) any u(t) by Uh(t), where U is a constant pro-
jection, or coefficient, matrix. Then, u becomes linear in U and the basic formulation is preserved, with the 
change that instead of seeking to infer constant input u via the state projection, we seek to infer coefficient matrix 
U. A thorough treatment of this idea will be given in future work.

Having highlighted the results from the exploration of u , let us take a slightly higher-level look at the infor-
mation processing which u  quantifies. Considering the inner product as the ‘readout’ (which forms the basis of 
information measure u ) is intuitive since it measures correlation/contrast between two competing representa-
tions of a stimulus. In this sense, it is a highly condensed representation of potentially high-dimensional stimuli. 
However, it is far from clear whether a network itself could accomplish this readout, and whether this is in fact a 
reasonable strategy for actual information processing tasks such as input classification. The linearity of the model 
considered is certainly a limiting factor in this regard.

Nonetheless, we believe our results highlight an interesting direction toward analyzing not simply the struc-
tural aspects of networks, but also their dynamics and ultimately their functionality. It is straightforward to 
envision generalizing our framework to examine other network topologies, dynamical nonlinearities and wider 
time-scales, as well as alternative information metrics. These types of analyses can shed light on the functional 
advantages of biological networks (e.g., those in the brain) and/or principles for guiding the design of engineered 
systems.

Methods
Derivation of  u. Proceeding from (7), we make use of the fact that Σ〈 〉x x, ref

 is a scalar (being the variance of 
a scalar inner product), so that

 =
Γ Γ

Σ〈 〉

B x x B

(22)

T T T

u
x x

ref ref

, ref

In seeking a holistic assessment of the matrix u, we employ the trace, which is the summed component-wise 
variance in our estimation of u. Since u is an outer product of two vectors we may express its trace as their inner 
product

=
Γ Γ
Σ〈 〉

x BB xtr( )
(23)

T T T

u
x x

ref ref

, ref



We now examine the inner product variance Σ〈 〉x x, ref
. It is straightforward to obtain

 Σ = 〈 〉 − 〈 〉〈 〉 x x x x[ , ] ( [ , ]) (24)x x, ref
2

ref
2

ref

  = −x x x x x x[( ) ( )] ( [ ] [ ]) (25)T T T T
ref ref ref

2

= − Γx xx x u B x[ ] ( ) (26)T T T T T
ref ref ref

2

Note that  xx[ ]T  is the correlation matrix of x, so that

  Σ = − −x x x x[( [ ]) ( [ ]) ] (27)T
x

= − Γ Γxx Buu B[ ] (28)T T T T

Therefore

 = Σ + Γ Γxx Buu B[ ] (29)T T T T
x

and combining (29) with (26) we have

Σ = Σ + Γ Γ

− Γ

〈 〉 x Buu B x

u B x

( )

( ) (30)

T T T T

T T T
x x x, ref ref

ref
2

ref

= Σx x (31)T
xref ref
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Thus, plugging (31) into (22) we have the Fisher information matrix

 =
Γ Γ

Σ

B x x B
x x (32)

T T T

Tu
x

ref ref

ref ref

as given in the main body of the text.

Network parameterization and simulations. To ensure stability, it is sufficient24 to ensure that, 
∀ ∈ …i n{1, , }, the ith diagonal element of binary adjacency matrix A is at least as negative as the sum of the 
non-diagonal elements in row i. That is, ∑ + <≠ A A 0j i i j i i, , . Accordingly, in constructing networks, we first 
created a scale-free degree distribution and then formed a corresponding random graph, thus prescribing adja-
cency matrix A. Next we simply assigned δ= − ∑ +≠( )A Ai i j i i j i, , , where each δi was picked at random from (0, 
1).

Creation of these adjacency matrices and the B matrices, as well as the calculations of optimally contrasting 
background state xref and reference stimulus uref, with the associated statistical analyses, were performed using 
Mathematica, with the exception of the calculations of controllability gramians, which were done by exporting 
these matrices to MATLAB, and using the lyap() command.

