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THEBIGGER PICTURE Tomographic image reconstruction with deep learning has been a rapidly emerging
field since 2016. Recently, a PNAS paper revealed that several well-known deep reconstruction networks
are unstable for computed tomography (CT) and magnetic resonance imaging (MRI), and, in contrast, com-
pressed sensing (CS)-inspired reconstruction methods are stable because of their theoretically proven
property known as ‘‘kernel awareness.’’ Therefore, for deep reconstruction to realize its full potential and
become a mainstream approach for tomographic imaging, it is critically important to stabilize deep recon-
struction networks. Here, we propose an analytic compressed iterative deep (ACID) framework to synergize
deep learning and compressed sensing through iterative refinement. We anticipate that this integrative
model-based data-driven approach will promote the development and translation of deep tomographic im-
age reconstruction networks.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
A recent PNAS paper reveals that several popular deep reconstruction networks are unstable. Specifically,
three kinds of instabilities were reported: (1) strong image artefacts from tiny perturbations, (2) small features
missed in a deeply reconstructed image, and (3) decreased imaging performance with increased input data.
Here, we propose an analytic compressed iterative deep (ACID) framework to address this challenge. ACID
synergizes a deep network trained on big data, kernel awareness from compressed sensing (CS)-inspired pro-
cessing, and iterative refinement tominimize the data residual relative to real measurement. Our study demon-
strates that the ACID reconstruction is accurate, is stable, and sheds light on the convergingmechanism of the
ACID iteration under a bounded relative error norm assumption. ACID not only stabilizes an unstable deep
reconstruction network but also is resilient against adversarial attacks to the whole ACID workflow, being su-
perior to classic sparsity-regularized reconstruction and eliminating the three kinds of instabilities.
INTRODUCTION

Medical imaging plays an integral role in modern medicine and

has grown rapidly over the past few decades. In the United
This is an open access article under the CC BY-N
States, there are more than 80 million computed tomography

(CT) scans and 40 million magnetic resonance imaging (MRI)

scans performed yearly.1,2 In a survey on medical innovations,

it was reported that ‘‘the most important innovation by a
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considerable margin is magnetic resonance imaging (MRI) and

computed tomography (CT).’’3 Over the past several years,

deep learning has attracted major attention in medical imaging.

Since 2016, deep learning has been gradually adopted for

tomographic imaging, known as deep tomographic imaging.4–9

Traditionally, tomographic reconstruction algorithms are either

analytic (i.e., closed-form formulation) or iterative (i.e., based

on statistical and/or sparsity models). Very recently with deep

tomographic imaging, reconstruction algorithms have used

deep neural networks (i.e., data driven).10–12 This new type of

reconstruction algorithm has generated tremendous excitement

and promising results in many studies. Some examples are

included in the recent review articles by Wang et al. and Chen

et al.13,14

While many researchers are devoted to catching this new

wave of tomographic imaging research, there are concerns

about deep tomographic reconstruction, with the landmark pa-

per15 by Antun et al. as the primary example. Specifically, Antun

et al. performed a systematic study15 to reveal the instabilities of

a number of representative deep tomographic reconstruction

networks, including AUTOMAP.16 Their study demonstrates

three kinds of network-based reconstruction vulnerabilities: (1)

tiny perturbations on the input generating strong image artefacts

(potentially, false positivity); (2) small structural features going

undetected (false negativity); and (3) increased input data lead-

ing to decreased imaging performance. These critical findings

are warnings and at the same time opportunities of deep tomo-

graphic imaging research. Importantly, the study by Antun

et al.15 found that small structural changes (e.g., a small tumor)

may not always be captured in the images reconstructed by

the deep neural networks, but standard sparsity-regularized

methods can capture these pathologies. It is worth noting that

the issue of missing pathologies was one of the main concerns

raised by radiologists in the fastMRI challenge in 2019.17

Historically, a debate, challenge, or crisis typically inspired

theoretical and methodological development. In the context of

tomographic imaging, there are several such examples. In the

earliest days of CT reconstruction, analytic reconstruction

received a critique that given a finite number of projections,

tomographic reconstruction is not uniquely determined, mean-

ing that ghost structures can be reconstructed, which do not

exist in reality but are consistent with the measured data.18

Then, this problem was solved by regularization, such as enforc-

ing the band limitedness of the underlying signals.19 Iterative

reconstruction algorithms were initially criticized that image

reconstruction was strongly influenced by penalty terms; in other

words, what you reconstruct could be what you want to see.

After selecting regularization terms and fine-tuning hyperpara-

meters, these shortcomings were addressed. Hence, such algo-

rithms have been made into clinical applications.20,21 As far as

compressed sensing (CS) is concerned, the validity of this theory

is based on restricted isometry or robust null space proper-

ties.22,23 The correct sparse solution will most likely be obtained

under the assumed properties. However, these restricted isom-

etry properties may not always be valid or verified in various ap-

plications such as few-viewCT and fastMRI. In these cases, heu-

ristically designed sampling patterns and empirically adjusted

sampling parameters are often used to approximate an ideal

random matrix-based data acquisition scheme so that a
2 Patterns 3, 100474, May 13, 2022
collected dataset is sufficiently informative.24 In practice,

encouraging results were widely reported in these relaxed appli-

cations of CS theory. Nevertheless, the sparsity constraint could

be either too strong and smear features or too weak and result in

artefacts. For example, a tumor-like structure could be intro-

duced, and pathological vessels may be filtered out if the total

variation is overly minimized, as demonstrated in purposely de-

signed numerical examples.25 Despite the limitations, multiple

sparsity-promoting reconstruction algorithms are used on com-

mercial scanners, with excellent overall performance.

The emerging deep tomographic imaging methods encounter

challenges, as reported by Antun et al.15 In addition to extensive

experimental data showing the instabilities of several deep

reconstruction networks, Gottschling et al. pointed out that

these instabilities are fundamentally associated with the lack of

kernel awareness26 and are ‘‘nontrivial to overcome.’’15 Howev-

er, their experiments show that CS-inspired reconstruction algo-

rithms worked stably, while their selected deep reconstruction

network failed under the same conditions,15 since CS-based al-

gorithms use sparse regularization that has ‘‘at its heart a notion

of kernel awareness.’’26

This article focuses on the feasibility and principles of accurate

and stable deep tomographic reconstruction, demonstrating

that deep reconstruction networks can be stabilized in a hybrid

model with a CS module embedded and are superior to CS-

based reconstruction alone. Specifically, to overcome the insta-

bilities of the deep reconstruction networks, here, we propose an

analytic compressed iterative deep (ACID) framework illustrated

in Figure 1A.Given deep reconstruction networkF andmeasure-

ment data pð0Þ, an image can be, first, reconstructed, but it may

miss fine details and introduce artefacts. Second, a CS-inspired

module Q enforces sparsity in the image domain,27 with a loss

function covering both data fidelity and sparsity (e.g., total vari-

ation,28 low-rank,29 dictionary learning30). Third, the forward

imaging model projects the current image to synthesize tomo-

graphic data, which is generally different from the original data

pð0Þ. The discrepancy is called a data residual that cannot be ex-

plained by the current image. From this data residual, an incre-

mental image is reconstructed with the deep reconstruction

network F and used to modify the current image aided by the

sparsity-promoting CSmoduleQ. This process can be repeated

to prevent losing or falsifying features. As a meta-iterative

scheme, the ACID reconstruction process cycles through these

modules repeatedly. As a result, ACID finds a desirable solution

in the intersection of the space of data-driven solutions, the

space of sparse solutions, and the space of solutions subject

to data constraints, as shown in Figure 1B. Because this integra-

tive reconstruction scheme is uniquely empowered with data-

driven prior, ACID would give a better solution than the classic

sparsity-regularized reconstruction alone; for details, see the

method details section.

An important question is whether the ACID iteration will

converge to a desirable solution in the above-described inter-

section of the three spaces (Figure 1B). The answer to this ques-

tion is far from trivial. A deep learning network represents a

non-convex optimization problem, which remains a huge open

problem (see more details in the review by Danilova et al.31).

The non-convex optimization problem in a general setting is of

non-deterministic polynomial-time hardness (NP hardness). To
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Figure 1. ACID architecture for stabilizing

deep tomographic image reconstruction

(A) Initially, the measurement data are re-

constructed by the reconstruction network F: The

current image is sparsified by the CS-inspired

sparsity-promoting module Q (briefly, the CS

module). Tomographic data are then synthesized

based on the sparsified image according to the

system model A, and compared to the measure-

ment data to find a data residual. The residual data

are processed by the modules F and Q to update

the current image. This process is repeated until a

satisfactory image is obtained.

(B) Illustration of the solution space.
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solve this problem with guaranteed convergence, practical as-

sumptions must be made in almost all of the cases. These as-

sumptions include changing a non-convex formulation into a

convex formulation under certain conditions, leveraging a prob-

lem-specific structure, and seeking only a local optimal solution.

Specifically, the Lipschitz continuity is a common condition used

to facilitate performing non-convex optimization tasks.32,33

Given the theoretically immature status of the non-convex

optimization, to understand our heuristically designed ACID sys-

tem in terms of its convergence, we assume that a well-designed

and well-trained deep reconstruction network satisfies our pro-

posed bounded relative error norm (BREN) property, which is a

special case of the Lipschitz continuity as detailed in part B,

the theoretical part34 of our current papers. Based on the

BREN property, the converging mechanism of the ACID iteration

is revealed in our two independent analyses.34

Here, we outline the key insight into the convergence of the

ACID workflow. In reference to Figure 1, we assume the BREN

property of a deep reconstruction network F, as characterized

by the ratio being less than 1 between the norm of the recon-

struction error and the norm of the corresponding ground truth

(assuming a nonzero norm without the loss of generality); that

is, the error component of the initial image reconstructed by

the deep network F is less than the ground truth image in the

L2 norm. This error consists of both sparse and non-sparse com-

ponents. The non-sparse component is effectively suppressed

by the CS module Q. The sparse errors are either observable

or unobservable. The unobservable error is in the null space of

the system matrix A and should be small relative to the ground

truth image given the BREN property (the deep reconstruction

network will effectively recover the null space component if it is

properly designed and well trained). ACID can eliminate the

observable error iteratively, owing to the BREN property. Specif-

ically, the output of the module Q is re-projected by the system

matrix A, and then the synthesized data are compared with the

measured data. The difference is called the data residual due

to the observable error component. To suppress this error

component, we use the networkF to reconstruct an incremental

image and add it to the current image, and then refine the up-

dated image with the CS module Q. In this correction step, the

desirable incremental image is the new ground truth image,
and the BREN property remains valid as

this step is a contraction mapping. In other

words, the associated new observable
error is less than the previous observable error, by the BREN

property of the deep reconstruction network F. Repeating this

process leads to the observable error diminishing exponentially

fast (the BREN ratio less than 1). In doing so, the ACID solution

will simultaneously incorporate data-driven knowledge, image

sparsity preference, and measurement data consistency.