References
 1. Alon, U. Biological networks: the tinkerer as an engineer. Science 301, 1866–1867 (2003).
 2. Barabási, A.-L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nature reviews genetics 5, 101 

(2004).
 3. Doyle, J. & Csete, M. Rules of engagement. Nature 446, 860 (2007).
 4. Khammash, M. Reverse engineering: the architecture of biological networks. Biotechniques 44, 323–329 (2008).
 5. Suda, T., Itao, T. & Matsuo, M. The bio-networking architecture: The biologically inspired approach to the design of scalable, 

adaptive, and survivable/available network applications. The Internet as a Large-Scale Complex System (2005).
 6. Cowan, R. & Jonard, N. Network structure and the diffusion of knowledge. Journal of Economic Dynamics and Control 28, 

1557–1575, https://doi.org/10.1016/j.jedc.2003.04.002 (2004).
 7. Brunel, N. & Nadal, J.-P. Mutual information, fisher information, and population coding. Neural Computation 10, 1731–1757, 

https://doi.org/10.1162/089976698300017115 (1998).
 8. Ganguli, S., Huh, D. & Sompolinsky, H. Memory traces in dynamical systems. Proceedings of the National Academy of Sciences 105, 

18970–18975 (2008).
 9. Zylberberg, J., Pouget, A., Latham, P. E. & Shea-Brown, E. Robust information propagation through noisy neural circuits. PLoS 

computational biology 13, e1005497 (2017).
 10. Shannon, C. E. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review 5, 

3–55 (2001).
 11. Raichle, M. E. et al. A default mode of brain function. Proceedings of the National Academy of Sciences 98, 676–682 (2001).
 12. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default 

mode hypothesis. Proceedings of the National Academy of Sciences 100, 253–258 (2003).
 13. Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L. & Corbetta, M. Electrophysiological signatures of resting state networks 

in the human brain. Proceedings of the National Academy of Sciences 104, 13170–13175 (2007).
 14. Deco, G., Jirsa, V. K. & McIntosh, A. R. Emerging concepts for the dynamical organization of resting-state activity in the brain. 

Nature Reviews Neuroscience 12, 43 (2011).
 15. Fisher, R. A. On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London. 

Series A, Containing Papers of a Mathematical or Physical Character 222, 309–368 (1922).
 16. Fisher, R. A. Theory of statistical estimation. In Mathematical Proceedings of the Cambridge Philosophical Society, vol. 22, 700–725 

(Cambridge University Press, 1925).
 17. Welling, M. Fisher linear discriminant analysis. Department of Computer Science, University of Toronto 3 (2005).
 18. Pasqualetti, F., Zampieri, S. & Bullo, F. Controllability metrics, limitations and algorithms for complex networks. IEEE Transactions 

on Control of Network Systems 1, 40–52, https://doi.org/10.1109/TCNS.2014.2310254 (2014).
 19. Pierce, S. G., Ben-Haim, Y., Worden, K. & Manson, G. Evaluation of neural network robust reliability using information-gap theory. 

IEEE Transactions on Neural Networks 17, 1349–1361, https://doi.org/10.1109/TNN.2006.880363 (2006).
 20. Agarwal, M., Agrawal, H., Jain, N. & Kumar, M. Face recognition using principle component analysis, eigenface and neural network. 

In 2010 International Conference on Signal Acquisition and Processing, 310–314, https://doi.org/10.1109/ICSAP.2010.51 (2010).
 21. Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Controllability of complex networks. Nature 473, 167 (2011).
 22. Liu, Y.-Y., Slotine, J.-J. & Barabási, A.-L. Observability of complex systems. Proceedings of the National Academy of Sciences 110, 

2460–2465, https://doi.org/10.1073/pnas.1215508110 (2013).
 23. Wahlberg, B. System identification using kautz models. IEEE Transactions on Automatic Control 39, 1276–1282, https://doi.

org/10.1109/9.293196 (1994).
 24. Yan, G. et al. Spectrum of controlling and observing complex networks. Nature Physics 11, 779–786 (2015).
 25. Yan, G., Ren, J., Lai, Y.-C., Lai, C.-H. & Li, B. Controlling complex networks: how much energy is needed? Physical review letters 108, 

218703 (2012).
 26. Liu, Y.-Y. & Barabási, A.-L. Control principles of complex systems. Rev. Mod. Phys. 88, 035006, https://doi.org/10.1103/

RevModPhys.88.035006 (2016).
 27. Nepusz, T. & Vicsek, T. Controlling edge dynamics in complex networks. Nature Physics 8, 568 (2012).
 28. Goh, K.-I., Kahng, B. & Kim, D. Spectra and eigenvectors of scale-free networks. Physical Review E 64, 051903 (2001).
 29. Chung, F., Lu, L. & Vu, V. Spectra of random graphs with given expected degrees. Proceedings of the National Academy of Sciences 

100, 6313–6318, https://doi.org/10.1073/pnas.0937490100 (2003).
 30. Barabasi, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509 (1999).
 31. Brockett, R. W. Finite dimensional linear systems. (Wiley, New York, 1970).
 32. Georges, D. The use of observability and controllability gramians or functions for optimal sensor and actuator location in finite-

dimensional systems. In Proceedings of 1995 34th IEEE Conference on Decision and Control, vol. 4, 3319–3324 vol. 4, https://doi.
org/10.1109/CDC.1995.478999 (1995).

 33. Marx, B., Koenig, D. & Georges, D. Optimal sensor and actuator location for descriptor systems using generalized gramians and 
balanced realizations. In American Control Conference, 2004. Proceedings of the 2004, vol. 3, 2729–2734 (IEEE, 2004).

 34. Gu, S. et al. Controllability of structural brain networks. Nature Communications 6, 8414 (2015).

http://dx.doi.org/10.1016/j.jedc.2003.04.002
http://dx.doi.org/10.1162/089976698300017115
http://dx.doi.org/10.1109/TCNS.2014.2310254
http://dx.doi.org/10.1109/TNN.2006.880363
http://dx.doi.org/10.1109/ICSAP.2010.51
http://dx.doi.org/10.1073/pnas.1215508110
http://dx.doi.org/10.1109/9.293196
http://dx.doi.org/10.1109/9.293196
http://dx.doi.org/10.1103/RevModPhys.88.035006
http://dx.doi.org/10.1103/RevModPhys.88.035006
http://dx.doi.org/10.1073/pnas.0937490100
http://dx.doi.org/10.1109/CDC.1995.478999
http://dx.doi.org/10.1109/CDC.1995.478999


www.nature.com/scientificreports/

1 2SCientifiC RepoRtS |         (2018) 8:16181  | DOI:10.1038/s41598-018-34528-y

 35. Roy, P., Cela, A. & Hamam, Y. On the relation of fim and controllability gramian. In 2009 IEEE International Symposium on Industrial 
Embedded Systems, 37–41, https://doi.org/10.1109/SIES.2009.5196189 (2009).

 36. Liu, J. & Elia, N. Convergence of fundamental limitations in information, estimation, and control. In Proceedings of the 45th IEEE 
Conference on Decision and Control, 5609–5614, https://doi.org/10.1109/CDC.2006.377694 (2006).

Acknowledgements
This work was partially supported by grant 15RT0189 from the US Air Force Office of Scientific Research, and 
grants 1537015, 1509342, 1653589 from the US National Science Foundation. ShiNung Ching holds a Career 
Award at the Scientific Interface from the Burroughs-Wellcome Fund.

Author Contributions
D.M. and S.C. contributed equally to the theoretical development, computer implementation, writing, and editing 
of this work.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1109/SIES.2009.5196189
http://dx.doi.org/10.1109/CDC.2006.377694
http://creativecommons.org/licenses/by/4.0/

	Information spectra and optimal background states for dynamical networks
	Results
	Problem Formulation and Preliminaries. 
	Linear Dynamical Networks. 
	Inner Product and Fisher Information. 
	Linear Dynamics and Noise Ellipsoids. 
	Network Parameterization, Actuated Nodes and Steady-State Assumption. 

	An optimal reference state xref exists, maximizing information about u. 
	An optimal reference input uref exists, maximizing information about u. 
	The optimally contrasting input targets specific nodes in a concentrated manner, but not necessarily nodes of highest degre ...
	Information Spectra (of Su) are Sensitive to Network Parameterization. 
	Information Spectra are Related to the Controllability Gramian. 

	Discussion
	Methods
	Derivation of u. 
	Network parameterization and simulations. 

	Acknowledgements
	Figure 1 The optimal background state xref amounts to a Fisher linear discriminant, onto which state distributions (induced by inputs) are projected.
	Figure 2 Fidelity of optimally contrasting reference state xref to system noise covariance decreases monotonically with nd.
	Figure 3 Actuated nodes of the ideal background (xref) are ‘required’ to be aligned with noise non-actuated nodes are not.
	Figure 4 The ideal contrast becomes more aligned with noise covariance as time progresses.
	Figure 5 The optimally contrasting input uref targets network ‘hubs’, but to a degree which varies with nd.
	Figure 6 Same setup as in Fig.
	Figure 7 (a) Information spectra as function of number of actuated nodes (distributions aggregated over n = 100, 200, 300, 400).