Note that, in a recent paper,35 a two-step deep learning strat-

egy was analyzed for tomographic imaging, in which a classical

method was followed by a deep-network-based refinement to

‘‘close the gap between practice and theory’’ for that particular

reconstruction workflow. The key idea is to use the null space

network for data-driven regularization, achieving convergence

based on the Lipschitz smoothness. We emphasize here that

our analysis on the convergence of ACID is in a similar spirit.34

RESULTS

Given the importance of the recent study on the instabilities of

some representative deep reconstruction networks,15 the main

motivation of our work is to stabilize deep tomographic recon-

struction. Hence, our experimental setup systematically

mirrored what was described by Antun et al.,15 including data-

sets and their naming conventions, selected reconstruction net-

works, CS-based minimization benchmarks, and image quality

metrics. As a result, the Ell-50 and DAGAN networks were cho-

sen for CT and MRI reconstructions, respectively (details in the

method details section and supplemental information). Both of

those CT and MRI networks were subjected to the instabilities

reported by Antun et al.15 In addition to the system-level compar-

ison, we performed an ablation study on the ACID workflow and

investigated its own stability against adversarial attacks. For de-

tails about adversarial attacks, see Antun et al.15 and our other

paper.34 The full descriptions of the original simulated cases of

C1–C7,M1–M12 and A1–A4 are in the supplemental information,

part I.

Stability with small structural changes
We demonstrated the performance of the ACID network with

small structural changes. The Ell-50 network was used as a spe-

cial FBPConvNet.36 Figure 2 shows representative results in two

simulated CT cases: C1 and C2 (the details can be found in the
Patterns 3, 100474, May 13, 2022 3
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Figure 2. Performance of ACID with small structural changes in the simulated CT and MRI cases, respectively

Four phantoms with structural changes are reconstructed by ACID and competing techniques.

(A) The original image of CT case C1 with 2 magnified regions-of-interest (ROIs).

(B–D) Ell-50, CS-inspired, and ACID results, respectively, from (A).

(E –H) Counterparts of C2. Each CT dataset contains 50 projections. The image structures marked by white arrows show the advantages of our ACID in terms of

CT imaging.

(I) The original image of MRI case M1.

(legend continued on next page)
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supplemental information, part I). To examine the degrees of

small image structure recovery allowed by all of the reconstruc-

tion methods, some text, the contour of a bird, and their mixture

were used to simulate structural changes in CT images. It is

observed in Figures 2A–2H that the proposed ACID network pro-

vided a superior performance owing to the synergistic fusion of

deep learning, CS-based sparsification, and iterative refinement.

In this case, Ell-50 served as the deep network in the ACID

workflow.

It can be seen in Figures 2A–2H that CS-inspired reconstruc-

tions produced better results than the Ell-50 network. This is

consistent with the results reported by Antun et al.15 The CS-

based reconstruction approach retained the structural changes.

The text and bird were still identifiable in the CS-inspired recon-

struction but became unclear in the Ell-50 results. In contrast, the

text ‘‘CAN U SEE IT’’ and bird were well recovered using our

ACID network. While the contour of the bird was compromised

in the CS reconstruction, ACID produced better image quality

than the CS method.37 In terms of edge preservation, the Ell-

50 reconstruction gave better sharpness overall than the corre-

sponding CS reconstruction. Furthermore, ACID corrected the

structural distortions seen in the Ell-50 and CS results. A similar

study was performed on MRI with small structural changes, as

shown in Figures 2I–2P. Since DAGAN38 was used as a repre-

sentative network by Antun et al.,15 we implemented it for this

experiment. The text was added to brain MRI slices (M1 and

M2 cases; more details in supplemental information, part I).

Figures 2I–2L show the M1 results reconstructed from data sub-

sampled at a rate of 10%. It is difficult to recognize the phrase

‘‘HELLO NATURE’’ in the DAGAN reconstruction. The structures

were effectively recovered by the CSmethod but with evident ar-

tefacts due to the low subsampling rate. In addition, the edges of

‘‘HELLO NATURE’’ were severely blurred, as was the text. How-

ever, our ACID network produced excellent results with the

clearly visible words. To further show the power of ACID with

small structural changes, another example (M2) in Antun

et al.15 was reproduced as Figures 2M–2P. The text ‘‘CAN U

SEE IT’’ was corrupted by both DAGAN and CS, rendering the

insert hard to be read. Again, the text can be easily seen in the

ACID reconstruction. Indeed, compared with the DAGAN and

CS results, the ACID reconstruction kept sharp edges and subtle

features. The reconstructed results of M2 (similar to the DAGAN

results in Antun et al.,15 but with different subsampling rate and

pattern) also support the superior performance of ACID.

In brief, ACIDexhibited superior stabilitywith structural changes

over the competitors, as quantified by the peak signal-to-noise ra-

tio (PSNR), structural similarity (SSIM), normalized root-mean-

square error (NRMSE), and feature similarity (FSIM) in Table 1. In

all of these cases, ACID consistently obtained the highest PSNR

and SSIM scores indicated by boldface font.

Stability against adversarial attacks
A tiny perturbation could fool a deep neural network to make a

highly undesirable prediction,15 which is known as an adversa-
(J –L) The DAGAN, CS-inspired, and ACID results, respectively, from M1.

(M–P) Counterparts of M2. The subsampling rate of MRI is 10%. The display wind

respectively. The blue arrows demonstrate that our ACID provides much clearer

supplemental information, part III.B.
rial attack.39,40 To show the capability of the ACID approach

against adversarial perturbations, the simulated CT (cases C3

and C4) and MRI (cases M3 and M4) reconstructions under

such perturbations are given in Figure 3. Figures 3A–3D show

that Ell-50 network led to distorted edges, as indicated by

the arrows. Although the CS reconstruction had a stable perfor-

mance against tiny perturbations, these distortions could not

be fully corrected, with remaining subsampling artefacts. In

contrast, this defect was well corrected by ACID. It is observed

in Figures 3F–3I that the artefacts marked by the arrows

induced by perturbation distorted the image edges in the Ell-

50 reconstruction. This could result in a clinical misinterpreta-

tion. Although these artefacts were effectively eliminated in

the CS reconstruction, CS-related new artifacts were intro-

duced. Encouragingly, the corresponding edges and shapes

were faithfully reproduced by ACID without any significant arte-

facts. In addition, the text ‘‘CAN YOU SEE IT’’ was completely

lost in the Ell-50 reconstruction. In contrast, our ACID results

preserved the edges and letters. The worst MRI reconstruction

results from tiny perturbations were obtained by DAGAN, as

shown in Figures 3L and 3Q. Compared with DAGAN, the

CS-based reconstruction provided higher accuracy, but still

failed to preserve critical details such as edges, as shown in

Figures 3M and 3R. However, our ACID network overcame

these weaknesses. Table 1 summarizes the quantitative evalu-

ation results.

To demonstrate the ACID performance in a practical setting,

more experiments were performed in these CT and simulated

MRI cases with noisy data. The CT reconstruction results were

obtained in the case C5, generated by adding Gaussian noise

to the C1 data. Also, the reconstruction results were obtained

in the experiments on M5 and M6, generated by adding

Gaussian noise to the M1 and M2 datasets, respectively. With

the original networks (including Ell-50 and DAGAN) and CS

methods, the image edges and other features were notably

blurred. However, all of the features including the embedded

words were well recovered by ACID as shown in Figure 4. It is

observed that ACID gave better quantitative results than the

competitors. Specifically, ACID suppressed image noise more

effectively than the CS-based reconstruction method, even

though the network was not trained for denoising. The quantita-

tive results are also given in Table 1.

Stability with more input data
Intuitively, a well-designed reconstruction scheme is expected

to increase its performance monotonically as more input data

become available. It was pointed out by Antun et al.15 that the

performance of some deep reconstruction networks, such as

Ell-50 and DAGAN, degraded with more input data, which is

certainly undesirable. To evaluate the performance of ACID

withmore input data, cases C1, C2, M1, andM2were analyzed.

The numbers of views in the CT cases were set to 10, 20, 30, 50,

60, 75, 100, 150, and 300, and in the simulated MRI cases, the

subsampling rates were set to 1%, 5%, 10%, 20%, 30%, 40%,
ows for C1, C2, M1, andM2 are [�150 150]HU, [�200 200]HU, [0 0.7], and [0 1],

image edges as well as finer structures. The difference images are provided in

Patterns 3, 100474, May 13, 2022 5



Table 1. Quantitative analysis results in the experiments

CT Cases C1 C2 C3 C4 C5

PSNR Ell-50 31.80 31.49 34.02 29.57 25.57

CS 32.62 31.81 33.52 30.44 22.49

ACID 40.86 38.78 38.76 36.02 31.14

SSIM Ell-50 0.922 0.953 0.924 0.882 0.651

CS 0.951 0.954 0.933 0.944 0.769

ACID 0.995 0.993 0.990 0.987 0.901

NRMSE Ell-50 0.0120 0.0108 0.0124 0.0168 0.0236

CS 0.0088 0.0084 0.0113 0.0112 0.0216

ACID 0.0039 0.0046 0.0071 0.0079 0.0140

FSIM Ell-50 0.960 0.981 0.955 0.938 0.868

CS 0.964 0.971 0.949 0.955 0.877

ACID 0.987 0.998 0.991 0.992 0.947

MRI Cases M1 M2 M3 M4 M5 M6

PSNR DAGAN 29.59 29.16 28.22 27.55 29.33 29.06

CS 30.91 30.23 29.83 29.33 29.58 29.35

ACID 37.59 34.91 34.18 32.23 34.76 32.69

SSIM DAGAN 0.923 0.896 0.877 0.851 0.907 0.906

CS 0.951 0.941 0.936 0.926 0.933 0.929

ACID 0.981 0.977 0.966 0.941 0.946 0.942

NRMSE DAGAN 0.0338 0.0350 0.0402 0.0419 0.0353 0.0358

CS 0.0285 0.0308 0.0322 0.0342 0.0332 0.0340

ACID 0.0133 0.0188 0.0201 0.0260 0.0192 0.0249

FSIM DAGAN 0.969 0.953 0.949 0.935 0.964 0.956

CS 0.977 0.967 0.968 0.958 0.972 0.965

ACID 0.990 0.985 0.977 0.969 0.976 0.970
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and 50%. Figure 5 shows that the performance of Ell-50

decreased with more projections than what were used for

network training, being consistent with the observation by An-

tun et al.15 In contrast, ACID performed better with more views

in terms of PSNR and SSIM. Similarly, the performance of

DAGAN decreased when more data were collected at sampling

rates higher than those used for DAGAN training, which agrees

with the conclusion on DAGAN in the work of Antun et al.15

However, ACID produced better reconstruction quality in terms

of PSNR and SSIM. The performance of ACID substantially

improved with more input data, indicating that our ACID gener-

alizes well to more input data, similar to the CS methods.

Ablation study on ACID
ACID involves deep reconstruction, CS-inspired sparsification,

analytic mapping, and iterative refinement. To understand the

roles of these algorithmic ingredients, we evaluated their relative

contributions to the ACID reconstruction quality. Specifically, we

reconstructed images using the three simplified versions of ACID

by removing/replacing individual key components. The three

versions include (1) improving the initial deep reconstruction

with CS-inspired sparsification without iteration, (2) replacing

deep reconstruction with a conventional reconstruction method,

and (3) abandoning the compressed sensing constraint. Figure 6

shows that each simplified ACID variant compromised the ACID

performance significantly.
6 Patterns 3, 100474, May 13, 2022
Comparison with classic iteration-based unrolled
networks
Based on our experiences, we believe that the use of deep

learning as a post-processor or an image-domain data-driven

regularizer in a classic iterative reconstruction algorithm, as

was suggested by Wang,4 is inferior to ACID that leverages the

power of deep learning from the data space to the image space,

since once an image is reconstructed using a classic method,

some clues in the data space may be lost for deep learning-

based reconstruction. It is mainly because the classic iterative

reconstruction cannot take full advantage of data-driven prior,

even if a deep learning image denoiser is used, such as in

ADMM-net.41 Different from existing iteration-based unrolled

reconstruction networks that only use deep learning to refine

an intermediate image already reconstructed using a classic iter-

ative algorithm, ACID reconstructs an intermediate image with a

deep network trained on big data and through iterative refine-

ment. To highlight the merits of ACID, the classic ADMM-net

was chosen for comparison.41 The ADMM-net was trained on

20% subsampled data, with a radial sampling mask while the

other settings are the same as that in Yang et al.41 Figures 7A–

7C show that ACID achieved the best-reconstructed image qual-

ity, followed by ADMM-net and DAGAN sequentially. The phrase

‘‘HELLONATURE’’ was blurred in the DAGAN reconstruction but

became clearer in the ADMM-net reconstruction. However, the

artefacts due to subsampling remain evident in the ADMM-net
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Figure 3. Performance of ACID against adversarial attacks coupled with structural changes in the simulated CT and MRI cases

(A) The ground truth CT image in the C3 case with 2 magnified ROIs (window [�80 80]HU); (B)–(D) are Ell-50, CS, and ACID reconstructions; and (E) shows the

adversarial sample (window [�5 5]HU). (F)–(J) are the counterparts in the C4 case (display window for (F)–(I) is [�150 150]HU and the display window for (J) is [�5

5]HU). The image structures indicated by white arrows show the advantages of our ACID in terms of CT imaging against adversarial attacks.

(K) The ground truth MRI image in the M3 case (normalized to [0, 0.7]).

(L–N) DAGAN, CS, and ACID reconstructions.

(O) The adversarial sample (window [�0.05 0.05]).

(P–T) The counterparts of MRI in the M4 case. The blue arrows demonstrate that our ACID provides much clearer image edges as well as finer structures against

adversarial attacks. The difference images can be found in supplemental information, part III.B.
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reconstruction. In Figures 7D–7F, there are strong artefacts in

the reconstructed image by DAGAN. However, the image quality

fromADMM-net is better than that of DAGAN, such as in terms of

edge sharpness. The image edges and features in the ACID im-

ages are overall the best, as shown in Figure 7. To quantify the

performance of these techniques, the PSNR and SSIM were

computed, as shown in Figure 7.

The ACID flowchart can be unfolded into the feedforward ar-

chitecture. However, such an unfolded reconstruction network

(similar to MRI-VN42) could still be subject to adversarial attacks,
if kernel awareness is not somehow incorporated. Given the cur-

rent graphics processing unit (GPU) memory limit, it is often

impractical to unfold the whole ACID (up to 100 iterations or

more) into a single network.

The unrolled reconstruction networks show great deep tomo-

graphic performance. For example, they can reconstruct high-

quality images from sparse-viewmeasurements. However, there

are at least three differences between ACID and the unrolled

reconstruction networks, such as MetaInv-Net.43 First, large-

scale trained networks, such as DAGAN38 and Ell-5036 could
Patterns 3, 100474, May 13, 2022 7
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Figure 4. Reconstruction results in the simulated C5, M5, and M6 cases

(A–D) The ground truth, Ell-50, CS, and ACID results on C5.

(E–H and I–L) The ground truth, DAGAN, CS, and ACID results on M5 and M6, respectively.
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be incorporated into the ACID framework as demonstrated in

this study. However, if the ACID scheme is unrolled into a feed-

forward network, only small subnetworks could be integrated—

in other words, an unrolled ACID network could only use rela-

tively light networks such as multiple layer convolutional

neural networks (CNNs).44,45 These sentences are not self-con-

tradictory, because the ACID scheme is not an unrolled network.

In fact, an unrolled network has a number of stages, each of

which consumes a substantial amount of memory. Hence, the

total size of the required memory is proportional to the number

of stages. In contrast, ACID is computationally iterative, and

thus the same memory space allocated for an iteration is re-

used for the next iteration. Therefore, a large-scale network

can work with ACID, but when the ACID scheme is unrolled,

only a lightweight network can be used for ACID reconstruction.

Second, the size of images reconstructed by an unrolled network

is typically small. For example, the input image consists of small

pixels for ADMM-net,41 MetaInv-Net,43 LEARN,44 and AirNet,46

limited by the memory size of the GPU. The reconstructed low-

resolution results could not satisfy the requirement of many

clinical applications, especially for CT imaging tasks. Also, the

unrolled networks were commonly designed for two-dimen-
8 Patterns 3, 100474, May 13, 2022
sional (2D) imaging, including the MetaInv-Net,43 and they are

difficult to use in 3D imaging geometry, since the memory incre-

ment is proportional to the number of stages. Third, it has not

been intended by others to incorporate the theoretically

grounded sparsity regularization module in such an unrolled

architecture. This could be due to the fact that some needed op-

erations (e.g., the image gradient L0-norm
47) could not be effec-

tively implemented with compact feedforward networks, which

demanded big data and could not be easily trained. Neverthe-

less, ACID can stabilize these unrolled networks. For example,

Figure 8 demonstrates the results using ACID with a built-in

model-based unrolled deep network (MoDL).45 MoDL performed

well with structural changes but suffered from adversarial at-

tacks.15 Synergistically, ACID with MoDL built in produced

excellent image quality.

Adversarial attacks to the ACID system
As demonstrated above, ACID can successfully stabilize an un-

stable network. Then, a natural question is whether or not the

whole ACID workflow itself is stable. To evaluate the stability of

ACID in its entirety, we generated adversarial samples to attack

the entire ACID system, with representative results in Figure 9.
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Figure 5. Performance of ACID with more input data

(A and B) and (C and D) contain the PSNR and SSIM curves with respect to the number of views in cases C1 and C2, respectively.

(E and F) and (G and H) are the same type of curves with respect to different sub-sampling rates in cases M1 and M2, respectively.
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Because ACID involves both deep reconstruction and sparsity

minimization in the iterative framework, the adversarial attack

mechanism is more complicated for ACID than that for a feedfor-

ward neural network. (See part B34 of this article for details on the

adversarial attacking method that we used to attack ACID.) Us-
A B

E F

PSNR/SSIM=34.34/0.977

NI NDL

PSNR/SSIM=36.23/0.922 PSNR/SSIM=42.07/0.981

PSNR/SSIM=28.16/0.929

Figure 6. ACID ablation study in terms of visual inspection and quantit

NI denotes the reconstructed results by ACID without iterations (K = 1). NDL and

respectively.

(A–D) These panels represent the reconstructed results by NI, NDL, NCS, and A

(E–H) The reconstructed results by NI, NDL, NCS and ACID in the M7 case.
ing this adversarial method, C6, C7, and M10–M12 images were

perturbed to various degrees, being even greater in terms of the

L2-norm than what were used to attack individual deep recon-

struction networks. Our ACID reconstruction results show that

the structural features and inserted words were still clearly
C D

G H

PSNR/SSIM=35.25/0.971 PSNR/SSIM=40.86/0.995

NCS ACID

PSNR/SSIM=43.09/0.971 PSNR/SSIM=44.25/0.984

ative metrics in the cases C1 and M7

NCS denote ACID without deeply learned prior and CS-based sparsification,

CID in the C1 case.
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PSNR/SSIM=30.78/0.908 PSNR/SSIM=33.85/0.932 PSNR/SSIM=40.44/0.982

PSNR/SSIM=30.49/0.899 PSNR/SSIM=35.06/0.952 PSNR/SSIM=37.46/0.977

Figure 7. Comparison of reconstruction

performance relative to the ADMM-net

(A–C) These panels represent the results re-

constructed by DAGAN, ADMM-net, and ACID,

respectively.

(D–F) Counterparts of another case.
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reproduced even after these adversarial attacks. Consistently,

the PSNR and SSIM results of ACID were not significantly

compromised by the adversarial attacks.

Stabilization of AUTOMAP
AUTOMAP, an important milestone in medical imaging, was

used as another classic example by Antun et al.15 to demon-

strate the instabilities of deep tomographic reconstruction. To

further test the stability of ACID, cases A1 and A2 with structural

changes and A3 and A4 cases with adversarial attacks were

used, as shown in Figure 10 (details on cases A1–A4 are in sup-

plemental information, part I). It is observed that AUTOMAP

demonstrated good ability against structural changes but that

it suffered from adversarial attacks.15 ACID produced signifi-

cantly better image quality than AUTOMAP. Beyond the visual

inspection, ACID achieved better PSNR and SSIM values than

AUTOMAP. (See supplemental information, part I for more

details.)

DISCUSSION

As clearly reviewed in the theoretical part of our article series,34

the kernel awareness26 is important to avoid the so-called car-

dinal sin. When input vectors are very close to the null space of

the associated measurement matrix, if the input is slightly per-

turbed, then a large variation may be induced in the recon-

structed image. If an algorithm lacks the kernel awareness,

then it will be intrinsically vulnerable, suffering from false-posi-

tive and false-negative errors; for mathematical rigor, please

see Theorem 3.1 in Gottschling et al.26 For this reason, the

deep tomographic networks were successfully attacked in An-

tun et al.15 However, sparsity-promoting algorithms were de-

signed with the kernel awareness, leading to an accurate and

stable recovery of underlying images, as also shown in Antun

et al.15 As demonstrated by our results here, the kernel aware-

ness has been embedded in the ACID scheme through both the

CS-based sparsity constraint and the iterative refinement

mechanism. Hence, ACID demonstrates a robust performance
10 Patterns 3, 100474, May 13, 2022
against noise, under adversarial attacks,

and when the amount of input data is

increased relative to what was used for

network training. A different empirical

method was also designed by peers,48

which produced results complementary

to ours.49

It is important to understand how a

CS-based image recovery algorithm im-

plements the kernel awareness. The

sparsity-constrained solution is iteratively

obtained so that the search for the solu-

tion is within a low-dimensional manifold.
That is, prior knowledge known as sparsity helps narrow down

the solution space. Indeed, natural and medical images allow

low-dimensional manifold representations.50 It is critical to

emphasize that a deep neural network is data driven, and the

resultant data-driven prior is rather powerful to constrain the

solution space greatly. While sparsity prior is just one or a

few mathematical expressions, deep prior is in a deep network

topology with a large amount of parameters extracted from big

data. In this study, we incorporated the Ell-50 and DAGAN

network into the ACID workflow. In fact, ACID as a general

framework can integrate more advanced reconstruction neural

networks,51 such as PIC-GAN52 and SARA-GAN.53 These two

kinds of priors (sparsity prior and deep priors) can be combined

in our ACID workflow in various ways to gain the merits from

both sides. Because the combination of deep prior and sparsity

prior is more informative than sparsity prior alone, ACID or

similar networks would outperform classic algorithms, including

CS-inspired sparsity-promoting methods. Indeed, with a deep

reconstruction capability, ACID outperforms the representative

CS-based methods for image reconstruction, including dictio-

nary learning reconstruction methods (see details in supple-

mental information, part II.B). Indeed, we only quantitatively

evaluated the main reconstruction results in terms of PSNR,

NRMSE, SSIM, and FSIM. Our current evaluative metrics

directly correspond to what were used in the Proceedings of

the National Academy of Sciences (PNAS) study.15 However,

it will be valuable and interesting to assess the clinical influence

of reconstructed results using other advanced assessment

methods (local perturbation responses54 and Frechet inception

distance55). In addition, the used deep tomographic networks

are based on CNN architectures. Recently, the transformer as

an advanced deep learning technique was used for image recon-

struction. For example, Pan et al. developed a multi-domain inte-

grative Swin transformer network (MIST-net) for sparse-view

reconstruction.56 Furthermore, the Swin transformer was used

for MRI reconstruction.57 How to stabilize transformer-based

deep reconstruction networks is also important. We will pursue

studies along this direction in the near future.58
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PSNR=36.13/SSIM=0.978 PSNR=41.55/SSIM=0.991Ground truth

Figure 8. Stabilization of MoDL using the

ACID strategy

(A–C) These panels represent a representative

reference, corresponding results reconstructed by

MoDL and ACID (with MoDL built in), respectively,

where adversarial attacks were applied to the

MoDL network, which was then successfully de-

fended using the ACID scheme with MoDL built in.
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This study represents our specific response to the challenge

presented in the PNAS paper by Antun et al.15 For that purpose

and as the first step, the deep reconstruction networks and asso-

ciated datasets we used are the same as what were used in the

PNAS study, thereby making it clear and convincing for the

readers to evaluate their relative performance. As a result, we

also inserted the unrealistic features (e.g., bird, letters) used in

the PNAS study. We emphasize that these experiments repre-

sent substantially easier inverse problems than real CT/MRI

studies. How to evaluate and optimize the diagnostic perfor-

mance of ACID-type algorithms in clinical tasks will be pursued

in the future, which include real pathological features such as

tumors.
A
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M
PSNR/SSIM=
41.72/0.993

PSNR/SSIM=
37.95/0.993

PSNR/SSIM
37.82/0.943

Figure 9. ACID being resilient against adversarial attacks

From left to right, the columns are ACID results in C6, C7, andM10–M12 cases, res

reconstructed images, and corresponding perturbations.
In conclusion, our proposed ACID workflow has synergized

deep network-based reconstruction, CS-inspired sparsity reg-

ularization, analytic forward mapping, and iterative data resid-

ual correction to systematically overcome the instabilities of

the deep reconstruction networks selected in Antun et al.15

and achieved better results than the CS algorithms used by

them. It is emphasized that the ACID scheme is only an exem-

plary embodiment, and other hybrid reconstruction schemes

of this type can be also investigated in a similar spirit.59,60

We anticipate that this integrative data-driven approach

will help promote the development and translation of deep

tomographic image reconstruction networks into clinical

applications.
D

I

N

E

J

O
= PSNR/SSIM=

33.12/0.935
PSNR/SSIM=
31.39/0.929

pectively. The first -third rows represent the ground truth plus tiny perturbation,
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Figure 10. Stabilization of AUTOMAP using ACID

The first and second columns represent the reconstruction results from structural changes, where the first, second, and third rows represent the reference,

AUTOMAP, and ACID (with AUTOMAP built in) results, respectively. Third and fourth columns are the counterparts under adversarial attack, where the first, sec-

ond, and third rows denote the reference plus perturbation, AUTOMAP, and ACID (with AUTOMAP built in) results, respectively.
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Hengyong Yu, PhD (e-mail: hengyong-yu@ieee.org).

Materials availability

The study did not generate new unique reagents.

Data and code availability

The codes, trained networks, test datasets, and reconstruction results are

publicly available on Zenodo (https://zenodo.org/record/5497811).

Method details

Heuristic ACID scheme

In the imaging field, we often assume that the measurement pð0Þ = Af� + e,

where A˛Rm3N is a measurement matrix (e.g., A is the Radon transform for

CT61 and the Fourier transform for MRI62), pð0Þ˛Rm is an original dataset,

f�˛RN is the ground truth image, e˛Rm is data noise, and most relevant,

m<N, meaning that the inverse problem is underdetermined. In the under-

deterministic case, additional prior knowledge must be introduced to recover

the original image uniquely and stably. Typically, we assume that H˛ RN3N is

an invertible transform, A satisfies the restricted isometry property (RIP) of

order s63 (note that ACID works even without RIP, but in that case the solu-

tion may or may not be unique; see the theoretical part of our articles, part

B34), and Hf� is s-sparse. We further assume that the function Fð ,Þ models
12 Patterns 3, 100474, May 13, 2022
a properly designed and well-trained neural network with the BREN property

that continuously maps measurement data to an image. To solve the prob-

lem of reconstructing f from measurement pð0Þ, the ACID scheme is heuristi-

cally derived from the following iterative solution (see part B of our article

series34):

8>>><
>>>:

pðk + 1Þ =
l
�
pð0Þ � Af ðkÞ

�
1+ l

fðk + 1Þ =H�1Sε

�
H

�
fðkÞ +

1

l
F
�
pðk + 1Þ���

(Equation 1)

where k is the index for iteration, k = 0; 1; 2;., l> 0 and ε>0 are hyperpara-

meters, H�1 is the inverse transform of H, and Sεð ,Þ is the soft-thresholding

filtering kernel function defined as

S
ε
ðxÞ =

�
0; jxj<ε
x � sgnðxÞε otherwise

: (Equation 2)

In our experiments, Hf is specialized as a discrete gradient transform, and

H�1 is interpreted as a pseudo-inverse64 (see part B of our article series34). Un-

der the same conditions described by Yu and Wang,64 the ACID iteration

would converge to a feasible solution subject to an uncertainty range propor-

tional to the noise level (under the conditions and approximations discussed in

part B of our article series34).

mailto:Hengyong-yu@ieee.org
https://zenodo.org/record/5497811
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Selected unstable networks stabilized in the ACID framework

The Ell-50 and DAGAN networks are two examples of unstable deep recon-

struction networks chosen to validate the effectiveness of ACID, both of which

were used in Antun et al.15 and suffered from the three kinds of instabilities. In

addition, the results from stabilizing AUTOMAP, a milestone deep tomo-

graphic network, were also included.

The projection data for Ell-50-based CT reconstruction were generated

using the radon function in MATLAB R2017b, where 50 indicates the num-

ber of projections. For fair comparison, we only used the trained networks

by Jin et al.,36 which were the same as those used in Antun et al.15 The test

image for case C1 was provided by Antun et al.,15 which can be down-

loaded from the related website.15 Case C2 with the bird icon and text

‘‘A BIRD?’’ was provided by Gottschling et al.26 and downloaded from

the specified website.15 The test images are of 512 3 512 pixels containing

structural features without any perturbation. To generate adversarial at-

tacks, the proposed method in Antun et al.15 was used. Then, we obtained

C3 and C4 images by adding perturbations to C1 and C2 images, respec-

tively. Furthermore, Gaussian noise with zero mean and deviation 15 HU

over the pixel value range was superimposed in case C1 to obtain case

C5, and adversarial attacking was performed on the whole ACID workflow

by perturbing C1 and C2 images to generate C6 and C7 images, respec-

tively. More details on the datasets and implementation details are in the

supplemental information.

To evaluate ACID in the MRI case, the DAGAN network was used,38

which was proposed for single-coil MRI reconstruction. In this study, we

set the subsampling rate to 10% and subsampled the resultant images

with the 2D Gaussian sampling pattern. Also, the DAGAN network was

re-trained, with the same hyperparameters and training datasets as those

used by Yang et al.38 The test images were a series of brain images,

each of which consists of 256 3 256 pixels. Case M1 was randomly chosen

from the test dataset,38 then the phrase ‘‘HELLO NATURE’’ was placed in

the image as structural changes. Case M2 was obtained in the same way

as in Antun et al.,15 where the sentence ‘‘CAN U SEE IT’’ and ‘‘>’’ were

added to the original image. Also, we applied the same attacking technique

used in Antun et al.15 to generate adversarial samples. These perturbations

were added to M1 and M2 images to obtain M3 and M4 images, respec-

tively.15 Furthermore, the Gaussian noise with zero mean and deviation of

15 over the pixel value range [0, 255] was superimposed to cases M1

and M2 to obtain M5 and M6 images. M7 was randomly chosen from the

DAGAN test dataset, which can be freely downloaded.38 In addition, cases

M8 and M9 were generated by putting a radial mask of a 20% subsampling

rate on the M1 and M2 images, which were used to compare ACID with

ADMM-net.41 Cases M10 and M12 were generated by directly perturbing

the entire ACID system. The comparative results are given in supplemental

information, part I.B.

ACID was then compared with AUTOMAP for MRI reconstruction. The

AUTOMAP network was tested on subsampled single-coil data. The trained

AUTOMAP weights used in our experiments were provided by Zhu et al.16

The AUTOMAP network took a vectorized subsampled measurement data as

its input. First, the complex k-space data were computed using the discrete
Fourier transform of an MRI image. Second, sub-

sampled k-space data were generated with a sub-

sampling mask. Lastly, the measurement data

were reshaped into a vector and fed into the

AUTOMAP network. In this study, the images of

128 3 128 pixels at a subsampling rate of 60%

were used for testing. The original image was pro-

vided in Antun et al.,15 ‘‘HELLONATURE,’’ ‘‘CANU

SEE IT,’’ and ‘‘>’’ were added to the test image to

generate A1 and A2 with the structural changes.
The perturbations were added to images A1 and A2 to obtain images A3 and

A4.15 For representative results, please see supplemental information, part I.C.

Image quality assessment

To quantitatively compare the results obtained with different reconstruction

methods, the PSNR was used to measure the difference between a recon-

structed image and the corresponding ground truth image. Also, the SSIM

was used to assess the similarity between images. In addition, the NRMSE

and FSIM65 are also used to assess the main results. For qualitative analysis,

the reconstructed results were visually inspected for structural changes (i.e.,

the inserted text, bird, and patterns) and artefacts induced by perturbation.

In this context, we focused mainly on details such as edges and integrity

such as overall appearance.

To highlight the merits and stability of the ACID scheme, the representative

CS-based methods served as the baseline. For CT, the sparsity-regularized

method combining X-lets (shearlets) and total variation (TV) was used,66 which

is consistent with the selection in Antun et al.15 For MRI, the total generalized

variation (TGV) method was chosen.67 All of the parameters, including the

number of iterations for these CS methods, were optimized for fair compari-

son, as further detailed in the supplemental information.

Numerical verification of convergence

To verify the convergence of the ACID iteration, we numerically investigated

the convergence rate and computational cost. We used PSNR as the metric

to reflect the convergence of ACID (Figure 11). It can be seen that the ACID iter-

ation converged after approximately 30 iterations for CT, and became stable

after 250 iterations for MRI. In this study, we set the number of iterations to

100 and 300 for CT and MRI, respectively. In addition, we empirically showed

the convergence of ACID in terms of the Lipschitz constant (see part B of our

article series34 for details).

ACID parameterization

The ACIDmethodmainly involves two parameters, l and ε; as defined in Equa-

tion 1. These parameters were optimized based on our quantitative and qual-

itative analyses, as summarized in Table 2.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100474.
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Table 2. Parameters optimized in the experiments

Variables C1 C2 C3 C4 C5 C6 C7 M1

εð10�3Þ 0.700 0.700 0.500 1.100 0.35 0.100 0.700 0.333

l 0.76 0.76 14 2.4 60 3.0 0.76 0.1

Variables M2 M3 M4 M5 M6 M7 M8 M9

εð10�3Þ 0.333 0.500 0.500 0.667 0.667 0.333 0.500 0.500

l 0.1 0.01 0.01 0.01 0.01 0.1 0.01 0.01

Variables M10 M11 M12 A1 A2 A3 A4

εð10�3Þ 0.100 0.100 0.100 0.33 0.33 2.0 2.0

l 0.01 0.01 0.01 3.10 3.10 6.10 6.10
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